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1 Introduction

The notion of a quasi-ideal was firstly introduced for semigroups in [15] and for
rings in [16] by Steinfeld. Iseki in [6] discussed some characterizations of quasi-
ideals for a semiring without zero. Using quasi-ideals, Shabir, Ali, Batool in [14]
characterize a class of semirings. Chinram in [2] generalizes the concept of a quasi-
ideal to a Γ-semigroup and discussed some of its properties. Also in [1] Chinram gave
some different characterizations of quasi-ideals in a Γ-semiring while the concept of a
Γ-semiring was coined by Rao in [13]. The authors studied quasi-ideals and minimal
quasi-ideals in Γ-semirings in [7] and quasi-ideals in regular Γ-semirings in [8].

The notion of a bi-ideal was first introduced for semigroups by Good and Hughes
in [4]. The concept of a bi-ideal for a ring was given by Lajos [9] . Also in [10,11]
Lajos discussed some characterizations of bi-ideals in semigroups. Shabir, Ali, Batool
in [14] gave some properties of bi-ideals in a semiring.

The concept of a regular ring was introduced by J. von Neumann in [12] and
he gave the definition of a regular ring as follows: a ring R is regular if for any
b ∈ R there exists x ∈ R such that b = bxb. Analogously the concept of a regular
semigroup was introduced by Green in [5] and a regular semiring was introduced by
Zelznikov [17]. This concept of regularity was extended to a Γ-semiring by Rao [13]
and wos studied by Dutta and Sardar in [3].

In this paper efforts are made to prove various characterizations of a regular
Γ-semiring, intra-regular Γ-semiring and a duo Γ-semiring by using ideals, interior-
ideals, quasi-ideals and bi-ideals of a Γ-semiring.

2 Preliminaries

First we recall some definitions of the basic concepts of Γ-semirings that we need
in sequel. For this we follow Dutta and Sardar [3].
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Definition 1. Let S and Γ be two additive commutative semigroups. S is called a
Γ-semiring if there exists a mapping S×Γ×S −→ S denoted by aαb for all a, b ∈ S
and α ∈ Γ satisfying the following conditions:
(i) aα (b + c) = (aαb) + (aαc),
(ii) (b + c) αa = (bαa) + (cαa),
(iii) a(α + β)c = (aαc) + (aβc),
(iv) aα (bβc) = (aαb)βc ; for all a, b, c ∈ S and for all α, β ∈ Γ.

Definition 2. An element 0 ∈ S is said to be an absorbing zero if 0αa = 0 = aα0,
and a + 0 = 0 + a = a for all a ∈ S and α ∈ Γ.

Definition 3. A non-empty subset T of a Γ-semiring S is said to be a sub-Γ- semiring
of S if (T,+) is a subsemigroup of (S,+) and aαb ∈ T for all a, b ∈ Tand α ∈ Γ.

Definition 4. A non-empty subset T of a Γ-semiring S is called a left (respectively
right) ideal of S if T is a subsemigroup of (S,+) and xαa ∈ T (respectively aαx ∈ T )
for all a ∈ T, x ∈ S and α ∈ Γ.

Definition 5. If T is both left and right ideal of a Γ-semiring S, then T is known
as an ideal of S.

A quasi-ideal Q in a Γ-semiring S is defined as follows.

Definition 6. A subsemigroup Q of (S, +) is a quasi-ideal of S if (SΓQ)∩ (QΓS) ⊆
Q.

Example. Consider a Γ-semiring S = M2×2(N0), where N0 denotes the set of nat-
ural numbers with zero and Γ= S. Define AαB= usual matrix product of A,α and
B; for all A,α , B ∈ S. Then

Q =
{(

a 0
0 0

)
| a ∈ N0

}
is a quasi-ideal of a Γ-semiring S.

Definition 7. A non-empty subset B of a Γ- semiring S is a bi-ideal of a Γ-semiring
S if B is a sub-Γ-semiring of S and BΓSΓB ⊆ B.

Example. Let N be the set of natural numbers and Γ = 2N . Then N and Γ both
are additive commutative semigroups. An image of a mapping N ×Γ×N −→ N is
denoted by aαb and defined as aαb = product of a, α, b, for all a, b ∈ S and α ∈ Γ.
Then N forms a Γ-semiring. B = 3N is a bi-ideal of N .

Now we define a generalized bi-ideal and an interior-ideal of a Γ- semiring S.

Definition 8. A non-empty subset B of a Γ- semiring S is a generalized bi-ideal
of a Γ- semiring S if BΓSΓB ⊆ B.

Definition 9. A non-empty subset I of a Γ- semiring S is an interior-ideal of a Γ-
semiring S if I is a subsemigroup of S and SΓIΓS ⊆ I.
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Proposition 1. For each non-empty subset X of a Γ- semiring S the following
statements hold.
(i) SΓX is a left ideal of S.
(ii) XΓS is a right ideal of S.
(iii) SΓXΓS is an ideal of S.

Proposition 2. If S is a Γ- semiring S and a ∈ S, then the following statements
hold.
(i) SΓa is a left ideal of S.
(ii) aΓS is a right ideal of S.
(iii) SΓaΓS is an ideal of S.

Now onwards S denotes a Γ-semiring with absorbing zero unless otherwise stated.

3 Regular Γ-Semiring

An element a of a Γ-semiring S is said to be regular if a ∈ aΓSΓa.
If all elements of a Γ-semiring S are regular, then S is known as a regular Γ-semiring.
The following theorem was proved in [8] by the authors.

Theorem 1. In S the following statements are equivalent.
(1) S is regular.
(2) For every left ideal L and a right ideal R of S, RΓL = R ∩ L.
(3) For every left ideal L and a right ideal R of S,

(i) R2 = RΓR = R,
(ii) L2 = LΓL = L,
(iii) RΓL = R ∩ L is a quasi-ideal of S.

(4) The set of all quasi-ideals of S is a regular Γ-semigroup.
(5) Every quasi-ideal of S is of the form QΓSΓQ = Q.

Theorem 2. The following statements are equivalent in S.
(1) S is regular.
(2) For any bi-ideal B of S, BΓSΓB = B.
(3) For any quasi-ideal Q of S, QΓSΓQ = Q.

Proof. (1) ⇒ (2) Let B be a bi-ideal of S and b ∈ B. As S is regular, b ∈ bΓSΓb ⊆
BΓSΓB. Therefore B ⊆ BΓSΓB. Hence B = BΓSΓB.
(2) ⇒ (3) As every quasi-ideal is a bi-ideal, implication (2) ⇒ (3) holds.
(3) ⇒ (1) Let R be a right ideal and L be a left ideal of S. Then R ∩ L is a quasi-
ideal of S. Hence by assumption R∩L = (R ∩ L) ΓSΓ (R ∩ L) ⊆ (RΓS) ΓL ⊆ RΓL.
Therefore R ∩ L = RΓL. Thus S is a regular Γ-semiring by Theorem 1.

Theorem 3. In S the following statements are equivalent.
(1) S is regular.
(2) For every bi-ideal B and an ideal I of S, B ∩ I = BΓIΓB.
(3) For every quasi-ideal Q and an ideal I of S, Q ∩ I = QΓIΓQ.
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Proof. (1) ⇒ (2) Let B be a bi-ideal and I be an ideal of S. Now BΓIΓB ⊆
BΓSΓB ⊆ B and BΓIΓB ⊆ I. Therefore BΓIΓB ⊆ B∩I. For the reverse inclusion,
let a ∈ B ∩ I. As S is regular, a ∈ aΓSΓa . Then aΓSΓa ⊆ (aΓSΓa)ΓSΓaΓSΓa) ⊆
(BΓSΓB) Γ(SΓIΓS)ΓB ⊆ BΓIΓB. Therefore a ∈ QΓIΓQ. Hence we have B ∩ I ⊆
BΓIΓB. Thus we get BΓIΓB = B ∩ I.
(2) ⇒ (3) Implication follows as every quasi-ideal of S is a bi-ideal.
(3) ⇒ (1) Let R be a right ideal and L be a left ideal of S. Then by assumption we
have, R = R∩S = RΓSΓR ⊆ RΓR and L∩S = LΓSΓL ⊆ LΓL. Also R∩L = RΓL
is a quasi-ideal of S. Hence by Theorem 1, S is a regular Γ-semiring.

Proof of the following theorem is straightforward.

Theorem 4. In S the following statements are equivalent.
(1) S is regular.
(2) For every bi-ideal B and a left ideal L of S, B ∩ L ⊆ BΓL.
(3) For every quasi-ideal Q and a left ideal L of S, Q ∩ L ⊆ QΓL.
(4) For every bi-ideal B and a right ideal R of S, B ∩R ⊆ RΓB.
(5) For every right ideal R and a quasi-ideal Q of S, R ∩Q ⊆ RΓQ.
(6) For every left ideal L, every right ideal R and every bi-ideal B of S,

L ∩R ∩B ⊆ RΓBΓL.

(7) For every left ideal, every right ideal R and every quasi-ideal Q of S, L∩R∩Q ⊆
RΓQΓL.

Theorem 5. In S the following conditions are equivalent.
(1) S is regular.
(2) I ∩Q = QΓIΓQ, for an ideal I and a quasi-ideal Q of S.
(3) I ∩Q = QΓIΓQ, for an interior ideal I and a quasi-ideal Q of S.

Proof. (1) ⇒ (2) Let Q be a quasi-ideal and I be an ideal of S. Now QΓIΓQ ⊆
QΓSΓQ ⊆ QΓS by Proposition 1. Similarly we get QΓIΓQ ⊆ SΓQ. Therefore
QΓIΓQ ⊆ (SΓQ)∩ (QΓS) ⊆ Q, since Q is a quasi-ideal. Also QΓIΓQ ⊆ I as I is an
ideal. Therefore QΓIΓQ ⊆ Q∩I. For the reverse inclusion, let a ∈ Q∩I. As S is reg-
ular, a ∈ aΓSΓa. We have a ∈ (aΓSΓa) ΓSΓ (aΓSΓa) ⊆ (QΓSΓQ) Γ(SΓIΓS)ΓQ ⊆
QΓIΓQ. Hence Q ∩ I ⊆ QΓIΓQ. Therefore QΓIΓQ = Q ∩ I.
(2)⇒ (1) Let Q be a quasi-ideal of S. By (2), QΓSΓQ = Q∩S. Hence QΓSΓQ = Q.
Therefore S is regular by Theorem 2.
(1) ⇒ (3) Let Q be a quasi-ideal and I be an interior ideal of S. Now QΓIΓQ ⊆
QΓSΓQ ⊆ QΓS by Proposition 1. Similarly we get QΓIΓQ ⊆ SΓQ. Therefore
QΓIΓQ ⊆ (SΓQ)∩(QΓS) ⊆ Q. Also QΓIΓQ ⊆ I as I is an interior ideal. Therefore
QΓIΓQ ⊆ Q∩I. For the reverse inclusion, let a ∈ Q∩I. As S is regular, a ∈ aΓSΓa.
Therefore a ∈ (aΓSΓa) ΓSΓ (aΓSΓa) ⊆ (QΓSΓQ) Γ(SΓIΓS)ΓQ ⊆ QΓIΓQ. There-
fore Q ∩ I ⊆ QΓIΓQ. Hence QΓIΓQ = Q ∩ I.
(3)⇒ (1) Let Q be a quasi-ideal of S. By (3), QΓSΓQ = Q∩S. Hence QΓSΓQ = Q.
Hence by Theorem 2, S is regular.
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Theorem 6. In S the following statements are equivalent.
(1) S is regular.
(2) Q ∩ L ⊆ QΓL, for a quasi-ideal Q and a left ideal L of S.
(3) Q ∩R ⊆ RΓQ, for a quasi-ideal Q and a right ideal R of S.

Theorem 7. S is regular if and only if R ∩Q ∩ L ⊆ RΓQΓL, for a right ideal R,
quasi-ideal Q and a left ideal L of S.

Proof. Suppose that S is a regular Γ-semiring. Let R be a right ideal, Q be a quasi-
ideal and L be a left ideal of S. Let a ∈ R ∩ Q ∩ L. As S is regular, a ∈ aΓSΓa.
Therefore a ∈ (aΓSΓa) ΓSΓa ⊆ (RΓS) ΓQΓ (SΓL) ⊆ RΓQΓL. Hence R ∩Q ∩ L ⊆
RΓQΓL. Conversely, let R be a right ideal and L be a left ideal of S. By assumption
R ∩ S ∩L ⊆ RΓSΓL. Therefore R ∩L ⊆ RΓL. Thus we have R ∩L = RΓL. Hence
S is regular by Theorem 1.

4 Intra-regular Γ-semiring

Now we give the definition of an intra-regular Γ-semiring.

Definition 10. A Γ-semiring S is said to be an intra-regular Γ-semiring if for any
x ∈ S, x ∈ SΓxΓxΓS.

Theorem 8. S is intra-regular if and only if each right ideal R and left ideal L of
S satisfy R ∩ L ⊆ LΓR.

Proof. Suppose that S is an intra-regular Γ-semiring and R and L be a right ideal
and a left ideal of S respectively. Let a ∈ R∩L. As S is intra-regular, a ∈ SΓaΓaΓS.
Now SΓaΓaΓS = (SΓa) Γ(aΓS) ⊆ (SΓL) Γ(RΓS) ⊆ LΓR. Therefore R ∩ L ⊆ LΓR.
Conversely, for a ∈ S, (a)l = N0a + SΓa, (a)r = N0a + aΓS. By assumption
(a)r ∩ (a)l ⊆ (a)lΓ(a)r. Then (a)r ∩ (a)l ⊆ (a)lΓ(a)r = (N0a + SΓa) Γ (N0a + aΓS).
Also by assumption we have (a)r ⊆ SΓa + SΓaΓS and (a)l ⊆ aΓS + SΓaΓS.
Hence we have (a)r ⊆ SΓa + SΓaΓS ⊆ SΓaΓaΓS. Therefore we get a ∈ SΓaΓaΓS.
Thus any a ∈ S is an intra-regular element of S. Therefore S is an intra-regular
Γ-semiring.

Theorem 9. In S the following statements are equivalent.
(1) S is intra-regular.
(2) For bi-ideals B1 and B2 of S, B1 ∩B2 ⊆ SΓB1ΓB2ΓS.
(3) For every bi-ideal B and a quasi-ideal Q of S, B ∩ Q ⊆ (SΓQΓBΓS) ∩
(SΓBΓQΓS).
(4) For every quasi-ideals Q1 and Q2 of S, Q1 ∩Q2 ⊆ SΓQ1ΓQ2ΓS.

Proof. (1) ⇒ (2) Suppose that S is intra-regular. Let B1 and B2 be bi-ideals of S.
Let a ∈ B1∩B2. As S is intra-regular, a ∈ SΓaΓaΓS. a ∈ SΓaΓaΓS ⊆ SΓB1ΓB2ΓS.
Therefore B1 ∩B2 ⊆ SΓB1ΓB2ΓS.
(2) ⇒ (3), (3) ⇒ (4) Implications follow as every quasi-ideal is a bi-ideal.
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(4) ⇒ (1) Let L be a left ideal and R be a right ideal of S. Then R and L both are
quasi-ideals of S. By (4), R ∩L ⊆ SΓLΓRΓS = (SΓL) Γ (RΓS) ⊆ LΓR. Therefore
we get R ∩ L ⊆ LΓR . Thus by Theorem 8, S is an intra-regular Γ-semiring.
Thus we have proved (1) ⇒ (2) ⇒ (3) ⇒(4) ⇒ (1).

Theorem 10. In S the following statements are equivalent.
(1) S is intra-regular.
(2) For a left ideal L and a bi-ideal B of S, L ∩B ⊆ LΓBΓS.
(3) For a left ideal L and a quasi-ideal Q of S, L ∩Q ⊆ LΓQΓS.
(4) For a right ideal R and a bi-ideal B of S, R ∩B ⊆ SΓBΓR.
(5) For a right ideal R and a quasi-ideal Q of S, R ∩Q ⊆ SΓQΓR.

Proof. (1) ⇒ (2) Suppose that S is intra-regular. Let L be a left ideal and B be a
bi-ideal of S. Let a ∈ B ∩ L. As S is intra-regular, a ∈ SΓaΓaΓS. a ∈ SΓaΓaΓS ⊆
SΓLΓBΓS ⊆ LΓBΓS. Hence B ∩ L ⊆ LΓBΓS.
(2) ⇒ (3), (4) ⇒ (5) As every quasi-ideal is a bi-ideal, implications follow.
(3) ⇒ (1) Let L be a left ideal and R be a right ideal of S. Then R is a quasi-ideal
of S. By (3), R ∩ L ⊆ LΓRΓS ⊆ LΓR. Therefore we get R ∩ L ⊆ LΓR . Thus by
Theorem 8, S is an intra-regular Γ-semiring.
(1) ⇒ (4) Suppose that S is intra-regular. Let R be a right ideal and B be a bi-ideal
of S. Let a ∈ B ∩ R. As S is intra-regular, a ∈ SΓaΓaΓS. Hence a ∈ SΓaΓaΓS ⊆
SΓBΓRΓS ⊆ SΓBΓR. This shows that B ∩R ⊆ SΓBΓR.
(5)⇒ (1) Let L be a left ideal and R be a right ideal of S. By (5), R∩L ⊆ SΓLΓR ⊆
LΓR, since L is a quasi-ideal of S. Therefore we get R∩L ⊆ LΓR. This shows that
S is an intra-regular Γ-semiring by Theorem 8.

Theorem 11. In S the following statements are equivalent.
(1) S is intra-regular.
(2) K ∩B ∩R ⊆ KΓBΓR, for a bi-ideal B, a right ideal R and an interior ideal K
of S.
(3) I ∩B ∩R ⊆ IΓBΓR, for a bi-ideal B, a right ideal R and an ideal I of S.
(4) K ∩Q∩R ⊆ KΓQΓR, for a quasi-ideal Q, a right ideal R and an interior ideal
K of S.
(5) I ∩Q ∩R ⊆ IΓQΓR, for a quasi-ideal Q, a right ideal R and an ideal I of S.

Proof. (1) ⇒ (2) Suppose that S is intra-regular. Let R be a right ideal, K be an
interior ideal and B be a bi-ideal of S. Let a ∈ K ∩ B ∩ R. As S is intra-regular,
a ∈ SΓaΓaΓS. Therefore a ∈ SΓaΓaΓS ⊆ (SΓKΓS) ΓBΓ (RΓSΓS) ⊆ KΓBΓR .
Thus we have K ∩B ∩R ⊆ KΓBΓR.
(2) ⇒ (3), (4) ⇒ (5) As every ideal is an interior ideal, implications follow.
(2) ⇒ (4), (3) ⇒ (5) Clearly implications follow, since quasi-ideal is a bi-ideal.
(5)⇒ (1) Let L be a left ideal and R be a right ideal of S. As L is a quasi-ideal of
S, by (5) we have S ∩ L ∩ R ⊆ SΓLΓR ⊆ LΓR. Therefore we have R ∩ L ⊆ LΓR.
Hence by Theorem 8, S is an intra-regular Γ-semiring.
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Theorem 12. In S the following statements are equivalent.
(1) S is intra-regular.
(2) I ∩B ∩L ⊆ LΓBΓI, for a bi-ideal B, a left ideal L and an interior ideal I of S.
(3) I ∩B ∩ L ⊆ LΓBΓI, for a bi-ideal B, a left ideal L and an ideal I of S.
(4) I ∩ Q ∩ L ⊆ LΓQΓI, for a quasi-ideal Q, a left ideal L and an interior ideal I
of S.
(5) I ∩Q ∩ L ⊆ LΓQΓI, for a quasi-ideal Q, a left ideal L and an ideal I of S.

Proof. (1) ⇒ (2) Suppose that S is intra-regular. Let L be a left ideal, I be an
interior ideal and B be a bi-ideal of S. Let a ∈ I ∩ B ∩ L. As S is intra-regular,
a ∈ SΓaΓaΓS. a ∈ SΓaΓaΓS ⊆ (SΓSΓL) ΓBΓ (SΓIΓS) ⊆ LΓBΓI. Thus we have
I ∩B ∩ L ⊆ LΓBΓI.
(2) ⇒ (3), (4) ⇒ (5) Clearly implications follow, since an ideal is an interior ideal.
(2) ⇒ (4), (4) ⇒ (5) As every quasi-ideal is a bi-ideal, implications follow.
(5) ⇒ (1) Let L be a left ideal and R be a right ideal of S. As right ideal R is a
quasi-ideal, and S itself is an ideal of S, S ∩ R ∩ L ⊆ LΓRΓS by (5). Therefore
LΓRΓS ⊆ LΓR. Thus we get R ∩ L ⊆ LΓR. Therefore S is an intra-regular
Γ-semiring by Theorem 8.

5 Regular and Intra-regular Γ-semiring

Theorem 13. For S the following statements are equivalent.
(1) S is regular and intra-regular.
(2) Each right ideal R and left ideal L of S satisfy R ∩ L = RΓL ⊆ LΓR.
(3) Each bi-ideal B of S satisfies B = B2 = BΓB.
(4) Each quasi-ideal Q of S satisfies Q = Q2 = QΓQ.

Proof. (1) ⇔ (2) Proof follows from Theorems 1 and 8.
(1) ⇒ (3) Suppose that S is regular and intra-regular. Let B be a bi-ideal of S.
Then B2 = BΓB ⊆ B. For the reverse inclusion, let a ∈ B. As S is regular
and intra-regular, we have a ∈ aΓSΓa and a ∈ SΓaΓaΓS. Hence a ∈ aΓSΓa ⊆
aΓSΓ (aΓSΓa) ⊆ aΓSΓ (SΓaΓaΓS) ΓSΓa ⊆. (BΓSΓB)Γ(BΓSΓB) ⊆ BΓB. There-
fore B ⊆ BΓB. Thus we get B = BΓB = B2.
(3) ⇒ (4) As every quasi-ideal is a bi-ideal, implication follows.
(4) ⇒ (1) Let L be a left ideal and R be a right ideal of S. Then R ∩ L is a quasi-
ideal of S. By (4), R ∩ L = (R ∩ L)2 = (R ∩ L) Γ(R ∩ L) ⊆ LΓR. This shows
that S is an intra-regular Γ-semiring by Theorem 8. Similarly R ∩ L = (R ∩ L)2 =
(R ∩ L) Γ(R ∩ L) ⊆ RΓL. Hence we get R ∩ L = RΓL. Therefore S is a regular
Γ-semiring by Theorem 1.

Theorem 14. In S the following statements are equivalent.
(1) S is regular and intra-regular.
(2) For bi-ideals B1 and B2 of S, B1 ∩B2 ⊆ (B1ΓB2) ∩ (B2ΓB1).
(3) For every bi-ideal B and a quasi-ideal Q of S, B ∩Q ⊆ (QΓB) ∩ (BΓQ).
(4) For quasi-ideals Q1 and Q2 of S, Q1 ∩Q2 ⊆ (Q1ΓQ2) ∩ (Q2ΓQ1).
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(5) For every quasi-ideal Q and a generalized bi-ideal G of S, G ∩ Q ⊆ (GΓQ) ∩
(QΓG).
(6) For every left ideal L and a bi-ideal B of S, B ∩ L ⊆ (BΓL) ∩ (LΓB).
(7) For every left ideal L and a quasi-ideal Q of S, Q ∩ L ⊆ (QΓL) ∩ (LΓQ).
(8) For every right ideal R and a bi-ideal B of S, B ∩R ⊆ (BΓR) ∩ (RΓB).
(9) For every quasi-ideal Q and a right ideal R of S, R ∩Q ⊆ (RΓQ) ∩ (QΓR).
(10) For every left ideal L and a right ideal R of S, R ∩ L ⊆ (RΓL) ∩ (LΓR).

Proof. (1) ⇒ (2) Suppose that S is regular and intra-regular. Let B1 and B2

be bi-ideals of S. Let a ∈ B1 ∩ B2. As S is regular and intra-regular, a ∈
aΓSΓa and a ∈ SΓaΓaΓS. Hence a ∈ aΓSΓa ⊆ (aΓSΓSΓa) Γ (aΓSΓSΓa) ⊆
(B1ΓSΓB1)Γ(B2ΓSΓB2) ⊆ B1ΓB2.

Similarly we can show that a ∈ B2ΓB1. Therefore a ∈ B1∩B2 implies a ∈ B1ΓB2

and a ∈ B2ΓB1. This gives B1 ∩B2 ⊆ (B1ΓB2) ∩ (B2ΓB1).

(2) ⇒ (3), (3) ⇒ (4) Implications follow as every quasi-ideal is a bi-ideal.
(4) ⇒ (1) Let L be a left ideal and R be a right ideal of S. Then R and L both
are quasi-ideals of S. By (4) , R ∩ L ⊆ (RΓL) ∩ (LΓR). R ∩ L ⊆ LΓR implies S
is an intra-regular Γ-semiring by Theorem 8. Also R ∩ L ⊆ RΓL. Therefore we get
R ∩ L = RΓL. Hence by Theorem 1, S is a regular Γ-semiring.
(1) ⇒ (5) Suppose that S is regular and intra-regular. Let G be a generalized
bi-ideal and Q be quasi-ideal of S. Let a ∈ G ∩ Q. As S is regular and intra-
regular, a ∈ aΓSΓa and a ∈ SΓaΓaΓS. Therefore a ∈ aΓSΓa ⊆ aΓSΓ (aΓSΓa) ⊆
(aΓSΓSΓa) Γ (aΓSΓSΓa) ⊆ (GΓSΓG)Γ(QΓSΓQ) ⊆ GΓQ. Hence a ∈ GΓQ. Simi-
larly we can show that a ∈ QΓG.Therefore a ∈ G∩Q implies a ∈ GΓQ and a ∈ QΓG,
which gives G ∩Q ⊆ (GΓQ) ∩ (QΓG).
(5) ⇒ (1) Let L be a left ideal and R be a right ideal of S respectively. As R is a
generalized bi-ideal and L is a quasi-ideal of S, proof follows from (4) ⇒(1).
(1) ⇒ (6) Suppose that S is regular and intra-regular. Let B be a bi-ideal and L
be a left ideal of S. Let a ∈ B ∩ L. As S is regular and intra-regular, a ∈ aΓSΓa
and a ∈ SΓaΓaΓS. a ∈ aΓSΓa ⊆ aΓSΓ (aΓSΓa) ⊆ (aΓSΓSΓa) Γ (aΓSΓSΓa) ⊆
(BΓSΓB)Γ(SΓSΓSΓL) ⊆ BΓL. Therefore we get a ∈ BΓL. Similarly we can show
that a ∈ LΓB. Therefore a ∈ B ∩ L implies a ∈ BΓL and a ∈ LΓB. Hence
B ∩ L ⊆ (BΓL) ∩ (LΓB).
(6) ⇒ (7) As every quasi-ideal is a bi-ideal, implication follows.
(7) ⇒ (1) Let L be a left ideal and R be a right ideal of S respectively. As R is a
quasi-ideal of S, proof follows from (4) ⇒ (1).
(1) ⇒ (8) Suppose that S is regular and intra-regular. Let R be right ideal
and B be a bi-ideals of S. Let a ∈ B ∩ R. As S is regular and intra-regular,
a ∈ aΓSΓa and a ∈ SΓaΓaΓS. Therefore a ∈ aΓSΓa ⊆ aΓSΓ(aΓSΓa) ⊆
(aΓSΓSΓa) Γ (aΓSΓSΓa) ⊆ (BΓSΓB)Γ(RΓSΓSΓS) ⊆ BΓR. Therefore we get
a ∈ BΓR. Similarly we can show that a ∈ RΓB. Therefore a ∈ B ∩ R implies
a ∈ BΓR and a ∈ RΓB, which gives B ∩R ⊆ (BΓR) ∩ (RΓB).
(8) ⇒ (9), (9) ⇒ (10) Implications follow as every left ideal is a quasi-ideal.



REGULAR, INTRA-REGULAR AND DUO Γ-SEMIRINGS 11

(10) ⇒ (1) Let L be a left ideal and R be a right ideal of S. Proof follows from
(4) ⇒ (1).

Theorem 15. In S the following statements are equivalent.
(1) S is regular and intra-regular.
(2) For bi-ideals B1 and B2 of S, B1 ∩B2 ⊆ (B1ΓB2ΓB1) ∩ (B2ΓB1ΓB2).
(3) For a quasi-ideal Q and a bi-ideal B of S, Q ∩B ⊆ (BΓQΓB) ∩ (QΓBΓQ).
(4) For quasi-ideals Q1 and Q2 of S, Q1 ∩Q2 ⊆ (Q1ΓQ2ΓQ1) ∩ (Q2ΓQ1ΓQ2).
(5) For a bi-ideal B and a left ideal L of S, B ∩ L ⊆ BΓLΓB.
(6) For a quasi-ideal Q and a left ideal L of S, Q ∩ L ⊆ QΓLΓQ.
(7) For a bi-ideal B and a right ideal R of S, B ∩R ⊆ BΓRΓB.
(8) For a quasi-ideal Q and a right ideal R of S, Q ∩R ⊆ QΓRΓQ.
(9) For a quasi-ideal Q and a generalized bi-ideal G of S, Q ∩ G ⊆ (QΓGΓQ) ∩
(GΓQΓG).

Proof. (1)⇒ (2) Suppose that S is regular and intra-regular. Let B1 and B2 be bi-
ideals of S. Let a ∈ B1 ∩B2. As S is regular and intra-regular, a ∈ aΓSΓa and a ∈
SΓaΓaΓS. Hence a ∈ aΓSΓa ⊆ aΓSΓ(aΓSΓa) ⊆ (aΓSΓa) Γ (aΓSΓa) Γ (aΓSΓa)
⊆ (B1ΓSΓB1) Γ (B2ΓSΓB2) Γ (B1ΓSΓB1) ⊆ B1ΓB2ΓB1. Therefore B1 ∩ B2 ⊆
B1ΓB2ΓB1. In the same manner we can show that B1 ∩B2 ⊆ B2ΓB1ΓB2. Thus we
get B1 ∩B2 ⊆ (B1ΓB2ΓB1) ∩ (B2ΓB1ΓB2).
(2)⇒ (3), (3)⇒ (4) Implications follow as every quasi-ideal is a bi-ideal.
(4) ⇒ (1) Let L be a left ideal and R be a right ideal of S. Then R ∩ L is a quasi-
ideal of S. By (4), (R ∩ L)∩(R ∩ L) ⊆ (( R ∩ L) Γ ( R ∩ L) Γ ( R ∩ L)) ⊆ LΓRΓR ⊆
LΓR. Hence R ∩ L ⊆ LΓR. This shows that S is an intra-regular Γ-semiring by
Theorem 8. Also R ∩ L ⊆ ((R ∩ L) Γ (R ∩ L) Γ (R ∩ L)) implies R ∩ L ⊆ RΓL.
Therefore R ∩ L = RΓL. Thus S is a regular Γ-semiring by Theorem 1.
(1)⇒ (5) Suppose that S is regular and intra-regular. Let B be a bi-ideal and
L be a left ideal of S. Let a ∈ B ∩ L. As S is regular and intra-regular,
a ∈ aΓSΓa and a ∈ SΓaΓaΓS. Therefore a ∈ aΓSΓa ⊆ aΓSΓ(aΓSΓa) ⊆
(aΓSΓa) Γ (SΓa) Γ (aΓSΓa) ⊆ (BΓSΓB) Γ (SΓL) Γ (BΓSΓB) ⊆ BΓLΓB. Hence
we have B ∩ L ⊆ BΓLΓB.
(5) ⇒ (6) As every quasi-ideal is a bi-ideal, implication follows.
(6) ⇒ (7) Proof is similar to (4)⇒ (1).
(1) ⇒(7) ⇒ (8) ⇒ (1) can be proved similarly to (1) ⇒ (5) ⇒ (6) ⇒(1). Proof of
(1) ⇒ (9) is similar to (1) ⇒ (2) and proof of (9) ⇒ (1) is parallel to (1) ⇒ (4) ⇒
(1).
Thus we have shown that (1) ⇒ (2) ⇒ (3) ⇒(4) ⇒ (1), (1) ⇒ (5) ⇒ (6) ⇒(1) and
(1) ⇒ (7) ⇒ (8) ⇒ (1) and (1) ⇒ (9) ⇒(1).

Theorem 16. In S the following statements are equivalent.
(1) S is regular and intra-regular.
(2) B ∩R ∩ L ⊆ BΓRΓL, for a bi-ideal B, right ideal R and a left ideal L of S.
(3) Q ∩R ∩ L ⊆ QΓRΓL, for a quasi-ideal Q, right ideal R and left ideal R of S.
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Proof. (1) ⇒ (2) Suppose that S is regular and intra-regular. Let B be a bi-ideal,
R be a right ideal and L be a left ideal of S. Let a ∈ B ∩R∩L. As S is regular and
intra-regular, a ∈ aΓSΓa and a ∈ SΓaΓaΓS. Hence a ∈ aΓSΓa ⊆ aΓSΓaΓSΓa) ⊆
(aΓSΓSΓa) Γ (aΓS)ΓSΓa) ⊆ (BΓSΓB) Γ (RΓS) ΓSΓL) ⊆ BΓRΓL. Therefore B ∩
R ∩ L ⊆ BΓRΓL.
(2) ⇒ (3) As every quasi-ideal is a bi-ideal, implication follows.
(3) ⇒ (1) Let L be a left ideal and R be a right ideal of S. As R is a quasi-
ideal and S itself a right ideal of S, by (3) we have R ∩ S ∩ L ⊆ RΓSΓL ⊆ RΓL.
Therefore R ∩ L ⊆ RΓL. Thus we get R ∩ L = RΓL. Hence S is a regular Γ-
semiring by Theorem 1. Similarly L is a quasi-ideal and S itself a left ideal of S
gives L ∩R ∩ S ⊆ LΓRΓS ⊆ LΓR by (3). Thus R ∩ L ⊆ LΓR. This shows that S
is an intra-regular Γ-semiring by Theorem 8.

6 Duo Γ-semiring

Now we define the notion of a duo Γ-semiring as follows.

Definition 11. A Γ - semiring S is said to be a left (right) duo Γ - semiring if every
left (right) ideal of S is a right (left) ideal.

A Γ -semiring S is said to be a duo Γ - semiring if every one-sided ideal of S is
a two-sided ideal.
That is a Γ-semiring S is said to be a duo Γ-semiring if it is both left duo and right
duo.

Theorem 17. If S is regular, then S is left duo if and only if for any two left ideals
A and B of S, A ∩B = AΓB.

Proof. Let S be a regular Γ-semiring . Assume that S is left duo. Let A and B be
any two left ideals of S. As S is left duo, A is a right ideal of S. Then by Theorem
1, A ∩ B = AΓB. Conversely, suppose that the given condition holds. Let L be a
left ideal of S. Then by assumption LΓS = L∩S ⊆ L. This shows that L is a right
ideal of S. Therefore S is a left duo Γ-semiring.

Proof of the following theorem is analogous to proof of Theorem 17.

Theorem 18. If S is regular, then S is right duo if and only if for any two right
ideals A and B of S, A ∩B = AΓB

Theorem 19. If S is regular, then S is left duo if and only if every quasi-ideal of
S is a right ideal of S.

Proof. Let S be a regular Γ-semiring. Suppose that S is left duo. Let Q be any
quasi-ideal of S. Then there exists a right ideal R and a left ideal L of S such that
Q = R ∩ L. Therefore Q = R ∩ L is a right ideal of S. Conversely, let L be a left
ideal of S. Then L is a quasi-ideal of S. Hence by assumption L is a right ideal of
S. Therefore S is a left duo Γ-semiring.
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Proofs of the following theorems are similar to proof of Theorem 19.

Theorem 20. If S is regular, then S is right duo if and only if every quasi-ideal of
S is a left ideal of S.

Theorem 21. If S is regular, then S is duo if and only if every quasi-ideal of S is
an ideal of S.

Theorem 22. If S is regular, then S is duo if and only if every bi-ideal of S is a
ideal of S.

Theorem 23. In S the following conditions are equivalent.
(1) S is regular duo.
(2) I ∩B = IΓBΓI, for every ideal I and a bi-ideal B of S.
(3) I ∩Q = IΓQΓI, for every ideal I and a quasi-ideal Q of S.

Proof. (1) ⇒ (2) Suppose that S is a regular duo Γ-semiring. Let I be an ideal and
B be a bi-ideal of S. Then by Theorem 22, B is an ideal of S. Therefore IΓBΓI ⊆ I
and IΓBΓI ⊆ B, since I and B are ideals of S. Hence IΓBΓI ⊆ I ∩ B. For the
reverse inclusion, let a ∈ I ∩ B. S is regular implies a ∈ aΓSΓa. a ∈ aΓSΓa ⊆
aΓSΓaΓSΓa) ⊆ (IΓS) ΓBΓ (SΓI) ⊆ IΓBΓI. Therefore I ∩ B ⊆ IΓBΓI. Hence
I ∩B = IΓBΓI.
(2) ⇒ (3) As every quasi-ideal of S is a bi-ideal of S, implication follows.
(3) ⇒ (1) Let L be a left ideal and R be a right ideal of S. Hence S ∩ L = SΓLΓS
and S ∩ R = SΓRΓS by (3). Therefore L = SΓLΓS and R = SΓRΓS. Now
LΓS = SΓLΓSΓS ⊆ SΓLΓS = L and SΓR = SΓSΓRΓS ⊆ SΓRΓS = R. Hence
LΓS ⊆ L and SΓR ⊆ R. This shows that L is a right ideal and R is a left ideal
of S. Therefore S is a duo Γ-semiring by Definition 11. As S is a duo Γ-semiring,
R ∩ L = RΓLΓR by (3). R ∩ L = RΓLΓR ⊆ RΓL. This shows that R ∩ L = RΓL.
Hence by Theorem 1, S is regular.

Theorem 24. If S is a Γ- semiring then the following statements are equivalents.
(1) S is regular duo.
(2) For every bi-ideals A and B of S, A ∩B = AΓB.
(3) For every bi-ideal B and a quasi-ideal Q of S, B ∩Q = BΓQ.
(4) For every bi-ideal B and a right ideal R of S, B ∩R = BΓR.
(5) For every quasi-ideal Q and a bi-ideal B of S, Q ∩B = QΓB.
(6) For every quasi-ideals Q1 and Q2 of S, Q1 ∩Q2 = Q1ΓQ2.
(7) For every quasi-ideal Q and a right ideal R of S, Q ∩R = QΓR.
(8) For every left ideal L and a bi-ideal B of S, L ∩B = LΓB.
(9) For every left ideal L and a right ideal R of S, L ∩R = LΓR.

Proof. We can prove the equivalence of statements such as (1) ⇒ (2) ⇒ (3) ⇒ (4)
⇒ (1), (1) ⇒ (5) ⇒ (6) ⇒ (7) ⇒ (1) and (1) ⇒ (8) ⇒ (9) ⇒ (1) . Proof of each
implication is straightforward so omitted.
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