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Some Properties of Meromorphic Solutions
of Logarithmic Order to Higher Order Linear

Difference Equations
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Abstract. This paper is devoted to the study of the growth of solutions of the linear
difference equation

An (z) f (z + n) + An−1 (z) f (z + n− 1)

+ · · ·+ A1 (z) f (z + 1) + A0 (z) f (z) = 0,

where An (z) , · · · , A0 (z) are entire or meromorphic functions of finite logarithmic
order. We extend some precedent results due to Liu and Mao, Zheng and Tu, Chen
and Shon and others.
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1 Introduction and main results

Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna theory of meromorphic
functions [9, 16]. We use the notations µ (f) , ρ (f) to denote the lower order and
the order of a meromorphic function f. Since Halburd–Korhonen [7] and Chiang–
Feng [5], independently, have given a difference version of the logarithmic derivative
lemma, and Halburd–Korhonen [8] subsequently showed how all key results of the
Nevanlinna theory have corresponding difference variants as well, some interest ap-
peared to investigate solutions of difference equations in the complex domain by
making use of this variant of the value distribution theory, see [1, 3, 12–15].

Definition 1 (see [9]). Let f be an entire function of order ρ (0 < ρ < ∞), the type
of f is defined as

τ (f) = lim sup
r→+∞

log M (r, f)
rρ

.

Similarly the lower type of an entire function f of lower order µ (0 < µ < ∞) is
defined by

τ(f) = lim inf
r→+∞

log M(r, f)
rµ

.
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16 BENHARRAT BELAÏDI

We recall the following definitions. The linear measure of a set E ⊂ (0,+∞) is
defined as m (E) =

∫ +∞
0 χE (t) dt and the logarithmic measure of a set F ⊂ (1, +∞)

is defined by lm (F ) =
∫ +∞
1

χF (t)
t dt, where χH (t) is the characteristic function of a

set H. The upper density of a set E ⊂ (0,+∞) is defined by

densE = lim sup
r−→+∞

m (E ∩ [0, r])
r

.

The upper logarithmic density of a set F ⊂ (1, +∞) is defined by

log dens (F ) = lim sup
r−→+∞

lm (F ∩ [1, r])
log r

.

Proposition 1. For all H ⊂ [1, +∞) the following statements hold :
i) If lm (H) = ∞, then m (H) = ∞;
ii) If densH > 0, then m (H) = ∞;
iii) If log densH > 0, then lm (H) = ∞.

Proof. i) Since we have χH(t)
t ≤ χH (t) for all t ∈ H ⊂ [1, +∞) , then

m (H) ≥ lm (H) .

So, if lm (H) = ∞, then m (H) = ∞. We can easily prove the results ii) and iii) by
applying the definition of the limit and the properties m (H ∩ [0, r]) ≤ m (H) and
lm (H ∩ [1, r]) ≤ lm (H) .

Definition 2 (see [9, 16]). For a ∈ C = C ∪ {∞}, the deficiency of a with respect
to a meromorphic function f is defined as

δ (a, f) = lim inf
r→+∞

m
(
r, 1

f−a

)

T (r, f)
= 1− lim sup

r→+∞

N
(
r, 1

f−a

)

T (r, f)
.

In recent paper [5], Chiang and Feng investigated meromorphic solutions of the
linear difference equation

An (z) f (z + n) + An−1 (z) f (z + n− 1)

+ · · ·+ A1 (z) f (z + 1) + A0 (z) f (z) = 0, (1)

where An (z) , · · · , A0 (z) are entire functions such that An (z) A0 (z) 6≡ 0, and proved
the following result.

Theorem 1 (see [5]). Let A0 (z) , A1 (z) , · · · , An (z) be entire functions such that
there exists an integer l, 0 ≤ l ≤ n such that

ρ (Al) > max
0≤j≤n,j 6=l

{ρ (Aj)} .

If f (z) is a meromorphic solution of (1), then ρ (f) ≥ ρ (Al) + 1.
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Note that in Theorem 1, equation (1) has only one dominating coefficient Al.
For the case when there is more than one coefficients which have the maximal order,
Laine and Yang [12] obtained the following result.

Theorem 2 (see [12]). Let A0 (z) , A1 (z) , · · · , An (z) be entire functions of finite
order such that among those having the maximal order ρ = max

0≤j≤n
{ρ (Aj)} , one has

exactly its type strictly greater than the others. Then for any meromorphic solution
of (1), we have ρ (f) ≥ ρ + 1.

Recently, Liu and Mao [13], Zheng and Tu [15] investigated the growth of solu-
tions of equation (1) and proved the following results.

Theorem 3 (see [15]). Let A0 (z) , · · · , An (z) be entire functions such that there
exists an integer l (0 ≤ l ≤ n) satisfying

max{ρ (Aj) : j = 0, 1, · · · , n, j 6= l} ≤ µ(Al) < ∞
and

max{τ(Aj) : ρ(Aj) = µ(Al) : j = 0, 1, · · · , n, j 6= l} < τ(Al).

Then every meromorphic solution f of equation (1) satisfies µ (f) ≥ µ (Al) + 1.

Theorem 4 (see [13]). Let H be a set of complex numbers satisfying dens{|z| : z ∈
H} > 0, and let A0 (z) , · · · , An (z) be entire functions satisfying max{ρ (Aj) : j =
0, 1, · · · , n} ≤ ρ. If there exists an integer l (0 ≤ l ≤ n) such that for some constants
0 ≤ β < α and ε > 0 sufficiently small, we have

|Al (z)| ≥ exp
{
αrρ−ε

}

and
|Aj (z)| ≤ exp

{
βrρ−ε

}
(j 6= l)

as |z| = r → +∞ for z ∈ H, then every meromorphic solution f 6≡ 0 of equation
(1) satisfies ρ (f) ≥ ρ (Al) + 1.

When the coefficients A0 (z) , A1 (z) , · · · , An (z) are meromorphic, Chen and
Shon extended the result of Theorem 1 and obtained.

Theorem 5 (see [3]). Let A0 (z) , · · · , An (z) be meromorphic functions such
that there exists an integer l (0 ≤ l ≤ n) such that ρ (Al) > max{ρ (Aj) : j =
0, 1, · · · , n, j 6= l}, δ (∞, Al) > 0. Then every meromorphic solution f 6≡ 0 of
equation (1) satisfies ρ (f) ≥ ρ (Al) + 1.

Obviously, we have ρ (Al) > 0 and ρ > 0 in Theorems 1, 2 and 5. Thus, a natural
question arises : How to express the growth of solutions of (1) when all coefficients
A0 (z) , A1 (z) , · · · , An (z) are entire or meromorphic functions and of order zero in
C ?

The main purpose of this paper is to make use of the concept of finite logarithmic
order due to Chern [4] to extend previous results for meromorphic solutions to
equation (1) of zero order in C.
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Definition 3 (see [4]). The logarithmic order of a meromorphic function f is defined
as

ρlog(f) = lim sup
r→+∞

log T (r, f)
log log r

.

If f is an entire function, then

ρlog(f) = lim sup
r→+∞

log log M(r, f)
log log r

.

Remark 1. Obviously, the logarithmic order of any non-constant rational function
f is one, and thus, any transcendental meromorphic function in the plane has log-
arithmic order no less than one. However, a function of logarithmic order one is
not necessarily a rational function. Constant functions have zero logarithmic order,
while there are no meromorphic functions of logarithmic order between zero and
one. Moreover, any meromorphic function with finite logarithmic order in the plane
is of order zero.

Definition 4. The logarithmic lower order of a meromorphic function f is defined
as

µlog(f) = lim inf
r→+∞

log T (r, f)
log log r

.

If f is an entire function, then

µlog(f) = lim inf
r→+∞

log log M(r, f)
log log r

.

Definition 5 (see [2]). The logarithmic type of an entire function f with 1 ≤
ρlog(f) < +∞ is defined by

τlog(f) = lim sup
r→+∞

log M(r, f)
(log r)ρlog(f)

.

Similarly the logarithmic lower type of an entire function f with 1 ≤ µlog(f) < +∞
is defined by

τ log(f) = lim inf
r→+∞

log M(r, f)
(log r)µlog(f)

.

Remark 2. It is evident that the logarithmic type of any non-constant polynomial
P equals its degree deg(P ); that any non-constant rational function is of finite loga-
rithmic type, and that any transcendental meromorphic function whose logarithmic
order equals one in the plane must be of infinite logarithmic type.

Recently, the concept of logarithmic order has been used to investigate the growth
and the oscillation of solutions of linear differential equations in the complex plane [2]
and complex linear difference and q-difference equations in the complex plane and in
the unit disc [1,10,11,14]. In the following, we continue to consider growth estimates
of meromorphic solutions to higher order linear difference equations, and we obtain
the following results.
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Theorem 6. Let A0 (z) , · · · , An (z) be entire functions such that there exists an
integer l (0 ≤ l ≤ n) satisfying

max{ρlog (Aj) : j = 0, 1, · · · , n, j 6= l} ≤ µlog(Al) < ∞ (2)

and

max{τlog(Aj) : ρlog(Aj) = µlog(Al) : j = 0, 1, · · · , n, j 6= l} < τ log(Al). (3)

Then every meromorphic solution f 6≡ 0 of equation (1) satisfies µlog (f) ≥
µlog (Al) + 1.

Theorem 7. Let H be a set of complex numbers satisfying log dens{|z| : z ∈
H} > 0, and let A0 (z) , · · · , An (z) be entire functions satisfying max{ρlog (Aj) :
j = 0, 1, · · · , n} ≤ ρ with ρ > 1. If there exists an integer l (0 ≤ l ≤ n) such that for
some constants 0 ≤ β < α and ε (0 < ε < ρ) sufficiently small, we have

|Al (z)| ≥ exp
{
α [log r]ρ−ε} (4)

and
|Aj (z)| ≤ exp

{
β [log r]ρ−ε} (j 6= l) (5)

as |z| = r → +∞ for z ∈ H, then every meromorphic solution f 6≡ 0 of equation
(1) satisfies ρlog (f) ≥ ρlog (Al) + 1.

Remark 3. By the assumptions of Theorem 7, we obtain ρlog (Al) = ρ. Indeed, we
have ρlog (Al) ≤ ρ. Suppose that ρlog (Al) = η < ρ. Then, by Definition 3 and (4) ,
we have for any given ε

(
0 < ε < ρ−η

2

)

exp
{
α [log r]ρ−ε} ≤ |Al (z)| ≤ exp

{
[log r]η+ε}

as |z| = r → +∞ for z ∈ H. By ε
(
0 < ε < ρ−η

2

)
this is a contradiction as r → +∞.

Hence ρlog (Al) = ρ.

Theorem 8. Let A0 (z) , · · · , An (z) be entire functions of finite logarithmic order
such that there exists an integer l (0 ≤ l ≤ n) satisfying

lim sup
r→+∞

n∑

j=0
j 6=l

m (r,Aj)
m (r,Al)

< 1. (6)

Then every meromorphic solution f 6≡ 0 of equation (1) satisfies ρlog (f) ≥
ρlog (Al) + 1.

The following theorems investigate the logarithmic order of meromorphic solu-
tions of (1) in the case when the coefficients are meromorphic functions.

Theorem 9. Let A0 (z) , · · · , An (z) be meromorphic functions such that there exists
an integer l (0 ≤ l ≤ n) satisfying ρlog (Al) > max{ρlog (Aj) : j = 0, 1, · · · , n, j 6= l},
δ (∞, Al) > 0. Then every meromorphic solution f 6≡ 0 of equation (1) satisfies
ρlog (f) ≥ ρlog (Al) + 1.
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Theorem 10. Let A0 (z) , · · · , An (z) be meromorphic functions of finite logarithmic

order such that there exists an integer l (0 ≤ l ≤ n) satisfying lim sup
r→+∞

n∑
j=0
j 6=l

m(r,Aj)
m(r,Al)

< 1,

δ (∞, Al) > 0. Then every meromorphic solution f 6≡ 0 of equation (1) satisfies
ρlog (f) ≥ ρlog (Al) + 1.

2 Some lemmas

Lemma 1 (see [1]). Let η1, η2 be two arbitrary complex numbers such that η1 6=
η2 and let f (z) be a finite logarithmic order meromorphic function. Let ρ be the
logarithmic order of f (z). Then for each ε > 0, we have

m

(
r,

f (z + η1)
f (z + η2)

)
= O

(
(log r)ρ−1+ε

)
.

Lemma 2 (see [5]). Let f be a meromorphic function, η a non-zero complex number,
and let γ > 1, and ε > 0 be given real constants. Then there exists a subset E1 ⊂
(1,∞) of finite logarithmic measure, and a constant A depending only on γ and η,
such that for all |z| = r /∈ [0, 1] ∪ E1, we have

∣∣∣∣log
∣∣∣∣
f (z + η)

f (z)

∣∣∣∣
∣∣∣∣ ≤ A

(
T (γr, f)

r
+

n (γr)
r

logγ r log+ n (γr)
)

, (7)

where n(t) = n(t,∞, f) + n(t,∞, 1/f)

Lemma 3 (see [6]). Let f be a transcendental meromorphic function, let j be non-
negative integer, let a be a value in the extended complex plane, and let α > 1 be a
real constant. Then there exists a constant R > 0 such that for all r > R, we have

n
(
r, a, f (j)

)
≤ 2j + 6

log α
T (αr, f) . (8)

Lemma 4. Let f be a meromorphic function with 1 ≤ µlog (f) < +∞. Then there
exists a set E2 ⊂ (1,+∞) with infinite logarithmic measure such that for all r ∈
E2 ⊂ (1, +∞) , we have

T (r, f) < (log r)µlog(f)+ε . (9)

Proof. By definition of logarithmic lower order, there exists a sequence {rn}∞n=1

tending to ∞ satisfying
(
1 + 1

n

)
rn < rn+1 and

lim
rn→+∞

log T (rn, f)
log log rn

= µlog (f) .

Then for any given ε > 0, there exists an integer n1 such that for all n ≥ n1,

T (rn, f) < (log rn)µlog(f)+ ε
2 .
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Set E2 =
∞⋃

n=n1

[
n

n+1rn, rn

]
. Then for r ∈ E2 ⊂ (1, +∞) , we obtain

T (r, f) ≤ T (rn, f) < (log rn)µlog(f)+ ε
2 ≤

(
log

n + 1
n

r

)µlog(f)+ ε
2

< (log r)µlog(f)+ε ,

and lm (E2) =
∞∑

n=n1

rn∫
n

n+1
rn

dt
t =

∞∑
n=n1

log
(
1 + 1

n

)
= ∞. Thus, Lemma 4 is proved.

Lemma 5. Let f be a meromorphic function, η a non-zero complex number, and
ε > 0 be given real constants. Then there exists a subset E3 ⊂ (1,∞) of finite
logarithmic measure, such that if f has finite logarithmic order ρ, then for all |z| =
r /∈ [0, 1] ∪ E3, we have

exp
{
−(log r)ρ+ε

r

}
≤

∣∣∣∣
f (z + η)

f (z)

∣∣∣∣ ≤ exp
{

(log r)ρ+ε

r

}
. (10)

Proof. By using (7) and (8), we obtain

∣∣∣∣log
∣∣∣∣
f (z + η)

f (z)

∣∣∣∣
∣∣∣∣ ≤ A

(
T (γr, f)

r

+
12

log α

T (αγr, f)
r

logγ r log+

(
12

log α
T (αγr, f)

))

≤ B

(
T (βr, f)

r
+

logβ r

r
T (βr, f) log T (βr, f)

)
, (11)

for all |z| = r /∈ [0, 1] ∪ E3 with lm (E3) < +∞, where B > 0 is some constant and
β = αγ > 1. Since f(z) has finite logarithmic order ρlog(f) = ρ < +∞, so given ε,
0 < ε < 2, we have for sufficiently large r

T (r, f) < (log r)ρ+ ε
2 . (12)

Then by using (11) and (12), we obtain

∣∣∣∣log
∣∣∣∣
f (z + η)

f (z)

∣∣∣∣
∣∣∣∣ ≤ B

(
T (βr, f)

r
+

logβ r

r
T (βr, f) log T (βr, f)

)

≤ B

(
(log βr)ρ+ ε

2

r
+

logβ r

r
(log βr)ρ+ ε

2 log (log βr)ρ+ ε
2

)
≤ (log r)ρ+ε

r
. (13)

From (13), we easily obtain (10).
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Lemma 6. Let η1, η2 be two arbitrary complex numbers such that η1 6= η2 and let
f (z) be a meromorphic function of finite logarithmic order ρ. Let ε > 0 be given,
then there exists a subset E4 ⊂ (1,∞) with finite logarithmic measure such that for
all |z| = r /∈ [0, 1] ∪ E4, we have

exp
{
−(log r)ρ+ε

r

}
≤

∣∣∣∣
f (z + η1)
f (z + η2)

∣∣∣∣ ≤ exp
{

(log r)ρ+ε

r

}
. (14)

Proof. We can write
∣∣∣∣
f (z + η1)
f (z + η2)

∣∣∣∣ =
∣∣∣∣
f (z + η2 + η1 − η2)

f (z + η2)

∣∣∣∣ (η1 6= η2) .

Then by using Lemma 5, we obtain for any given ε > 0 and all |z + η2| = R /∈
[0, 1] ∪ E3, such that lm (E3) < ∞

exp
{
−(log r)ρ+ε

r

}
≤ exp

{
−(log (|z|+ |η2|))ρ+ ε

2

|z + η2|

}

= exp

{
−(log R)ρ+ ε

2

R

}
≤

∣∣∣∣
f (z + η1)
f (z + η2)

∣∣∣∣

=
∣∣∣∣
f (z + η2 + η1 − η2)

f (z + η2)

∣∣∣∣ ≤ exp

{
(log R)ρ+ ε

2

R

}

≤ exp

{
(log (|z|+ |η2|))ρ+ ε

2

|z + η2|

}
≤ exp

{
(log r)ρ+ε

r

}
,

where |z| = r /∈ [0, 1] ∪ E4 and E4 is a set of finite logarithmic measure.

By using Lemmas 2–4, we can generalize Lemma 6 into finite logarithmic lower
order case as following.

Lemma 7. Let η1, η2 be two arbitrary complex numbers such that η1 6= η2 and let
f (z) be a meromorphic function of finite logarithmic lower order µ. Let ε > 0 be
given, then there exists a subset E5 ⊂ (1,∞) with infinite logarithmic measure such
that for all |z| = r ∈ E5, we have

exp
{
−(log r)µ+ε

r

}
≤

∣∣∣∣
f (z + η1)
f (z + η2)

∣∣∣∣ ≤ exp
{

(log r)µ+ε

r

}
.

Lemma 8 (see [1]). Let f be a meromorphic function with ρlog (f) ≥ 1. Then there
exists a set E6 ⊂ (1, +∞) with infinite logarithmic measure such that

lim
r→+∞

r∈E6

log T (r, f)
log log r

= ρ.



SOME PROPERTIES OF MEROMORPHIC SOLUTIONS OF LOGARITHMIC ORDER . . .23

Lemma 9 (see [1]). Let f1, f2 be meromorphic functions satisfying ρlog (f1) >
ρlog (f2) . Then there exists a set E7 ⊂ (1, +∞) having infinite logarithmic measure
such that for all r ∈ E7, we have

lim
r→+∞

T (r, f2)
T (r, f1)

= 0.

Lemma 10. Let f be an entire function with 1 ≤ µlog (f) < +∞. Then there exists
a set E8 ⊂ (1, +∞) with infinite logarithmic measure such that

τ log(f) = lim
r→+∞

r∈E8

log M(r, f)
(log r)µlog(f)

.

Proof. By the definition of the logarithmic lower type, there exists a sequence
{rn}∞n=1 tending to ∞ satisfying

(
1 + 1

n

)
rn < rn+1, and

τ log(f) = lim
rn→+∞

log M(rn, f)
(log rn)µlog(f)

.

Then for any given ε > 0, there exists an n1 such that for n ≥ n1 and any r ∈[
n

n+1rn, rn

]
, we have

log M( n
n+1rn, f)

(log rn)µlog(f)
≤ log M(r, f)

(log r)µlog(f)
≤ log M(rn, f)

(log n
n+1rn)µlog(f)

.

It follows that

( log n
n+1rn

log rn

)µlog(f) log M( n
n+1rn, f)

(log n
n+1rn)µlog(f)

≤ log M(r, f)
(log r)µlog(f)

≤ log M(rn, f)
(log rn)µlog(f)

(
log rn

log n
n+1rn

)µlog(f)

.

Set

E8 =
∞⋃

n=n1

[
n

n + 1
rn, rn

]
.

Then, we have

lim
r→+∞

r∈E8

log M(r, f)
(log r)µlog(f)

= lim
rn→+∞

log M(rn, f)
(log rn)µlog(f)

= τ log(f)

and lm (E8) =
∫
E8

dr
r =

∞∑
n=n1

rn∫
n

n+1
rn

dt
t =

∞∑
n=n1

log
(
1 + 1

n

)
= ∞.
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3 Proofs of Theorems

3.1 Proof of Theorem 6

Let f 6≡ 0 be a meromorphic solution of (1). We suppose µlog (f) < µlog (Al)+1 <
∞. We divide through equation (1) by f (z + l) to get

|Al (z)| ≤ |An (z)|
∣∣∣∣
f (z + n)
f (z + l)

∣∣∣∣ + · · ·+ |Al−1 (z)|
∣∣∣∣
f (z + l − 1)

f (z + l)

∣∣∣∣

+ |Al+1 (z)|
∣∣∣∣
f (z + l + 1)

f (z + l)

∣∣∣∣ + · · ·+ |A1 (z)|
∣∣∣∣
f (z + 1)
f (z + l)

∣∣∣∣ + |A0 (z)|
∣∣∣∣

f (z)
f (z + l)

∣∣∣∣ . (15)

In relation to (2) and (3), we set

ρ = max{ρlog (Aj) : j = 0, 1, · · · , n, j 6= l},
and

τ = max{τlog(Aj) : ρlog(Aj) = µlog(Al) : j = 0, 1, · · · , n, j 6= l}.
Then for sufficiently large r, we have

|Aj (z)| ≤ exp
{
(log r)ρ+ε} (j 6= l) (16)

if ρlog (Aj) < µlog (Al) , and

|Aj (z)| ≤ exp
{

(τ + ε) (log r)µlog(Al)
}

(j 6= l) (17)

if ρlog (Aj) = µlog (Al) . By Lemma 7, for any given ε > 0, there exists a set E5 ⊂
(1,∞) with infinite logarithmic measure such that for all |z| = r ∈ E5, we have

∣∣∣∣
f (z + j)
f (z + l)

∣∣∣∣ ≤ exp

{
(log r)µlog(f)+ε

r

}
(j = 0, 1, · · · , n, j 6= l) . (18)

Then we can choose ε (0 < ε < 1) sufficiently small to satisfy

τ + 2ε < τ log(Al), max {ρ, µlog (f)− 1}+ 2ε < µlog (Al) . (19)

Substituting (16), (17) and (18) into (15), we get for |z| = r ∈ E5,

M (r,Al) ≤ exp

{
(log r)µlog(f)+ε

r

}
O

(
exp

{
(τ + ε) (log r)µlog(Al)

}

+exp
{
(log r)ρ+ε})

. (20)

By (19) and (20) and Lemma 10, we get

τ log(Al) = lim inf
r→+∞

r∈E5

log M(r,Al)
(log r)µlog(Al)

≤ τ + ε < τ log(Al)− ε

which is a contradiction. Hence µlog (f) ≥ µlog (Al) + 1.
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3.2 Proof of Theorem 7

By Remark 3, we know that ρlog (Al) = ρ. Let f 6≡ 0 be a meromorphic solution
of (1). Next we suppose ρlog (f) < ρlog (Al)+1 = ρ+1 < +∞. From the conditions of
Theorem 7, there is a set H of complex numbers satisfying log dens{|z| : z ∈ H} > 0
such that for z ∈ H, we have (4) and (5) as |z| = r → +∞. Set H1 = {r = |z| :
z ∈ H}, since log dens{|z| : z ∈ H} > 0, then by Proposition 1, H1 is a set with∫
H1

dr
r = ∞. By Lemma 6, for any given ε

(
0 < ε <

ρ−ρlog(f)+1
2

)
, there exists a set

E4 ⊂ (1,∞) with finite logarithmic measure such that for all |z| = r /∈ [0, 1] ∪ E4,
we have

∣∣∣∣
f (z + j)
f (z + l)

∣∣∣∣ ≤ exp

{
(log r)ρlog(f)+ε

r

}
(j = 0, 1, · · · , n, j 6= l) . (21)

Substituting (4), (5) and (21) into (15), we get for |z| = r ∈ H1\([0, 1] ∪ E4),

exp
{
α [log r]ρ−ε} ≤ n exp

{
β [log r]ρ−ε} exp

{
(log r)ρlog(f)+ε

r

}
,

it follows that

exp
{
(α− β) [log r]ρ−ε} ≤ n exp

{
(log r)ρlog(f)+ε

r

}
. (22)

By ε
(
0 < ε <

ρ−ρlog(f)+1
2

)
and α − β > 0, we obtain a contradiction from (22).

Hence, we get ρlog (f) ≥ ρ + 1 = ρlog (Al) + 1.

3.3 Proof of Theorem 8

Let f 6≡ 0 be a meromorphic solution of (1). If ρlog (f) = ∞, then the result
is trivial. Next we suppose ρlog (f) = ρ < ∞. We divide through equation (1) by
f (z + l) to get

Al (z) = −
(

An (z)
f (z + n)
f (z + l)

+ · · ·+ Al−1 (z)
f (z + l − 1)

f (z + l)

+Al+1 (z)
f (z + l + 1)

f (z + l)
+ · · ·+ A1 (z)

f (z + 1)
f (z + l)

+ A0 (z)
f (z)

f (z + l)

)
. (23)

It follows

m (r,Al) ≤
n∑

j=0
j 6=l

m (r,Aj) +
n∑

j=0
j 6=l

m

(
r,

f (z + j)
f (z + l)

)
+ O (1) . (24)

Suppose that

lim sup
r→+∞

n∑

j=0
j 6=l

m (r,Aj)
m (r,Al)

= µ < λ < 1. (25)
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Then for sufficiently large r, we have

n∑

j=0
j 6=l

m (r,Aj) < λm (r,Al) . (26)

By Lemma 1, we have for sufficiently large r and any given ε > 0

m

(
r,

f (z + j)
f (z + l)

)
= O

(
(log r)ρlog(f)−1+ε

)
, j = 0, · · · , n, j 6= l. (27)

Thus, by substituting (26) and (27) into (24), we obtain for sufficiently large r and
any given ε > 0

m (r,Al) ≤
n∑

j=0
j 6=l

m (r,Aj) +
n∑

j=0
j 6=l

m

(
r,

f (z + j)
f (z + l)

)
+ O (1)

≤ λm (r,Al) + O
(
(log r)ρlog(f)−1+ε

)
. (28)

From (28), it follows that

(1− λ) m (r,Al) ≤ O
(
(log r)ρlog(f)−1+ε

)
. (29)

By (29), we obtain ρlog (f) ≥ ρlog (Al) + 1. Thus, Theorem 8 is proved.

3.4 Proof of Theorem 9

Clearly, (1) has no nonzero rational solution. If ρlog (f) = ∞, then the result is
trivial. Now suppose that f is a transcendental meromorphic solution of (1) with
ρlog (f) < ∞. Set

δ (∞, Al) = lim inf
r→+∞

m (r,Al)
T (r,Al)

= δ > 0. (30)

Thus from (30), we have for sufficiently large r

m (r,Al) >
1
2
δT (r,Al) . (31)

Thus, by substituting (27) and (31) into (24), we obtain for sufficiently large r and
any given ε > 0

δ

2
T (r,Al) < m (r,Al) ≤

n∑

j=0
j 6=l

m (r,Aj) +
n∑

j=0
j 6=l

m

(
r,

f (z + j)
f (z + l)

)
+ O (1)

≤
n∑

j=0
j 6=l

T (r,Aj) + O
(
(log r)ρlog(f)−1+ε

)
. (32)
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Since max {ρlog (Aj) (j = 0, · · · , n) , j 6= l} < ρlog (Al) , then by Lemma 9, there
exists a set E7 ⊂ (1, +∞) with infinite logarithmic measure such that

max
{

T (r,Aj)
T (r,Al)

(j = 0, · · · , n) , j 6= l

}
→ 0, r → +∞, r ∈ E7. (33)

Thus, by (32) and (33), we have for all r ∈ E7, r → +∞
(

δ

2
− o (1)

)
T (r,Al) ≤ O

(
(log r)ρlog(f)−1+ε

)
. (34)

So that, it follows from (34) and Lemma 8 that ρlog (f) ≥ ρlog (Al) + 1. Thus,
Theorem 9 is proved.

3.5 Proof of Theorem 10

Let f 6≡ 0 be a meromorphic solution of (1). If ρlog (f) = ∞, then the result is
trivial. Next we suppose ρlog (f) = ρ < ∞. By substituting (26) and (27) into (24),
we have for sufficiently large r and any given ε > 0

(1− λ) m (r,Al) ≤ O
(
(log r)ρlog(f)−1+ε

)
. (35)

By Lemma 8, we have

lim
r→+∞

r∈E6

log T (r,Al)
log log r

= ρlog (Al) , (36)

where E6 is a set of r of infinite logarithmic linear measure. Since δ (∞, Al) =
lim inf
r→+∞

m(r,Al)
T (r,Al)

> 0, then we obtain

lim
r→+∞

r∈E6

log m (r,Al)
log log r

= ρlog (Al) . (37)

Thus, by (35) and (37), we obtain ρlog (f) ≥ ρlog (Al) + 1. Thus, Theorem 10 is
proved.
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