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Uniqueness of certain power of a meromorphic function

sharing a set with its differential monomial
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Abstract. In this paper we are mainly devoted to find out the specific form of
a meromorphic function when it shares a set of small functions with its differential
monomial counterpart. Our results will improve and extend some of the recent results
due to Zhang-Yang [J. L. Zhang and L. Z. Yang, A power of a meromorphic function
sharing a small function with its derivative, Ann. Acad. Sci. Fenn. Math. 34(2009),
249–260] and Xu-Yi-Yang [H.Y. Xu, C. F. Yi and H. Wang, On a conjecture of
R. Bruck concerning meromorphic function sharing small functions, Revista de Mate-
matica Teoria y Aplicaciones, 23(1)(2016), 291-308]. We provide some examples to
show that certain conditions used in the paper can not be removed.
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1 Introduction, Definitions and Results

Let f be a non-constant meromorphic function in the whole complex plane C.
We shall use the following standard notations of the value distribution theory:

T (r, f),m(r, f), N(r, f),N (r, f), . . .

([11,19,23]). We denote by S(r, f) any quantity satisfying

S(r, f) = o(T (r, f)),

as r → +∞, possibly outside of a set of finite measure. A meromorphic function
a ≡ a(z) is called a small function with respect to f if T (r, a) = S(r, f). Let S(f) be
the set of meromorphic functions in the complex plane C which are small functions
with respect to f .

Let f be a non-constant meromorphic function and a ∈ S(f) ∪ {∞} and S ⊂
S(f) ∪ {∞}. Define

E(S, f) =
⋃

a∈S

{z : f(z) − a = 0,Counting Multiplicity},

E(S, f) =
⋃

a∈S

{z : f(z) − a = 0, Ignoring Multiplicity},
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If E(S, f) = E(S, g), we say that f and g share the set S CM ; if E(S, f) = E(S, g),
we say that f and g share the set S IM . Especially, when S = {a}, we say that f
and g share the value a CM if E(S, f) = E(S, g); and we say that f and g share
the value a IM if E(S, f) = E(S, g) [11].

Nowadays the problems relative to a meromorphic function f and its derivative
f (k) sharing some value or small functions have been studied rigorously by many
researchers. Readers are requested to make a glance at [9, 15,24,27].

In 1996, Brück [7] proposed the following famous conjecture.

Conjecture 1.1. Let f be a non-constant entire function. Suppose that ρ1(f) is
not a positive integer or infinite. If f and f ′ share one finite value a CM , then

f ′ − a

f − a
= c,

for some non-zero constant c, where ρ1(f) is the first iterated order of f which is
defined by

ρ1(f) = lim sup
r→∞

log log T (r, f)

log r
.

In 1996, Brück [7] proved that the conjecture is true when a = 0 or N(r, 1/f ′) =
S(r, f) and later many researchers like Gundersen and Yang [10] proved that the
conjecture is true when f is of finite order [10]. A few years later, Chen and Shon [8]
proved that the conjecture is true for entire function of first order ρ1(f) < 1

2 . How-
ever, the conjecture fails in general for meromorphic functions, shown by Gundersen
and Yang [10], while it remains true in the case that N(r, 1/f ′) = S(r, f), shown by
Al-Kahaladi [1].

In 2008, Yang and Zhang [20] obtained the following results.

Theorem 1.1 (see [20]). Let f be a non-constant entire function, n ≥ 7 be an
integer. Denote F = fn. If F and F ′ share 1 CM , then F ≡ F ′, and f assumes
the form

f(z) = ce
z
n ,

where c is a non-zero constant.

Theorem 1.2 (see [20]). Let f be a non-constant meromorphic function and n ≥ 12
be an integer. Denote F = fn. If F and F ′ share 1 CM , then F ≡ F ′, and f
assumes the form

f(z) = ce
z
n ,

where c is a non-zero constant.

In 2009, Zhang and Yang [25] improved Theorem 1.1 and Theorem 1.2 to a large
extent and obtained the following results.



UNIQUENESS OF CERTAIN POWER OF A MEROMORPHIC FUNCTION . . . 101

Theorem 1.3 (see [25]). Let f be a non-constant entire function, n, k be positive
integers and a(z) be a small function of f such that a(z) 6≡ 0,∞. If fn − a and
(fn)(k) − a share the value 0 CM and n ≥ k + 2, then fn ≡ (fn)(k) and f assumes
the form

f(z) = ce
λ
n

z,

where c is a non-zero constant and λk = 1.

Theorem 1.4 (see [25]). Let f be a non-constant meromorphic function, n, k be
positive integers and a(z) be a small function of f such that a(z) 6≡ 0,∞. If fn − a
and (fn)(k) − a share the value 0 CM and n > k + 1 +

√
k + 1, then fn ≡ (fn)(k)

and f assumes the form

f(z) = ce
λ
n

z,

where c is a non-zero constant and λk = 1.

Theorem 1.5 (see [25]). Let f be a non-constant entire function, n, k be positive
integers and a(z) be a small meromorphic function of f such that a(z) 6≡ 0,∞. If
fn − a and (fn)(k) − a share the value 0 IM and n > 2k + 3, then fn ≡ (fn)(k) and
f assumes the form

f(z) = ce
λ
n

z,

where c is a non-zero constant with λk = 1.

Theorem 1.6 (see [25]). Let f be a non-constant meromorphic function, n, k be
positive integers and a(z) be a small meromorphic function of f such that a(z) 6≡
0,∞. If fn − a and (fn)(k) − a share the value 0 IM and

n > 2k + 3 +
√

(k + 3)(2k + 3),

then fn ≡ (fn)(k) and f assumes the form

f(z) = ce
λ
n

z,

where c is a non-zero constant with λk = 1.

Though the standard definitions and notations of the value distribution theory
are available in [3, 22], we explain the following definitions and notations which are
used in the paper.

Definition 1.1 (see [3, 22]). When f and g share 1 IM , we denote by NL(r, 1; f)
the counting function of the 1-points of g. Similarly, we have NL(r, 1; g). Let z0

be a zero of f − 1 of multiplicity p and a zero of g − 1 of multiplicity q, we also
denote by N11(r, 1; f) the counting function of those 1-points of f where p = q = 1;

N
(2
E (r, 1; f) denotes the counting function of those 1−points of f where p = q ≥ 2,

each point in these counting functions is counted only once. In the same way, one

can define N11(r, 1; g), N
(2
E (r, 1; g).
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Definition 1.2 (see [5]). For a ∈ C ∪ {∞} and p a positive integer, let f be
a non-constant meromorphic function, we denote by N(r, a; f |= 1) the counting
function of simple a-points of f , denote by N(r, a; f |≤ p) (N(r, a; f |≥ p)) the
counting functions of those a-points of f whose multiplicities are not greater (less)
than p where each a-point is counted according to its multiplicities. N(r, a; f |≤ p)
(N(r, a; f |≥ p)) are defined similarly, where in counting the a-points of f we ignore
the multiplicities.

Definition 1.3 (see [5]). For a ∈ C ∪ {∞} and a positive integer p we denote by

Np(r, a; f) = N(r, a; f) + N(r, a; f |≥ 2) + . . . + N(r, a; f |≥ p).

Clearly N1(r, a; f) = N(r, a; f).

Next we recall the following definition of weighted sharing of values which gener-
ally measures how closed a shared value is to being sharing IM or CM , as follows.

Definition 1.4 (see [13, 14]). Let p be a non-negative integer or infinity. For c ∈
C ∪ {∞}, we denote by Ef (a, p) the set of all a-points of f where an a-point of
multiplicity m is counted m times if m ≤ p and p + 1 times if m > p. If Ef (a, p) =
Eg(a, p), we say that f, g share the value a with weight p.

We write f, g share (a, p) to mean that f, g share the value a with weight p.
Clearly if f, g share (a, p), then f, g share (a, q) for all integer q (0 ≤ q < p). Also,
we note that f, g share a value a IM or CM if and only if f, g share (a, 0) and
(a,∞) respectively.

Let S be a subset of S(f) ∪ {∞}, we can get the definition of Ef (S, p) as

Ef (S, p) =
⋃

a∈S

Ef (a, p).

Very recently in [18], for further investigations, Xu, Yi asked the following questions:

Question 1.1 (see [18]). Can the nature of sharing 1 or a(z) CM be further relaxed
in Theorem 1.1 and Theorem 1.3?

Question 1.2 (see [18]). What will happen when 1 or a(z) are replaced by the set

Sm =

{

a(z), a(z)ζ, a(z)ζ2, ..., a(z)ζm−1

}

of small functions in Theorems 1.1 – 1.4, where ζ = cos
2π

m
+ i sin

2π

m
and m is a

positive integer?

To answer their question Xu, Yi and Wang [18] obtained the following two results
which in turn improve Theorem 1.3 and Theorem 1.4.
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Theorem 1.7 (see [18]). Let f be a non-constant entire function, n, k, p, m
be positive integers and a(z) be a small function of f such that a(z) 6≡ 0,∞. If
Efn(Sm, p) = E(fn)(k) (Sm, p) and

n > max

{

k + 1, k +
η

pm

}

,

where η = k + p + 2, then fn ≡ t(fn)(k) with tm = 1 and f assumes the form

f(z) = ce
λ
n

z,

where c is a non-zero constant and λkm = 1.

Theorem 1.8 (see [18]). Let f be a non-constant meromorphic function, n, k, p,
m be positive integers and a(z) be a small function of f such that a(z) 6≡ 0,∞. If
Efn(Sm, p) = E(fn)(k) (Sm, p) and

n > max

{

k + 1,
p(m + 1)k + 2η

2pm
+

√

4η(η + pk) + (m − 1)2p2k2

2pm

}

,

where η = k + p + 2, then fn ≡ t(fn)(k) with tm = 1 and f assumes the form

f(z) = ce
λ
n

z,

where c is a non-zero constant and λkm = 1.

We observe from the above discussions that the research have gradually been
shifted towards finding the relation between the power of a meromorphic function
and its certain derivative. Since derivative’s natural extension is a differential mono-
mial it will be quite natural to expect the extension and improvement of Theorems
1.1 – 1.8 up to a relation between a power of a meromorphic function and a general
differential monomial sharing set of small functions.

Next we present the following well known definition.

Definition 1.5 (see [5]). Let n0j, n1j , . . . , nkj be nonnegative integers and g = fn.

The expression Mj [g] = (g)n0j (g(1))n1j . . . (g(k))nkj is called a differential mono-

mial generated by g of degree dMj
= d(Mj) =

k
∑

i=0

nij and weight ΓMj
=

k
∑

i=0

(i+1)nij .

The sum P[g] =
t
∑

j=1

bjMj[g] is called a differential polynomial generated by g of

degree d(P) = max{d(Mj) : 1 ≤ j ≤ t} and weight ΓP = max{ΓMj
: 1 ≤ j ≤ t},

where T (r, bj) = S(r, g) for j = 1, 2, . . . , t.

The numbers d(P) = min{d(Mj) : 1 ≤ j ≤ t} and k (the highest order of the
derivative of g in P[g]) are called respectively the lower degree and order of P[g].
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P[g] is said to be homogeneous if d(P)=d(P). P[g] is called a linear differen-
tial polynomial generated by g if d(P) = 1. Otherwise P[g] is called a non-linear
differential polynomial.

We denote by Q = max {ΓMj
− d(Mj) : 1 ≤ j ≤ t} = max {n1j + 2n2j + . . . +

knkj : 1 ≤ j ≤ t}.
Also for the sake of convenience for a differential monomial M [g] we denote by

d
M

= d(M) and Q
M

= Γ
M

− d
M

.

Next we pose the following questions which have great significance towards the
further extension and improvement of all the above mentioned theorems.

Question 1.3. Is it possible to extend (fn)(k) to a differential monomial M [fn] to
get the same conclusion as in Theorem 1.7 and Theorem 1.8?

Question 1.4. Like Theorem 1.7 and Theorem 1.8, is it possible to find out the
specific form of the function f?

Question 1.5. Can the lower bound of n be further reduced in Theorem 1.7 and
Theorem 1.8?

Our main intention of writing this paper is to find out the possible affirmative
answer of all the above questions such that Theorems 1.1 – 1.8 can be accommodated
under a single theorem which extends and improves all of them. Henceforth we need
the following notations throughout the paper for the sake of convenience.

Let

α = 2Q
M

+ 3, β = mQ
M

+ (k + 1)d
M

+ 2 and γp
m = mQ

M
+ 1 +

1

p
,

where p, m and k are three positive integers.
The following two theorems are the main results of this paper answering all the

above mentioned questions affirmatively.

Theorem 1.9. Let f be a non-constant meromorphic function, n, k, p, m be positive
integers and a(z) be a small function of f such that a(z) 6≡ 0,∞. If E

f
nd

M
(Sm, p) =

EM [fn] (Sm, p) and if

1. p ≥ 2 and n >
γp

m + γp
1 +

√

(γp
m − γp

1)2 + 4C

2md
M

, or if

2. p = 0 and n >
α + β +

√

(α − β)2 + 4D

2md
M

,

where C =
(p + 1)(p(k + 1)d

M
+ 1)

p2
and D = (Q

M
+ 3)(2(k + 1)d

M
+ 1),

then fnd
M ≡ tM [fn] with tm = 1 and f assumes the form

f(z) = ce
λ
n

z,

where c is a non-zero constant with λmQ
M = 1.
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Theorem 1.10. Let f be a non-constant entire function, n, k, p, m be positive
integers and a(z) be a small function of f such that a(z) 6≡ 0,∞. If E

f
nd

M
(Sm, p) =

EM [fn] (Sm, p) and if

1. p ≥ 2 and n >
pmQ

M
+ p + 1

pmd
M

, or if

2. p = 0 and n >
mQ

M
+ (k + 1)d

M
+ 2

md
M

,

then fnd
M ≡ tM [fn] with tm = 1 and f assumes the form

f(z) = ce
λ
n

z,

where c is a non-zero constant with λmQ
M = 1.

2 Some Corollaries

In Theorem 1.9 and Theorem 1.10, if we take M [fn] = (fn)(k), where n > k,
then it is clear that d

M
= 1, Q

M
= k. The following are some corollaries of the

main results of this paper. What worth noticing here is that the lower bound of n
is reduced as compare to Theorem 1.7 and Theorem 1.8.

Corollary 1. Let f be a non-constant meromorphic function and n, m, p, k be
positive integers and a(z) be a small meromorphic function of f such that a(z) 6=
0,∞. If Efn(Sm, p) = E(fn)(k) (Sm, p) and if

1. p ≥ 2 and n >
2p + p(m + 1)k + 2

2pm
+

√

4(p + 1)(pk + p + 1) + (m − 1)2p2k2

2pm
,

or if

2. p = 0 and n >
(m + 3)k + 6

2m
+

√

4(k + 3)(2k + 3) + (m − 1)2k2

2m
,

then fn ≡ t(fn)(k), where tm = 1 and f assumes the form

f(z) = ce
λ
n

z,

where c is a non-zero constant and λmk = 1.

Corollary 2. Let f be a non-constant entire function and n,m, p, k be positive
integers and a(z) be a small meromorphic function of f such that a(z) 6= 0,∞. If
Efn(Sm, p) = E(fn)(k) (Sm, p) and if

1. p ≥ 2 and n > k +
p + 1

pm
, or if

2. p = 0 and n > k +
k + 3

m
,
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then fn ≡ t(fn)(k), where tm = 1 and f assumes the form

f(z) = ce
λ
n

z,

where c is a non-zero constant and λmk = 1.

Corollary 3. Let f be a non-constant entire function and n, p, k be positive integers
and a ≡ a(z) is a small meromorphic function of f and Efn(S1, p) = E(fn)(k)(S1, p),
then if

1. p ≥ 2 and n > k +
p + 1

p
, or if

2. p = 0 and n > 2k + 3,

then fn ≡ (fn)(k) and f assumes the form

f(z) = ce
λ
n

z,

where c is a non-zero constant and λk = 1.

3 Examples

The following examples show that conditions 1. and 2. in Corollary 1 and
Corollary 2 are essential in order to get the conclusions.

Example 3.1. For n ≥ 2, let the principal branch of f be given by f(z) =
(

eθz + 2a
)

1
n
, where a 6= 0 is a constant and θ is a root of the equation zn + 1 = 0.

Let Sm = {a} and M [fn] = (fn)(n). Clearly fn = eθz + 2a and M [fn] = −eθz and
d

M
= 1. Therefore we see that E

f
nd

M
(Sm,∞) = EM [fn] (Sm,∞) and

n ≤ min

{

k +
p + 1

pm
, k +

k + 3

m

}

= max

{

n + 1, 2n + 3

}

= n + 1.

Here it is clear that

fn 6≡ tM [fn]

with tm = 1. Also we see that f does not assume the form

f(z) = ce
λ
n

z

with λmQ
M = 1.

The following example shows that the conditions 1. and 2. used in Corollary 1
and Corollary 2 are not necessary but sufficient.
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Example 3.2. Let Sm = {−1, 1,−i, i} and f be given by f(z) = e
λ
3
z, where λ is a

root of the equation z3 + 1 = 0 . Let M [f3] = (f3)(3). It is clear that f3(z) = eλz

and M [f3] = −eλz. Also E
f

nd
M

(Sm,∞) = EM [fn] (Sm,∞) and

n ≤ min

{

k +
p + 1

pm
, k +

k + 3

m

}

= min

{

13

4
,

9

2

}

=
13

4
.

But we see that f3 ≡ tM [f3] with tm = (−1)4 = 1. Also here f assumes the form

f(z) = ce
λ
n

z,

where c = 1 and λmQ
M = λ12 = 1.

The following examples show that the set Sm in Theorems 1.9 – 1.10 can not be
replaced by an arbitrary set.

Example 3.3. Let Sm =

{

aω

2
,
aω

3
,
2aω

3

}

, where a is an arbitrary non-zero complex

number. Let fn = Beθz + aω, where n ≤ 16 is a positive integer and θ and ω are
roots of the equations zn−5 + 1 = 0 and z3 − 1 = 0 respectively and B ∈ C −
{0}. Let M [fn] = (fn)(n−5), then we see that M [fn] = −Beθz. It is clear that
E

f
nd

M
(Sm,∞) = EM [fn] (Sm,∞) and

n > max

{

k +
p + 1

pm
, k +

k + 3

m

}

.

But we see that fn 6≡ tM [fn] with tm = 1and hence f does not assume the form

f(z) = ce
λ
n

z

with λmQ
M = 1.

Example 3.4. Let Sm =

{

1

r
A,

r − 1

r
A : 2 ≤ r ≤ m + 3

2

}

, where A is an arbitrary

non-zero complex number and m, r ∈ N where m is odd and m > n + 2 . Let fn =
Aeθz+A, where n ≥ 2 is a positive integer and θ is a root of the equation zn−1+1 = 0
and A ∈ C − {0}. Let M [fn] = (fn)(n−1), then we see that M [fn] = −Aeθz. It is
clear that E

f
nd

M
(Sm,∞) = EM [fn] (Sm,∞) and

n > max

{

k +
p + 1

pm
, k +

k + 3

m

}

.

But we see that fn 6≡ tM [fn] with tm = 1. Also we see that f does not assume the
form

f(z) = ce
λ
n

z

with λmQ
M = 1.
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The following example shows that if the conditions of Theorem 1.9 and Theorem
1.10 are satisfied, then the conclusions hold.

Example 3.5. Let Sm = {−1, 1,−i, i} and f be given by f(z) = e
λ
5
z, where λ is a

root of the equation z3 + 1 = 0 . Let M [fn] = (fn)(k). It is clear that fn(z) = eλz

and M [fn] = −eλz with n = 5, k = 3, m = 4 and d
M

= 1. Also we see that
E

f
nd

M
(Sm,∞) = EM [fn] (Sm,∞) and

n > max

{

k +
p + 1

pm
, k +

k + 3

m

}

= max

{

13

4
,
9

2

}

=
9

2
.

Here we see that fnd
M ≡ tM [fn] with tm = (−1)4 = 1. Also here f assumes the

form

f(z) = ce
λ
n

z,

where c = 1 and λmQ
M = λ12 = 1.

Example 3.6. For a non-zero complex number a, let S =

{

a, aζ, aζ2, aζ3, aζ4

}

,

where ζ is the non-real 5th root of unity and f is given by f(z) = eζ
1

nk z. It is clear

that fn(z) = eζ
1
k z and M [fn] = ζ eζ

1
k z, where M [fn] = (fn)(k) with n = 10, k = 7,

m = 5 and d
M

= 1. Also we see that E
f

nd
M

(Sm,∞) = EM [fn] (Sm,∞) and

n > max

{

k +
p + 1

pm
, k +

k + 3

m

}

= max

{

36

5
, 9

}

= 9.

Here we see that fnd
M ≡ tM [fn] with tm = (1

ζ
)5 = 1. Also here f assumes the form

f(z) = ce
λ
n

z,

where c = 1 and λmQ
M = λ12 = 1.

4 Lemmas

In this section we present some Lemmas which will be needed in the sequel. Let
F , G be two non-constant meromorphic functions. Henceforth we shall denote by H
the following function

H =

(

F ′′

F ′
− 2F ′

F − 1

)

−
(

G′′

G′
− 2G′

G − 1

)

. (4.1)

V =

( F ′

F − 1
− F ′

F

)

−
( G′

G − 1
− G′

G

)

(4.2)

and

U =
F ′

F − 1
− G′

G − 1
. (4.3)



UNIQUENESS OF CERTAIN POWER OF A MEROMORPHIC FUNCTION . . . 109

Lemma 1 (see [18]). Let f be a non-constant meromorphic function and k, p are
positive integers. Then

Np(r, 0; f
(k)) ≤ T (r, f (k)) − T (r, f) + Np+k(r, 0; f) + S(r, f).

Np(r, 0; f
(k)) ≤ kN(r,∞; f) + Np+k(r, 0; f) + S(r, f).

Lemma 2. Let f be a non-constant meromorphic function and M [fn] be a differ-
ential monomial of degree dM and weight ΓM . Then

N(r, 0;M [fn]) ≤ T (r,M) − ndMT (r, f) + ndMN(r, 0; f) + S(r, f).

Proof. This can be proved in the line of the proof of ([6, Lemma 2.3]).

Lemma 3. Let f be a non-constant meromorphic function and M [fn] be a differ-
ential monomial of degree dM and weight ΓM . Then

N(r, 0;M [fn]) ≤ ndMN(r, 0; f) + Q
M

N(r,∞; f) + S(r, f).

Proof. This can be proved in the line of the proof of ([6, Lemma 2.4]).

Lemma 4. For the differential monomial M [fn],

Np(r, 0;M [fn]) ≤ dMNp+k(r, 0; f
n) + Q

M
N(r,∞; f) + S(r, f).

Proof. This can be proved in the line of the proof of ([6, Lemma 2.9]).

Lemma 5 (see [21]). Let f be a non-constant meromorphic function and P (f) =
anfn + an−1f

n−1 + ... + a0, where a0, a1, ..., an are constants with an 6= 0. Then

T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 6 (see [21]). Let H be given by (4.1), F and G be two non-constant mero-
morphic functions. If H 6≡ 0, then

N11(r, 1;F) ≤ N(r,H) + S(r,F) + S(r,G).

Lemma 7. Let f be a non-constant meromorphic function and a ≡ a(z) be a small

meromorphic functions of f such that a(z) 6≡ 0,∞ and let F1 =
fnd

M

a
and G1 =

M [fn]

a
. Let V be given by (4.2) and F = Fm

1 and G = Gm
1 . If n,m and k are

positive integers such that n > k and V ≡ 0, then fnd
M ≡ tM [fn], where tm = 1

and f assumes the form

f(z) = ce
λ
n

z,

where c is a non-zero constant and λmQ
M = 1.
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Proof. Let V ≡ 0. Then we get

1 − 1

Fm
1

≡ A− A
Gm

1

, (4.4)

where A is a non-zero constant. We now consider the following cases.
Case 1. Let N(r,∞; f) = S(r, f). If A 6= 1, then from (4.4) we have

N

(

r,
1

1 −A ;Fm
1

)

= N(r,∞;Gm
1 ) = S(r, f).

By the Second Fundamental Theorem and definitions of F1,G1, we have

T (r,Fm
1 )

≤ N(r,∞;Fm
1 ) + N(r, 0;Fm

1 ) + N

(

r,
1

1 −A ;Fm
1

)

+ S(r, f).

i.e.,

mnd
M

T (r, f) ≤ N(r, 0; f) + S(r, f),

which is not possible.
Case 2. Let N(r,∞; f) 6= S(r, f). Then there exists a z0 which is not a zero or

pole of a(z) such that
1

f(z0)
= 0, so

1

F1(z0)
=

1

G1(z0)
= 0. Therefore, from (4.4) we

get A = 1.
Thus, by (4.4) and A = 1, then Fm

1 = Gm
1 , i.e.,

fnd
M ≡ tM [fn], (4.5)

where tm = 1. Now if z0 be a zero of f with multiplicity q, then z0 is a zero of
fnd

M with multiplicity nqd
M

and a zero of M [fn] with multiplicity nqd
M

− Q
M

.
Therefore,

nqd
M

= nqd
M

− Q
M

,

which is not possible. Thus it is obvious that 0 is a Picard exceptional value of f .
Similarly we can get that ∞ is also a Picard exceptional value of f . Then from (4.5)
we have

f(z) = ce
λ
n

z,

where c is a non-zero constant and λnQ
M = 1.

Lemma 8. Let V be given by (4.2) and F ,G,F1 and G1 be given by Lemma 7 and
n,m be positive integers. If V 6≡ 0, then

(mnd
M

− 1)N (r,∞; f) ≤ N(r,∞;V) + S(r, f).
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Proof. From (4.2) and the definitions of F ,G, we see that if z0 is a pole of f with the

multiplicity q such that a(z0) 6= 0 and a(z0) 6= ∞, then z0 is a zero of
F ′

F − 1
− F ′

F
with the multiplicity mnqd

M
− 1 and a zero of

G′

G − 1
− G′

G with the multiplicity

m(nqd
M

+ Q
M

) − 1. Therefore z0 is zero of V with multiplicity

p ≥ min

{

mnd
M

− 1,m(nd
M

+ Q
M

) − 1

}

= mnd
M

− 1.

Also note that m(r,V) = S(r, f). Therefore

(mnd
M

− 1)N (r,∞; f)

≤ N(r, 0;V) + S(r, f)

≤ T (r,V) + S(r, f)

≤ N(r,∞;V) + S(r, f).

Lemma 9. Let U be given by (4.3) and F ,G,F1 and G1 be given by Lemma 7. If
n,m are psotive integers such that n > k and U ≡ 0, then

fnd
M ≡ tM [fn],

where tm = 1 and f assumes the form

f(z) = ce
λ
n z,

where c is a non-zero constant and λmQ
M = 1.

Proof. Since U = 0, we get

F ≡ BG + 1 − B, (4.6)

where B is a non-zero constant. By the definitions of F ,G,F1 and G1, we get
N(r,∞; f) = S(r, f). We discuss the following cases.
Case 1. Let B = 1. Then we see that F ≡ G, i.e., Fm

1 ≡ Gm
1 . Then we have

fnd
M ≡ tM [fn],

where tm = 1. Then f assumes the form

f(z) = ce
λ
n

z,

where c is a non-zero constant with λmQ
M = 1.

Case 2. Let B 6= 1. If N(r, 0; f) 6= S(r, f), then there exists a point z0 for which
f(z0) = 0 but a(z0) 6= 0. Since n > k, then it is clear that F (z0) = 0 = G(z0). Now
from (4.6), we get B = 1, which is clearly absurd.
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Again if N(r, 0; f) = S(r, f), then from (4.6) and using Lemma 3, we get

N(r, 1 − B;F) = N(r, 0;G)

≤ nd
M

N(r, 0; f) + Q
M

N(r,∞; f)

≤ S(r, f).

Now using Second Fundamental Theorem and N(r, 0; f) = N(r,∞; f) = S(r, f), we
have

mnd
M

T (r, f) ≤ T (r,F) + S(r, f)

≤ N(r,∞;F) + N(r, 0;F) + N(r, 1 − B;F) + S(r, f)

≤ N(r, 0; f) + N(r,∞; f) + N(r, 0;G) + S(r, f)

≤ S(r, f),

which is not possible.

Lemma 10. Let U be given by (4.3) and F ,G,F1 and G1 be given by Lemma 7. If
n,m and k are positive integers such that n > k and U 6≡ 0, then

[(nd
M

− Q
M

)m − 1]N (r, 0; f) ≤ N(r,∞;U) + S(r, f).

Proof. Let z0 is a zero of f with multiplicity q(≥ 1) such that a(z0) 6= 0,∞. Then

z0 is a zero of
F ′

F − 1
with the multiplicity nmqd

M
− 1 and z0 is also a zero of

G′

G − 1
of multiplicity (nqd

M
−Q

M
)m−1. Therefore z0 is a zero of U of multiplicity at least

(nqd
M

− Q
M

)m − 1. Since m(r,U) = S(r, f), we have

[(nd
M

− Q
M

)m − 1]N(r, 0; f) ≤ N(r, 0;U) + S(r, f)

≤ T (r,U) + S(r, f)

≤ N(r,∞;U) + S(r, f).

Lemma 11. Let F , G, F1, G1 be as in Lemma 7 and V as in (4.2). Now if n > k
and Ep(1,F) = Ep(1;G) and V 6≡ 0, then the following hold:

1. When p ≥ 2, then
{

mnd
M

− 1 − Q
M

− 1

p

}

N(r,∞; f) ≤
{

(k + 1)d
M

+
1

p

}

N(r, 0; f)

+S(r, f). (4.7)

2. When p = 0, then
{

mnd
M

− 1 − 2(Q
M

+ 1)

}

N(r,∞; f) ≤
{

2(k + 1)d
M

+ 1

}

N(r, 0; f)

+S(r, f). (4.8)
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Proof. Let p ≥ 2 and V =
F ′

F(F − 1)
− G′

G(G − 1)
. Now since Ep(1;F) = Ep(1;G),

so we have

N(r,∞;V) ≤ N(r, 0;G) + N (p+1(r, 1;F) + S(r, f),

where

N (p+1(r, 1;F) ≤ 1

p
N

(

r,
F
F ′

)

≤ 1

p
N

(

r,
F ′

F

)

+ S(r, f)

≤ 1

p
N(r,∞;F) +

1

p
N(r, 0;F) + S(r, f)

≤ 1

p
N(r,∞; f) +

1

p
N(r, 0; f) + S(r, f).

Now by applying Lemma 8 and Lemma 4 we get

(mnd
M

− 1)N (r,∞; f) ≤ 1

p
N(r, 0; f) +

1

p
N(r,∞; f) + N(r, 0;G) + S(r, f)

≤ 1

p
N(r, 0; f) +

1

p
N(r,∞; f) + d

M
Nk+1N(r, 0; fn) + Q

M
N(r,∞; f) + S(r, f),

i.e.,

{

mnd
M

− 1 − Q
M

− 1

p

}

N(r,∞; f) ≤
{

(k + 1)d
M

+
1

p

}

N(r, 0; f) + S(r, f).

Let p = 0, then

N(r,∞;V) ≤ N(r, 0;G) + NL(r, 1;F) + NL(r, 1;G) + S(r, f),

where

NL(r, 1;F) ≤ N

(

r,
F
F ′

)

≤ N

(

r,
F ′

F

)

+ S(r, f)

≤ N(r,∞;F) + N(r, 0;F) + S(r, f)

≤ N(r,∞; f) + N(r, 0; f) + S(r, f).

Similarly, applying Lemma 4 and proceeding as above, we get

NL(r, 1;G) ≤ N(r,∞;G) + N(r, 0;G) + S(r, f)

≤ (Q
M

+ 1)N (r,∞; f) + (k + 1)d
M

N(r, 0; f) + S(r, f).

Now by Lemma 8 and Lemma 4, we get

(mnd
M

− 1)N (r,∞; f) ≤ {2(k + 1)d
M

+ 1}N (r, 0; f) + 2(Q
M

+ 1)N (r,∞; f) + S(r, f).



114 A. BANERJEE, M. B. AHAMED

i.e.,
{

mnd
M

− 1 − 2(Q
M

+ 1)

}

N(r,∞; f) ≤
{

2(k + 1)d
M

+ 1

}

N(r, 0; f) + S(r, f).

Lemma 12. Let F , G, F1, G1 be as in Lemma 7 and U as in (4.3). Now if n > k
and Ep(1,F) = Ep(1;G) and U 6≡ 0, then the following holds:

1. When p ≥ 2, then
{

(nd
M

− Q
M

)m − 1 − 1

p

}

N(r, 0; f) ≤
{

1 +
1

p

}

N(r,∞; f) + S(r, f). (4.9)

2. When p = 0, then
{

(nd
M

− Q
M

)m − (k + 1)d
M

− 2

}

N(r, 0; f) ≤
{

Q
M

+ 3

}

N(r,∞; f)

+S(r, f). (4.10)

Proof. Let p ≥ 2, then we have

N(r,∞;U) ≤ N(r,∞;F) + N (p+1(r, 1;F) + S(r, f)

≤ N(r,∞; f) +

{

1

p
N(r, 0; f) +

1

p
N(r,∞; f)

}

+ S(r, f)

≤ 1

p
N(r, 0; f) +

(

1 +
1

p

)

N(r,∞; f) + S(r, f).

Now by applying Lemma 10 we get
{

(nd
M

− Q
M

)m − 1

}

N(r, 0; f) ≤ 1

p
N(r, 0; f) +

(

1 +
1

p

)

N(r,∞; f) + S(r, f),

i.e.,
{

(nd
M

− Q
M

)m − 1 − 1

p

}

N(r, 0; f) ≤
(

1 +
1

p

)

N(r,∞; f) + S(r, f).

Let p = 0, by applying Lemma 10 and Lemma 4 and proceeding in the same way as
done in the proof of Lemma 11, we get

N(r,∞;U) ≤ N(r,∞;F) + NL(r, 1;F) + NL(r, 1;G) + S(r, f)

≤ N(r,∞; f) +

{

N(r, 0; f) + N(r,∞; f)

}

+
{

(Q
M

+ 1)N (r,∞; f)

+(k + 1)d
M

N(r, 0; f)
}

+ S(r, f),

i.e.,
{

(nd
M

− Q
M

)m − (k + 1)d
M

− 2

}

N(r, 0; f) ≤
{

Q
M

+ 3

}

N(r,∞; f) + S(r, f).
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Lemma 13. Let F and G be two non-constant meromorphic functions such that
Ep(1,F) = Ep(1,G) and H 6≡ 0 and p = 0, then

T (r,F) + T (r,G)

≤ 2N2(r, 0;F) + 2N2(r, 0;G) + 6N (r,∞;F) + 3NL(r, 1;F) + 3NL(r, 1;G) + S(r,F).

Proof. Noting that S(r,F) = S(r,G), the lemma can be proved by using Lemma
2.1, Lemma 2.2 and Lemma 2.3 of [4].

Lemma 14. Let F and G be two non-constant meromorphic functions such that
Ep(1,F) = Ep(1,G) and H 6≡ 0 and p ≥ 2, then

T (r,F) + T (r,G) ≤ 2N2(r, 0;F) + 2N2(r, 0;G) + 6N(r,∞;F) + S(r,F).

Proof. Since F and G share (1, p) where p ≥ 2, so it is clear that F and G share
(1, 2). Then the lemma can be obtained from Lemma 13 of [2].

Lemma 15. Let H be given by (4.1) and F ,G,F1 and G1 be given by Lemma 7. If
n,m and k are positive integers such that n > k and

N(r,∞; f) = N(r, 0; f) = S(r, f)

and H ≡ 0, then
fnd

M ≡ tM [fn],

where tm = 1 and f assumes the form

f(z) = ce
λ
n

z,

where c is a non-zero constant and λnd
M = 1.

Proof. Since H ≡ 0, by integration we obtain

1

F − 1
≡ C

G − 1
+ D, (4.11)

where C(6= 0) and D are constants. Now from (4.11) we have

G ≡ (D − C)F + (C − D − 1)

DF − (D + 1)
,

i.e.,

Gm
1 ≡ (D − C)Fm

1 + (C − D − 1)

DFm
1 − (D + 1)

. (4.12)

Now we discuss the following cases.
Case 1. Let D 6= 0,−1. Therefore from (4.12) we have

N

(

r,
D + 1

D ;Fm
1

)

= N(r,∞;Gm
1 ).
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By applying the Second Fundamental Theorem with S(r,F) = S(r, f), we get

mnd
M

T (r, f) = T (r,Fm
1 ) + S(r, f)

≤ N(r,∞;Fm
1 ) + N(r, 0;Fm

1 ) + N

(

r,
D + 1

D ;Fm
1

)

+ S(r, f)

≤ N(r,∞; f) + N(r, 0; f) + N(r,∞;Gm
1 ) + S(r, f)

≤ S(r, f),

which is not possible.

Case 2. Suppose D = 0. Then from (4.12), we have

N

(

r,
C − 1

C ;Fm
1

)

= N(r, 0;Gm
1 ).

Subcase 2.1. Let C 6= 1. Now by the Second Fundamental Theorem and using
Lemma 3, we get

mnd
M

T (r, f) = T (r,Fm
1 ) + S(r, f)

≤ N(r,∞;Fm
1 ) + N(r, 0;Fm

1 ) + N

(

r,
C − 1

C ;Fm
1

)

+ S(r, f)

≤ N(r,∞; f) + N(r, 0; f) + N(r, 0;Gm
1 ) + S(r, f)

≤ (nd
M

+ 1)N(r, 0; f) + (Q
M

+ 1)N (r,∞; f) + S(r, f)

≤ S(r, f),

which is not possible.

Subcase 2.2. Let C = 1. Then we have Fm
1 ≡ Gm

1 , i.e.,

fnd
M ≡ tM [fn].

Then f assumes the form

f(z) = ce
λ
n

z,

where c is a non-zero constant and λmQ
M .

Case 3. Let D = −1, then from (4.12), we get

Gm
1 ≡ (C + 1)Fm

1 − C
Fm

1

.

Now proceeding exactly the same way as in Case 2, we get Fm
1 Gm

1 ≡ 1, i.e.,
fnd

M M [fn] ≡ ta2, where tm = 1. Again since N(r,∞; f) = S(r, f) = N(r, 0; f), so

2T

(

r,
fnd

M

a

)

= T

(

r,
ta2

f2nd
M

)

+ O(1)

≤ T

(

r,
M [fn]

fnd
M

)

+ O(1)
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≤ m

(

r,
M [fn]

fnd
M

)

+ N

(

r,
M [fn]

fnd
M

)

+ O(1)

≤ N (r,∞;M [fn]) + N
(

r, 0; fnd
M

)

+ O(1)

≤ (ndM + Q
M

)N(r,∞; f) + nd
M

N(r, 0; f) + O(1)

≤ S(r, f),

which is not possible.

5 Proofs of the Theorems

Proof of Theorem 1.9. Let F1 =
fnd

M

a
and G1 =

M [fn]

a
and F = Fm

1 , G = Gm
1 ,

where f is a non-constant meromorphic function. Now we discuss the following
cases.
Case 1. If UV ≡ 0, then by using Lemma 7 and Lemma 9, we get the conclusions
of the Theorem 1.9.
Case 2. Let UV 6≡ 0, then from the assumption of Theorem 1.9, we see that
Ep(1,F) = Ep(1,G).
Subcase 2.1. When p ≥ 2, then by using Lemma 11 and Lemma 12, we get

{

mnd
M

− 1 − Q
M

− 1

p

}{

(nd
M

− Q
M

)m − 1 − 1

p

}

N(r,∞; f) (5.1)

≤
{

(k + 1)d
M

+
1

p

}{

1 +
1

p

}

N(r,∞; f) + S(r, f)

and
{

mnd
M

− 1 − Q
M

− 1

p

}{

(nd
M

− Q
M

)m − 1 − 1

p

}

N(r, 0; f) (5.2)

≤
{

(k + 1)d
M

+
1

p

}{

1 +
1

p

}

N(r, 0; f) + S(r, f).

Now from the equations (5.1) and (5.2), we get
{

(mnd
M

− γp
1) (mnd

M
− γp

m) − C

}

N(r,∞; f) ≤ S(r, f) (5.3)

and
{

(mnd
M

− γp
1) (mnd

M
− γp

m) − C

}

N(r, 0; f) ≤ S(r, f), (5.4)

where γp
m = mQ

M
+ 1 +

1

p
and C =

{

(k + 1)d
M

+
1

p

}{

1 +
1

p

}

.

Since
{

mnd
M

− γp
1

}{

mnd
M

− γp
m

}

− C
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= m2d2
M

n2 − md
M

{

γp
1 + γp

m

}

n +

{

γp
1γp

m − C

}

= m2d2
M

{

n − γp
m + γp

1 +
√

(γp
m − γp

1)2 + 4C

2md
M

}{

n − γp
m + γp

1 −
√

(γp
m − γp

1)2 + 4C

2md
M

}

,

in view of the assumptions of Theorem 1.9, we get a contradiction from (5.3) and
(5.4).

Thus we obtained from above

N(r, 0; f) = S(r, f) = N(r,∞; f). (5.5)

We now consider the following two cases:
Case 2.1.1. Let H 6≡ 0. Using Lemma 13 and Lemma 14 and (5.5), we get
T (r, f) = S(r, f), which is a contradiction.
Case 2.1.2. Let H ≡ 0. Then from Lemma 15, we get the conclusion of Theorem
1.9. Subcase 2.2. When p = 0, using Lemma 11 and Lemma 12, we get

{

mnd
M

− 1 − 2(Q
M

+ 1)

}{

(nd
M

− Q
M

)m − (k + 1)d
M

− 2

}

N(r,∞; f)(5.6)

≤
{

2(k + 1)d
M

+ 1

}{

Q
M

+ 3

}

N(r,∞; f) + S(r, f)

and
{

mnd
M

− 1 − 2(Q
M

+ 1)

}{

(nd
M

− Q
M

)m − (k + 1)d
M

− 2

}

N(r, 0; f)(5.7)

≤
{

2(k + 1)d
M

+ 1

}{

Q
M

+ 3

}

N(r, 0; f) + S(r, f).

Now using equations (5.6) and (5.7) and proceeding the same way as done in Subcase
2.1, the rest of the proof can be carried out. So we omit the detail.

Proof of Theorem 1.10. Since f is an entire function, we have N(r,∞; f) =
S(r, f). Now if U ≡ 0, then using Lemma 9, we get the conclusion of Theorem
1.10.

If U 6≡ 0, then using Lemma 10 for p ≥ 2 we get from (5.2) that

(mnd
M

− γp
1)(mnd

M
− γp

m)N(r, 0; f) ≤ S(r, f).

Since n >
pmQ

M
+ p + 1

pmd
M

, we get a contradiction.

Again when p = 0, using Lemma 10 we get from (5.7)
{

mnd
M

− [2Q
M

+ 3]

}{

mnd
M

− [mQ
M

+ (k + 1)d
M

+ 2]

}

N(r, 0; f) ≤ S(r, f),

which is a contradiction since n >
mQ

M
+ (k + 1)d

M
+ 2

md
M

.

Therefore N(r, 0; f) = S(r, f). Now the rest of the proof follows Case 1 and Case
2 of the proof of Theorem 1.9.
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6 Some Open Questions

Question 6.1. Can we replace fn by a general linear expression P (f) in anyway
in Theorem 1.9 and Theorem 1.10 to get the same specific form the function?

Question 6.2. Can we replace the differential monomial M [fn] by a differential
polynomial P[fn] in anyway in Theorem 1.9 and Theorem 1.10 to get the same
specific form the function?

Question 6.3. Can the lower bound of n be further reduced in Theorem 1.9 and
Theorem 1.10 to get the same conclusions?
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