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Abstract. The strong stability radius of the multicriteria investment Boolean prob-
lem with the Savage risk criteria is investigated. The problem is to find the set of
Pareto optimal portfolios. Upper and lower bounds of such a radius are derived for
the case where different Hölder metrics are defined in the three problem parameters
spaces.
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1 Introduction

Most of business and management decisions are made within uncertain and risky
environment. Investment managing problems are as a type of problems with un-
certainty of the initial data. Any separate investment asset has higher level of risk
and less return than the portfolio of those assets and there is no reason to invest in
one particular asset. Creating the portfolio by diversification and mixing variety of
investments an investor reduces the riskiness of the portfolio. Following Markowitz’s
portfolio theory the investor plotting on the graph an efficient frontier depending on
various pairs risk and expected return chooses portfolio drawing on individual risk-
return preferences. It gives ability to construct a portfolio with the same expected
return and less risk.

Based on Markowitz’s portfolio optimization concept [1, 2] a multicriteria Boolean
discrete variant of portfolio optimization holding constant expected return and min-
imize risk of portfolios consisting of the investment projects is considered. This
problem is viewed as a problem of finding the Pareto optimal portfolios set using
Savage’s risk criteria. It means that a portfolio is a Pareto optimal one, when its
total level of risk, i.e. the sum of all risks of the projects included in the portfolio is
minimal in the worst market situation for one type of the risk. Unlike classical mod-
ern portfolio theory where a portfolio consisting of percentage of each asset there are
several investment projects composes the portfolio. This model can be considered as
a discrete variant of Markowitz problem with encoding a portfolio selection where
for each project the risk matrix is constructed for several market states related to
each type of the risk.
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The model formulation requires statistical and expert evaluation of risks (e.g.
financial or ecological) [3] to be specified as the initial data. The collected data usu-
ally contain computational errors and inaccuracies. It leads to the situation when
the initial data representing risk values are inaccurate and uncertain. One of the
key questions while analyzing an uncertain data is about the limiting level of the
initial data changes (perturbations) which do not violate the optima. The quantita-
tive measure of the data perturbation level is known as the stability radius, which
concept is widely presented and analyzed in the recent literature focusing on finding
analytical expressions and bounds (see e.g. [4–8]). Similar approaches were also
developed in parallel in scheduling theory (see [9]). Analytical formulas are pairwise
comparisons of solutions that reflect the specific of the selected principle of opti-
mality, the structure of global perturbation of this problem and the structure of the
solution set, namely Boolean portfolios. The evaluation of the stability properties is
a global property itself. The particular definition of the stability radius concept de-
pends on chosen optimality principles (if the problem is multicriteria), uncertain data
and a type of distance metric used to measure the closeness in problem parameter
spaces. Various types of metrics allow to consider a specific of problem parameters
perturbation. So in the case of Chebyshev metric l∞ the maximum changes in the
initial data take into account only that allow perturbations to be independent. In
the case of Manhattan metric l1 every change of the initial data can be monitored in
total. Hölder metric lp, 1 ≤ p ≤ ∞, is the metric with a parameter and includes such
extreme cases as Chebyshev metric l∞, Manhattan metrics l1 and also Euclidean
metric l2. Thus, using Hölder metric lp for obtaining the stability radius depending
on the properties of the initial data the control of perturbations can be varied.

Along with a quantitative approach to analyzing admissible level of the initial
data perturbations, a qualitative approach is developed in parallel. This approach
concentrates on specifying analytical conditions which will guarantee some certain
pre-specified behavior of the optimal solutions set. Within this approach authors
focus on finding necessary and sufficient conditions of different types of the problem
stability (see the monograph [10], the reviews [11, 12], and the articles [13–17]), on
revealing relations between different types of stability [18, 19], and also on finding
and describing the stability region of an optimal solution [20].

This work continues started in [21–29] researches of different types of stability
of vector nonlinear investment problems. Thus the work follows the approach of
obtaining qualitative characteristics of stability. One of such characteristics, called
commonly a stability radius of a problem, is defined as a limit level of problem
parameters perturbations in the metric space such that pre-specified property of the
problem solution set is preserved. Perturbing parameters usually are coefficients of
the scalar or vector criteria.

Stability of a multicriteria discrete optimization problem of finding the Pareto
set is commonly understood (see e.g. [10]) as discrete analog of the Hausdorff upper
semicontinuity property of the point-to-set mapping that defines the Pareto choice
function. Thus, the stability property means that there exists a neighborhood of the
initial problem parameters in which appearance of a new Pareto optimum is impos-
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sible. In other words, the Pareto set inside this neighborhood can only narrow in
the result of the problem parameters perturbations. Relaxation of this requirements
leads to a new stability type. It is understood as existence of such neighborhood
of the initial problem parameters in which appearance of new Pareto optimums is
possible; but at least one Pareto optimal solution (not necessarily one and the same)
preserves its optimality for any perturbation. Following the terminology of [30–33],
we call such a stability strong.

Strong stability was first time investigated in [34] for a one-criterion (scalar)
linear trajectorial problem. Later in [32, 35, 36] the lower and upper bounds of
this type stability radius were derived for the multicriteria linear Boolean integer
programming problem. The article [37] is devoted to obtaining similar bounds for
the vector investment problem with the Wald criteria. We also point out the work
[30] where necessary and sufficient conditions of the strong stability are found for the
multicriteria problem of threshold functions minimization. The mentioned results
were obtained in the case of the Chebyshev metric l∞ in the problem parameter
spaces.

In this paper the lower and upper bounds of the strong stability radius are found
for the multicriteria investment problem with the Savage risk criteria in the case
of different Hölder metrics in the three problem parameter spaces. Separately we
investigate a particular case of the investment problem with the linear criteria, i.e.
the case when the state of the financial market does not doubt the investor.

2 Problem formulation and basic definitions

Consider a mutlicriteria discrete analogue of the Markowitz portfolio management
problem [1], which is based on diversification as a tool of risk minimization. Let

Nn = {1, 2, . . . , n} be a variety of alternative investment projects (assets);

Nm be a set of possible financial market states (market situations, scenarios);

Ns be a set of possible risks;

rijk be a numerical measure of economic risk of type k ∈ Ns, which the investor
may face if (s)he chooses project j ∈ Nn assuming that the market state is i ∈ Nm;

R = [rijk] ∈ R
m×n×s;

x = (x1, x2, . . . , xn)T ∈ E
n be an investment portfolio, where E = {0, 1},

xj =

{
1, if investor chooses project j,

0 otherwise;

X ⊂ E
n be a set of all admissible investment portfolios, i.e. those realizations

which provide expected total income and do not exceed the budget;

R
m be a financial market state space;

R
n be a project space;

R
s be a risk space.

The presence of a risk factor is integral feature of financial market functioning.
One can find information about risk measurement methods and their classification



AN INVESTMENT PROBLEM UNDER MULTICRITERIALITY . . . 85

in [38]. The last trend is to quantify risks using five R: robustness, redundancy,
resourcefulness, response and recovery. The natural target of any investor is to
minimize different types of risks. It creates a motivation for multicriteria analysis
within risk modelling. It leads to the usage of multicriteria decision making tools
[39, 40].

Assume that the efficiency of a chosen portfolio (Boolean vector) x = (x1,
x2, ..., xn)T ∈ X, |X| ≥ 2, is evaluated by a vector objective function

f(x,R) = (f1(x,R1), f2(x,R2) . . . , fs(x,Rs))
T ,

each partial objective represents minmax Savage’s risk criterion (extreme pessimism)
[41]

fk(x,Rk) = max
i∈Nm

rikx = max
i∈Nm

∑

j∈Nn

rijkxj → min
x∈X

, k ∈ Ns,

where Rk ∈ R
m×n is the k-th cut R = [rijk] ∈ R

m×n×s with rows rik =
(ri1k, ri2k, . . . , rink) ∈ R

n, i ∈ Nm.

Thus, if an investor chooses the Savage risk (bottleneck) criterion [42, 43], then
(s)he optimizes the total profit of the selected portfolio in the worst (maximum risk)
case. This approach takes place when the decision maker has pessimistic expectations
and wants to achieve the guaranteed result. In other words, the investor adhere to
the wise rule that suggests to expect the worst case.

A problem of finding the Pareto optimal (efficient) portfolios is referred to as a
multicriteria investment Boolean problem with the Savage risk criteria and is denoted
Zs

m(R), s ∈ N. The set of Pareto optimal portfolios is defined as follows

P s(R) = {x ∈ X : X(x,R) = ∅},

where

X(x,R) = {x′ ∈ X : f(x,R) ≥ f(x′, R) & f(x,R) 6= f(x′, R).

It is evident that P s(R) 6= ∅ for any matrix R ∈ R
m×n×s. Let us note that the

problem Zs
m(R) can be interpreted as "the worst case optimization".

Let the Hölder metrics (generally speaking different) lp, lq, and lr, p, q, r ∈ [1,∞],
be defined in the spaces R

n,Rm, and R
s correspondingly. It means that the norm

of the matrix R ∈ R
m×n×s is the number

‖R‖pqr =
∥∥∥(‖R1‖pq , ‖R2‖pq , . . . , ‖Rs‖pq)

∥∥∥
r
,

‖Rk‖pq =
∥∥∥(‖r1k‖p , ‖r2k‖p , . . . , ‖rmk‖p)

∥∥∥
q
, k ∈ Ns.

Recall that the Hölder norm lp in the space R
n is defined as follows

||a||p =





(∑
j∈Nn

|aj|
p
)1/p

, if 1 ≤ p <∞,

max{|aj | : j ∈ Nn}, if p = ∞,
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where a = (a1, a2, . . . , an)T ∈ R
n.

It is easy to see that for any p, q, r ∈ [1,∞], the following inequalities hold

||rik||p ≤ ||Rk||pq ≤ ||R||pqr, i ∈ Nm, k ∈ Ns. (1)

Following [30–37, 44, 45], the strong stability radius (in terminology of [10] –
T1-stability radius) of the problem Zs

m(R), s ∈ N, with the Hölder norms lp, lq, and
lr in the spaces R

m,Rn, and R
s correspondingly is the number

ρ = ρs
m(p, q, r) =

{
supΞpqr, if Ξpqr 6= ∅,

0, if Ξpqr = ∅,

where

Ξpqr = {ε > 0 : ∀R′ ∈ Ωpqr(ε) (P s(R) ∩ P s(R +R′) 6= ∅)},

Ωpqr(ε) = {R′ ∈ R
m×n×s : ||R′||pqr < ε}.

Here Ωpqr(ε) is the set of perturbing matrixes R′ with cuts R′
k ∈ R

m×n, k ∈
Ns; P

s(R + R′) is the Pareto set of the perturbed problem Zs(R + R′); ||R′||pqr is
the norm of the matrix R′ = [r′ijk].

Thus, the strong stability radius of the problem Zs
m(R) is a limit level of the

matrix R elements perturbations in the metric space R
m×n×s such that for each of

those perturbations at least one (not necessary one and the same) optimal portfolio
of the problem Zs

m(R) preserves its optimality in the perturbed problem Zs
m(R+R′).

It is obvious that if P s(R) = X, then the set P s(R) ∩ P s(R + R′) is not empty
for any perturbing matrix R ∈ Ωpqr(ε) and any number ε > 0. That is why the
strong stability radius of such problem is not upper limited. Hereafter, a problem
with P s(R) 6= X is called non-trivial.

3 Auxiliary statements

Let u be any of the numbers p, q, r introduced earlier. For the number u, define
a conjugate number u′ by the following relations

1/u + 1/u′ = 1, 1 < u <∞.

Moreover, let u′ = 1 when u = ∞; and u′ = ∞ when u = 1. Thus, the acceptable
range of the numbers u and u′ is the interval [1,∞]; and the numbers are tied by the
relations above. Also we assume 1/u = 0 if u = ∞.

Further we use the known Hölder inequality

|aT b| ≤ ||a||u||b||u′ , (2)

valid for any vectors a and b of the same dimension.
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Lemma. For any portfolios x, x0 ∈ X, indexes i, i′ ∈ Nn, k ∈ Ns, and numbers
p, q ∈ [1,∞], the following inequality is valid

ri′kx
0 − rikx ≥ −||Rk||pq||(||x

0||p′ , ||x||p′)||v ,

where
v = min{p′, q′}.

Indeed, if i 6= i′ then applying the Hölder inequality (2), get

ri′kx
0 − rikx ≥ −(||ri′k||p||x

0||p′ + ||rik||p||x||p′) ≥

≥ −||(||ri′k||p, ||rik||p)||q ||(||x0||p′ , ||x||p′)||q′ ≥

≥ −||Rk||pq ||(||x0||p′ , ||x||p′)||q′ ≥ −||Rk||pq ||(||x0||p′ , ||x||p′)||v .

If i = i′ then we apply (1), the Hölder inequality (2) and derive

ri′kx
0 − rikx ≥ −||rik||p ||x0 − x||p′ ≥ −||Rk||pq ||x0 − x||p′ ≥

≥ −||Rk||pq ||(||x0||p′ , ||x||p′)||q′ ≥ −||Rk||pq ||(||x0||p′ , ||x||p′)||v .

Moreover, for a vector a = (a1, a2, . . . , an)T ∈ R
n with |aj | = α, j ∈ Nn, and

any number p ∈ [1,∞], easily obtain

||a||p = αn1/p. (3)

4 The strong stability radius bounds

For a non-trivial problem Zs
m(R) we denote

ϕ = ϕs(p, q) = min
x 6∈P s(R)

max
x′∈P (x,R)

min
k∈Ns

gk(x.x
′, Rk)

||(||x||p′ , ||x′||p′)||v
,

ψ = ψs(p, q, r) = max
x′∈P s(R)

min
x 6∈P s(R)

||[g(x, x′, R)]+||r
||(||x||p′ , ||x′||p′)||v

,

χ = χs(p, q, r) = n1/pm1/qs1/r min
x 6∈P s(R)

max
x′∈P s(R)

max
k∈Ns

gk(x, x
′, Rk)

||x− x′||1
.

Here
P (x,R) = X(x,R) ∩ P s(R),

g(x, x′, R) = (g1(x, x
′, R1), g2(x, x

′, R2), . . . , gs(x, x
′, Rs))

T ,

gk(x, x
′, Rk) = fk(x,Rk) − fk(x

′, Rk), k ∈ Ns,

v = min{p′, q′},

[y]+ = (y+
1 , y

+
2 , . . . , y

+
s )T

is a positive cutoff of a vector y = (y1, y2, . . . , ys)
T ∈ R

s, i.e. y+
k = max{0, yk},

k ∈ Ns.



88 V. EMELICHEV, S. BUKHTOYAROV, V. MYCHKOV

Theorem 1. For any s,m ∈ N and p, q, r ∈ [1,∞], for the strong stability radius
ρs

m(p, q, r) of the non-trivial problem Zs
m(R) the following bounds are valid

0 < max{ϕs(p, q), ψs(p, q, r)} ≤ ρs
m(p, q, r) ≤ min{χs(p, q, r), ||R||pqr}.

Proof. From the evident formula

∀x′ ∈ P s(R) ∀x 6∈ P s(R) ∃k ∈ Ns (fk(x,Rk) > fk(x
′, Rk)),

we easily get the inequality
ψ = ψs(p, q, r) > 0,

which shows that lower bound of the radius ρs
m(p, q, r) and the radius itself are

positive numbers.
Now let us show validity of the lower bound

ρ = ρs
m(p, q, r) ≥ ϕs(p, q) = ϕ. (4)

Suppose that ϕ > 0 (otherwise the inequality is evident).
Let R′ = [r′ijk] ∈ R

m×n×s be a perturbing matrix with cuts R′
k, k ∈ Ns, from the

set Ωpqr(ϕ). By the definition of ϕ and inequality (1), we get the formula

∀x 6∈ P s(R) ∃x0 ∈ P (x,R) ∀k ∈ Ns

(
fk(x,Rk) − fk(x

0, Rk)

||(||x||p′ , ||x0||p′)||v
≥ ϕ > ||R′||pqr ≥ ||R′

k||pq

)
.

Using the lemma, for any k ∈ Ns derive

fk(x,Rk +R′
k) − fk(x

0, Rk +R′
k) = max

i∈Nm

(rik + r′ik)x− max
i∈Nm

(rik + r′ik)x
0 =

= min
i∈Nm

max
i′∈Nm

(ri′kx+ r′i′kx− rikx
0 − r′ikx

0) =

= fk(x,Rk) − fk(x
0, Rk) − ||R′

k||pq ||(||x||p′ , ||x
0||p′)||v > 0,

where r′ik is the i-th row of the k-th cut R′
k of R′. This means that x 6∈ P s(R +

R′). Resuming, we conclude that any non-efficient portfolio of the problem Zs
m(R)

preserves optimality in the perturbed problem Zs
m(R+R′). Therefore, the following

relations are valid
∅ 6= P s(R+R′) ⊆ P s(R).

Hence, P s(R)∩P s(R+R′) 6= ∅ for any perturbing matrix R′ ∈ Ωpqr(ϕ), i.e. inequality
(4) is true.

Now we pass to the proof of the lower bound

ρ = ρs
m(p, q, r) ≥ ψs(p, q, r) = ψ.

As in the previous case, let R′ = [r′ijk] ∈ R
m×n×s be a perturbing matrix from

the set Ωpqr(ψ). As it was established earlier, ψ is a positive number. To prove
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inequality ρ > ψ it is sufficient to show that there exists portfolio x∗ that belongs to
the set P s(R) ∩ P s(R+R′).

By the definition of ψ, there exists a portfolio x0 ∈ P s(R) such that for any
portfolio x 6∈ P s(R) the following inequalities hold

0 < ψ||(||x||p′ , ||x
0||p′)||v ≤ ||[g(x, x0, R)]+||r. (5)

Let us now prove the formula

∀x 6∈ P s(R) ∀R′ ∈ Ωpqr(ψ)
(
x 6∈ X(x0, R+R′)

)
. (6)

We prove it by contradiction. Supposing to the contrary, obtain the formula

∃x̃ 6∈ P s(R) ∃R̃ ∈ Ωpqr(ψ)
(
x̃ ∈ X(x0, R+ R̃)

)
.

It implies that for any index k ∈ Ns we get the inequality

gk(x̃, x
0, Rk + R̃k) ≤ 0,

where R̃k is the k-th cut of the matrix R̃ = [r̃ijk]. Hence, taking into account the
lemma and inequality (1), we get relations

0 ≥ gk(x̃, x
0, Rk + R̃k) = fk(x̃, Rk + R̃k) − fk(x

0, Rk + R̃k) =

= max
i∈Nm

(rik + r̃ik)x̃− max
i∈Nm

(rik + r̃ik)x
0 =

= min
i∈Nm

max
i′∈Nm

(
rikx̃− ri′kx

0 + r̃ikx̃− r̃i′kx
0
)
≥

≥ gk(x̃, x
0, Rk) − ||R̃k||pq ||(||x̃||p′ , ||x

0||p′)||v .

Having them, we derive

gk(x̃, x
0, Rk) ≤ ||R̃k||pq ||(||x̃||p′ , ||x

0||p′)||v

and then conclude that

[gk(x̃, x
0, Rk)]

+ ≤ ||R̃k||pq ||(||x̃||p′ , ||x
0||p′)||v .

As a result, we get the following contradiction with inequality (5)

||[gk(x̃, x0, Rk)]
+||r ≤ ||R̃||rpq ||(||x̃||p′ , ||x

0||p′)||v < ψ ||(||x̃||p′ , ||x
0||p′)||v.

Hence, formula (6) is proved.
Now we show the way of choosing the required portfolio

x∗ ∈ P s(R) ∩ P s(R+R′),

where R′ ∈ Ωpqr(ψ). If x0 ∈ P s(R+R′) then x∗ = x0. Suppose x0 6∈ P s(R+R′). Due
to the external stability property of the Pareto set P s(R+R′) (see e.g. [46], p. 39)
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we can choose a portfolio x∗ ∈ P s(R+R′) such that x∗ ∈ X(x0, R+R′). Using the
proved formula (6), we easily find out that x∗ ∈ P s(R). Thus, the inequality ρ ≥ ψ
is proved.

Further we show correctness of the upper bound

ρs
m(p, q, r) ≤ χs(p, q, r) = χ. (7)

By definition of χ, there exists a portfolio x0 6∈ P s(R) such that for any efficient
portfolio x ∈ P s(R) and any index k ∈ Ns the following inequality holds

χ||x0 − x||1 ≥ n1/pm1/qs1/rgk(x
0, x,Rk). (8)

Let ε > χ. We set the elements of the perturbing matrix R0 = [r0ijk] ∈ R
m×n×s

with cuts R0
k, k ∈ Ns, by the rule

rijk =

{
−δ, if i ∈ Nm, x0

j = 1, k ∈ Ns,

δ, if i ∈ Nm, x0
j = 0, k ∈ Ns.

Here the number δ is chosen to satisfy the inequality

χ < δn1/pm1/qs1/r < ε. (9)

Therefore, with proved (3) we derive

||r0ik||p = δn1/p, i ∈ Nm, k ∈ Ns,

||R0
k||pq = δn1/pm1/q, k ∈ Ns,

||R0||pqr = δn1/pm1/qs1/r.

This means that R0 ∈ Ωpqr(ε). Moreover, all the rows r0ik, i ∈ Nm, of any k-th
cut R0

k, k ∈ Ns, are equal and consist of the components δ and −δ. So, denoting
c = r0ik, i ∈ Nm, k ∈ Ns, we obtain the relations

c(x0 − x) = −δ||x0 − x||1 < 0

valid for any portfolio x 6= x0. Therefore, taking into account (8) and (9), for any
portfolio x ∈ P s(R) and any index k ∈ Ns, we derive

gk(x
0, x,Rk +R0

k) = min
i∈Nm

(rik + c)x0 − min
i∈Nm

(rik + c)x =

= min
i∈Nm

rikx
0 − min

i∈Nm

rikx+ c(x0 − x) = gk(x
0, x,Rk) + c(x0 − x) ≤

≤ (χ(n1/pm1/qs1/r)−1 − δ)||x0 − x||1 < 0.

Thus, any portfolio x ∈ P s(R) of the problem Zs
m(R) does not belong to the Pareto

set of the pertubed problem Zs
m(R + R0). In other words, for any number ε > χ,
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there exists a matrix R0 ∈ Ωpqr(ε) such that P s(R+R0)∩P s(R) = ∅, i.e. ρ < ε for
any ε > χ. Inequality (7) is proved.

Now we must only verify the inequality ρ ≤ ||R||pqr. Suppose x0 /∈ P s(R) and
ε > ||R||pqr. Choose a number δ such that

0 < δn1/pm1/q < ε− ||R||pqr. (10)

We build an auxiliary matrix V = [vij ] ∈ R
m×n with components

vij =

{
−δ, if i ∈ Nm, x0

j = 1,

δ, if i ∈ Nm, x0
j = 0.

Using (3), calculate
||V ||pq = δn1/pm1/q. (11)

It is evident that all the rows vi, i ∈ Nm, of the matrix V are the same and
consist of the components δ and −δ. Denoting d = vi, i ∈ Nm, we get the relation

d(x0 − x) = −δ||x0 − x||1 < 0 (12)

valid for any portfolio x 6= x0 and, in particular, for the efficient portfolio x ∈ P s
m(R).

Let R0 ∈ R
m×n×s be a perturbing matrix with cuts R0

k, k ∈ Ns, set by the rule

R0
k =

{
V −R1, if k = 1,

−Rk, if k 6= 1.

Applying (10) and (11), get

||R0||pqr ≤ ||V ||pq + ||R||pqr = δn1/pm1/q + ||R||pqr < ε.

Furthermore, taking into account the structure of the matrix V we derive

f1(x
0, V ) − f1(x, V ) = d(x0 − x),

what with (12) gives

g1(x
0, x,R1 +R0

1) = f1(x
0, R1 +R0

1) − f1(x,R1 +R0
1) =

= f1(x
0, V ) − f1(x, V ) = d(x0 − x) = −δ||x0 − x||1 < 0.

Additionally, it is evident that

gk(x
0, Rk +R0

k) = 0, k ∈ Ns\{1}

Finally, we conclude that

x0 ∈ X(x,R +R0).

Hence, x /∈ P s(R+R0) if x ∈ P s(R). That is the set P s(R) ∩ P s(R+R0) is empty.
Resuming, we have ρs

m(p, q, r) < ε for any number ε > ||R||pqr. Consequently,
ρs

m(p, q, r) ≤ ||R||pqr.
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From Theorem 1 the known result follows.

Corollary 1 [37]. If p = q = r = ∞ then, for any s,m ∈ N, the following bounds
of the strong stability radius of the problem Zs

m(R) hold

0 < max
x′∈P s(R)

min
x/∈P s(R)

max
k∈Ns

gk(x, x
′, Rk)

||x+ x′||1
≤

≤ ρs
m(∞,∞,∞) ≤ min

x/∈P s(R)
max

x′∈P s(R)
max
k∈Ns

gk(x, x
′, Rk)

||x− x′||1
.

5 Case of linear criteria (m − 1)

When m = 1 our investment problem becomes a vector (s-criteria) linear Boolean
programming problem. We rewrite the problem in more convenient form

Zs
1(R) : rkx→ max

x∈X
, k ∈ Ns,

where x = (x1, x2, ..., xn)T ∈ X ⊂ R
n; rk ∈ R

n is the k-th row of the matrix
R = [rkj] ∈ R

s×n. Such a case can be interpreted as a situation when the financial
market state does not doubt the investor. As previously, we assume that the Hölder
norms lp and lr, p, r ∈ [1,∞], are defined correspondingly in the project space R

n

and in the criterial risk space R
s. For the problem Zs

1(R) we will use the previous
notations P s(R), P (x,R) etc.

In this linear case the lower bound of the problem Zs
1(R) strong stability radius

ρs
1(p, r) can be improved.

Theorem 2. For any p, r ∈ [1,∞] and s ∈ N, for the strong stability radius ρs
1(p, r)

of the non-trivial problem Zs
1(R) the following bounds are valid

0 < max{ϕ∗, ψ∗} ≤ ρs
1(p, r) ≤ min{χ∗, ||R||pr},

where

ϕ∗ = ϕ∗(p) = min
x/∈P s(R)

max
x′∈P s(x,R)

min
k∈Ns

rk(x− x′)

||x− x′||p′
,

ψ∗ = ψ∗(p, r) = max
x′∈P s(R)

min
x/∈P s(R)

||[R(x− x′)]+||r
||x− x′||p′

,

χ∗ = χ∗(p, r) = n1/ps1/r min
x/∈P s(R)

max
x′∈P s(R)

max
k∈Ns

rk(x− x′)

||x− x′||1
,

||R||pr = ||(||r1||p, ||r2||p, ..., ||rs||p)||r.

Proof. The upper bounds follow directly from Theorem 1.
From the evident formula

∀x′ ∈ P s(R) ∀x /∈ P s(R) ∃k ∈ Ns (rk(x− x′) > 0),
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we conclude that

ψ∗ = ψ∗(p, r) > 0.

Thus, the lower bound of the strong stability radius and the radius itself are positive
numbers.

Now let us show that ρs
1(p, r) ≥ ϕ∗. Suppose ϕ∗ > 0 (otherwise the inequality is

evident).

Let R′ ∈ R
s×n be a perturbing matrix with rows r′k ∈ R

n, k ∈ Ns and the norm

||R′||pr = ||(||r′1||p, ||r
′
2||p, ..., ||r

′
s||p)||r < ϕ∗,

i.e. R′ ∈ Ωpr(ϕ
∗). By the definition of ϕ∗, for any portfolio x /∈ P s(R) there exists

a portfolio x0 ∈ P (x,R) such that

rk(x− x0)

||x− x0||p′
≥ ϕ∗ > ||R′||pr ≥ ||r′k||p, k ∈ Ns.

Having these inequalities and Hölder’s inequality (2), derive

(rk + r′k)(x− x0) ≥ rk(x− x0) − ||r′k||p||x− x0||p′ > 0, k ∈ Ns,

and, as a result, deduce

x /∈ P (x,R +R′).

Therefore, any non-efficient portfolio of the problem Zs
1(R) retains this non-

efficiency in any perturbed problem Zs
1(R + R′) with R′ ∈ Ωpq(ϕ

∗) or, strictly,
∅ 6= P s(R+R′) ⊆ P s(R). Thus, P s(R) ∩ P s(R+R′) 6= ∅ for any perturbing matrix
R′ ∈ Ωpr(ϕ), i.e. ρs

1(p, r) ≥ ϕ∗.

Further, remembering that ψ∗ > 0, we show the inequality ρs
1(p, r) ≥ ψ∗.

As earlier, let R′ ∈ R
s×n be a perturbing matrix with rows r′k ∈ R

n, k ∈ Ns and
the norm ||R′||pr < ψ∗, i.e R′ ∈ Ωpq(ψ

∗).

By the definition of ψ∗, there exists a portfolio x0 ∈ P s(R) such that for any
portfolio x /∈ P s(R)

0 < ψ∗||x− x0||p′ ≤ ||[R(x− x0)]+||r. (13)

First, let us show that

∀x /∈ P s(R) ∀R′ ∈ Ωpr(ψ
∗) (x /∈ X(x0, R+R′)). (14)

Suppose that there exist a portfolio x̃ /∈ P s(R) and a perturbing matrix R̃ ∈ Ωpr(ψ
∗)

with rows r̃k, k ∈ Ns, such that x̃ ∈ X(x0, R + R̃). Then for any k ∈ Ns we have

(rk + r̃k)x̃ ≤ (rk + r̃k)x
0,

and, consequently,

rk(x̃− x0) ≤ r̃k(x
0 − x̃).
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Having this, easily get the inequality

[rk(x̃− x0)]+ ≤ |r̃k(x
0 − x̃)|,

that with Hólder’s inequality (2) gives us

[rk(x̃− x0)]+ ≤ ||r̃k||p||x̃− x0||p′ .

This means that

||[R(x̃− x0)]+||r ≤ ||R̃||pr||x̃− x0||p′ < ψ∗||x̃− x0||p′ .

This derived contradiction to (13) proves (14).
Next, we show that there exists a portfolio x∗ ∈ P s(R) ∩ P s(R+R′) in the case

where R′ ∈ Ωpr(ψ
∗).

If the portfolio x0 ∈ P s(R) from (13) is in the Pareto set P s(R + R′) then
x∗ = x0. If x0 /∈ P s(R+R′) then due to the external stability property of the Pareto
set P s(R + R′) (see, e.g., [46], p. 39) we can choose a portfolio x∗ ∈ P s(R + R′)
such that x∗ ∈ X(x0, R+R′). Using the proved formula (14), we easily find out that
x∗ ∈ P s(R). Therefore, the inequality ρs

1(p, r) ≥ ψ∗ is proved.

From Theorem 2 the two known results follow.

Corollary 2 [36] (see also [10]). If p = r = ∞ then for any s ∈ N the following
bounds of the strong stability radius of the linear non-trivial problem Zs

1(R) hold

ψ∗(∞,∞) = max
x′∈P s(R)

min
x/∈P s(R)

max
k∈Ns

rk(x− x′)

||x− x′||1
≤

≤ ρs
1(∞,∞) ≤ χ∗(∞,∞) = min

x/∈P s(R)
max

x′∈P s(R)
max
k∈Ns

rk(x− x′)

||x− x′||1
.

Corollary 3 [34]. If p = ∞ then for any r ∈ [1,∞] the following bounds of the
strong stability radius of the linear scalar (single criterion) non-trivial problem
Z1

1 (R), R ∈ R
1×n, hold

ρ1
1(∞, r) = ϕ∗(∞) = χ∗(∞, r) = min

x/∈P 1(R)
max

x′∈P 1(R)

R(x− x′)

||x− x′||1
.

In another particular case the lower bound takes the following form.

Corollary 4. If p = 1, r ∈ [1,∞], and s ∈ N then

ρs
1(1, r) ≥ max{ϕ∗(1), ψ∗(1, r),

where

ϕ∗(1) = min
x/∈P s(R)

max
x′∈P (x,R)

min
k∈Ns

rk(x− x′),
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ψ∗(1, r) = max
x′∈P s(R)

min
x/∈P s(R)

||[R(x− x′)]+||r.

Here is one more case where a formula is valid for the strong stability radius.
Consider a linear problem Zs

1(R), s ∈ N, with the Hölder norms lp and lr in
the spaces R

n and R
s. A stability radius of an efficient portfolio x0 ∈ P s(R) of the

problem Zs
1(R) is the number

ρs
1(x

0, p, r) =

{
supΘpr, if Θpr 6= ∅,

0, if Θpr = ∅.

where
Θpr = {ε > 0 : ∀R′ ∈ Ωpr(ε) (x0 ∈ P s(R +R′))}.

For the case P s(R) = {x0}, it is easy to see that

ρs
1(p, r) = ρs

1(x
0, p, r).

Therefore, using the known formula (see [47, 48]) for the stability radius of an efficient
solution of the linear boolean programming problem with the Hölder norms, we state
the following

Corollary 5. If P s(R) = {x0} then for any p, r ∈ [1,∞] and s ∈ N the strong
stability radius of the problem Zs

1(R) is calculated by the formula

ρs
1(p, r) = min

x∈X\{x0}

||[R(x− x0)]+||r
||(x− x0)||p′

.

The results presented in the work were partially reported at the 28th European
Conference on Operational Research (EURO-2016) [49].

In conclusion we remark that in [8] similar bounds of the stability radius are
found for the multicriteria linear Boolean problem Zs

1(R) with the Hölder metrics in
the parameter spaces.
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