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Nontrivial convex covers of trees

Radu Buzatu, Sergiu Cataranciuc

Abstract. We establish conditions for the existence of nontrivial convex covers and
nontrivial convex partitions of trees. We prove that a tree G on n ≥ 4 vertices has a
nontrivial convex p-cover for every p, 2 ≤ p ≤ ϕmax

cn (G). Also, we prove that it can be
decided in polynomial time whether a tree on n ≥ 6 vertices has a nontrivial convex
p-partition, for a fixed p, 2 ≤ p ≤ ⌊n

3
⌋.
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1 Introduction

We denote by G a connected tree with vertex set X(G), |X(G)| = n, and edge
set U(G), |U(G)| = m. We denote by d(x, y) the distance between two vertices x

and y of G [3]. The diameter of G, denoted diam(G), is the length of the shortest
path between the most distant vertices of G. The neighborhood of a vertex x ∈ X

is the set of all vertices y ∈ X such that x ∼ y, and it is denoted by Γ(x).

We remind some notions defined in [1, 2]. The metric segment, denoted 〈x, y〉,
is the set of all vertices lying on a shortest path between vertices x, y ∈ X(G). A
subset S ⊆ X(G) is called convex if 〈x, y〉 ⊆ S, for all x, y ∈ S.

By [6], a family of sets P(G) is called a nontrivial convex cover of a graph G if
the following conditions hold:

1) every set of P(G) is convex in G;
2) every set S of P(G) satisfies inequalities: 3 ≤ |S| ≤ |X(G)| − 1;
3) X(G) =

⋃

Y ∈P(G) Y ;

4) Y 6⊆
⋃

Z∈P(G)
Z 6=Y

Z for every Y ∈ P(G).

If |P(G)| = p, then this family is called a nontrivial convex p-cover of G. In
particular, P(G) is called a nontrivial convex partition of G if it is a nontrivial
convex cover of G and any two sets of P(G) are disjoint [6]. A nontrivial convex
p-cover of G is called a nontrivial convex p-partition if it is a nontrivial convex
partition of G.

Generally, convex p-covers and convex p-partitions of graphs are examined in
[4–8]. Particularly, nontrivial convex p-cover and nontrivial convex p-partition are
defined in [6], where it is proved that it is NP-complete to decide whether a graph
has a nontrivial convex p-partition or a nontrivial convex p-cover for a fixed p ≥ 2.
Also, in [8] it is proved that it is NP-complete to decide whether a graph has any
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nontrivial convex partition. Further, there is specific interest in studying nontrivial
convex p-covers and nontrivial convex p-partitions for different classes of graphs. In
this paper we study nontrivial convex cover problem of trees.

The greatest p ≥ 2 for which a graph G has a nontrivial convex p-cover is said to
be the maximum nontrivial convex cover number ϕmax

cn (G). Similarly, we define the
maximum nontrivial convex partition number θmax

cn (G). A nontrivial convex cover
that corresponds to ϕmax

cn (G) is denoted by Pϕmax
cn

(G). In the same way we denote
by Pθmax

cn
(G) a nontrivial convex partition that corresponds to θmax

cn (G).
A vertex x ∈ X(G) is called resident in P(G) if x belongs to only one set of

P(G). Let L = [x1, x2, . . . , xk] be a vertex path of a tree G. By RL(x) we denote
the set of vertices v ∈ X(G) for which there is a path L′ = [x, . . . , v] such that L′

has no elements of L except x, where x ∈ L.

2 Existence of nontrivial convex covers

Recall that a terminal vertex of a tree G is a vertex of degree 1.

Lemma 1. A tree G with diam(G) ≥ 3 has a nontrivial convex cover.

Proof. We know from [7] that a tree on n ≥ 4 vertices has a nontrivial convex 2-
cover. Since a tree with diam(G) ≥ 3 has at least n ≥ 4 vertices, we obtain that G

with diam(G) ≥ 3 has a nontrivial convex cover.

Theorem 1. Let G be a tree with diam(G) ≥ 3. There exists a maximum nontrivial
convex cover Pϕmax

cn
(G) such that every terminal vertex of G is resident in Pϕmax

cn
(G)

and any two terminal vertices do not belong to the same set of Pϕmax
cn

(G).

Proof. From Lemma 1 we know that G has a nontrivial convex cover. Let Pϕmax
cn

(G)
be a maximum nontrivial convex cover of G, where there is at least one terminal
vertex x that is not resident in Pϕmax

cn
(G). Since x is a terminal vertex of G and

diam(G) ≥ 3, we see that there is a vertex y adjacent to x that is adjacent to the
set of nonterminal vertices S and to the set of terminal vertices S′ of G such that
S 6= ∅ and S′ 6= ∅.

We consider two cases.
1) Suppose that S contains a vertex z that is not resident in Pϕmax

cn
(G). Firstly,

we replace vertex x by vertex z in every set of Pϕmax
cn

(G) that contains x. Secondly,
we add a convex set {x, y, z} to Pϕmax

cn
(G). Further, we obtain a new nontrivial

convex cover P(G) in which x is resident, where |P(G)| > |Pϕmax
cn

(G)|. Hence, we
get a contradiction.

2) Now suppose that every vertex of S is resident inPϕmax
cn

(G). Firstly, we choose
a vertex z of S and a set Z of Pϕmax

cn
(G) that contains z. Secondly, we replace vertex

x by vertex z in every set of Pϕmax
cn

(G)\{Z} which contains x. After, we add x and y

to set Z. Finally, we get a new nontrivial convex cover P(G) in which x is resident,
where |P(G)| = |Pϕmax

cn
(G)|. On the other hand, if now set S′ contains one more

vertex that is not resident in P(G), then taking into account case 1) we obtain a
contradiction.
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Consequently, there exists a maximum nontrivial convex cover Pϕmax
cn

(G) such
that every terminal vertex of G is resident in Pϕmax

cn
(G).

Now suppose that there are at least two terminal vertices x and y which belong
to the same set S of Pϕmax

cn
(G).

Let us consider two cases.
1) Assume that |S| ≥ 4. In this case, we replace set S in Pϕmax

cn
(G) by two

convex sets S′ = S\{x}, |S′| ≥ 3, and S′′ = S\{y}, |S′′| ≥ 3. Further, we obtain a
new nontrivial convex cover P(G) in which x and y belong to different sets, where
|P(G)| > |Pϕmax

cn
(G)|. Whence, we have a contradiction.

2) Assume now that |S| = 3. In our case S = {x, y, z}, where Γ(x) = Γ(y) = {z}.
As above, note that set Γ(z)\{x, y} contains at least one nonterminal vertex h.

If h is not resident in Pϕmax
cn

(G), then we replace S by two convex sets {x, z, h}
and {y, z, h}. Further, we obtain a new nontrivial convex cover P(G) in which x

and y belong to different sets, where |P(G)| > |Pϕmax
cn

(G)|. Whence, we have a
contradiction.

If all nonterminal vertices of Γ(z)\{x, y} are resident in Pϕmax
cn

(G), then we
choose a set H that contains h. Further, we subtract x from S and add it to H.
Also, we add h to S and z to H. Consequently, we obtain a new nontrivial convex
cover P(G) in which x and y belong to different sets, where |P(G)| = |Pϕmax

cn
(G)|.

It follows that any two terminal vertices do not belong to the same set of
Pϕmax

cn
(G).

As a consequence of Theorem 1, we obtain 3 corollaries.

Corollary 1. Let G be a tree with diam(G) ≥ 3 and p terminal vertices. Then,
ϕmax

cn (G) ≥ p.

Corollary 2. Let G be a tree with diam(G) ≥ 3 and p terminal vertices, where
every nonterminal vertex of G is adjacent to at least one terminal vertex. Then,
ϕmax

cn (G) = p.

Corollary 3. Let G be a tree with 3 ≤ diam(G) ≤ 5 and p terminal vertices. Then,
ϕmax

cn (G) = p.

Theorem 2. A tree G on n ≥ 4 vertices has a nontrivial convex p-cover, for every
p, 2 ≤ p ≤ ϕmax

cn (G).

Proof. It is know that a tree on n ≥ 4 vertices has a nontrivial convex cover [7].
Let G be a tree on n ≥ 4 vertices and let Pϕmax

cn
(G) be a maximum nontrivial

convex cover of G. If ϕmax
cn (G) = 2, then the theorem is proved. Let us analyze

case ϕmax
cn (G) ≥ 3. We use the following procedure. We select two sets X1 and X2

of Pϕmax
cn

(G) such that x1 ∈ X1 and x2 ∈ X2, where x1 is adjacent to x2. Since
union of sets X1 and X2 is convex in G, excluding from Pϕmax

cn
(G) sets X1, X2 and

adding set X1∪X2, we obtain a new family P(G) that covers G by p = ϕmax
cn (G)−1

nontrivial convex sets. If p = 2, then the theorem is correct. Conversely, if p ≥ 3,
then repeating ϕmax

cn (G) − 3 times this procedure for P(G) we obtain a nontrivial
convex 2-cover of G. Consequently, the theorem is proved.
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Next, we analyze nontrivial convex partitions of trees. The following two families
of trees A and B are needed for the sequel.

A is a family of trees G which satisfy the following conditions:

1) X(G) = {x, y, x1, x2, . . . , xk, y1, y2, . . . , yk′}, where k, k′ ≥ 2;

2) U(G) = {(x, y)} ∪
⋃k

i=1{(x, xi)} ∪
⋃k′

i=1{(y, yi)}.

B is a family of trees G which are constructed as follows:

1) We choose k ≥ 0, k′ ≥ 2, k1 ≥ 2 and for every i, 2 ≤ i ≤ k′, we select ki ≥ 1;

2) If k ≥ 1, then we get X = {x0}∪
⋃k

i=1{xi} and U =
⋃k

i=1{(x0, xi)}, otherwise
we get X = {x0} and U = ∅;

3) We obtain sets X(G) = X ∪
⋃k′

i=1

⋃ki

j=0{x
j
i} and U(G) = U ∪

⋃k′

i=1{(x0, x
0
i )}∪

⋃k′

i=1

⋃ki

j=1{(x
0
i , x

j
i )}.

It can easily be checked that diameter of all trees of A is 3, and diameter of all
trees of B is 4. Moreover, every tree of A and every tree of B has at least 6 vertices.

Algorithm 1. Determines whether a tree belongs to one of families: A, B.

Input: A tree G.

Output: YES-A: G belongs to A, or YES-B: G belongs to B, or NO: G does
not belong to any of the families.

Step 1) If |X(G)| ≤ 5, then return NO.
Step 2) Compute diam(G). If diam(G) ≤ 2 or diam(G) ≥ 5, then return NO;

otherwise, if diam(G) = 4, then go to Step 4).

Step 3) Choose two different vertices x, y ∈ X(G) such that |Γ(x)| ≥ 2 and
|Γ(y)| ≥ 2. Next, if |Γ(x)| ≥ 3 and |Γ(y)| ≥ 3, then return YES–A; otherwise
return NO.

Step 4) Check whether there exist two different terminal vertices x, y ∈ X(G)
such that Γ(x)∩Γ(y) 6= ∅ and there is a terminal vertex z ∈ X(G), where d(x, z) =
diam(G). If there exist such vertices x, y ∈ X(G), then return YES–B; otherwise
return NO.

Theorem 3. Algorithm 1 determines in time O(n3) whether a tree G belongs to one
of families: A, B.

Proof. Correctness of the algorithm results from structure of trees of families A and
B. Step 1) runs in constant time. If we use Floyd–Warshall algorithm for finding
the diameter of a graph, then the complexity of step 2) is O(n3). It is clear that step
3) is executed in O(n) time. Since Floyd–Warshall algorithm is executed in the step
2), we know all pairs of vertices for which distance is equal to diam(G). Further,
step 4) runs in O(n2) time. Based on the mentioned facts, the execution time of the
algorithm is O(n3).
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Theorem 4. A tree G has a nontrivial convex 2-partition if and only if one of the
following conditions holds:

1) diam(G) ≥ 5;

2) G ∈A;

3) G ∈ B.

Proof. It is clear that if a tree G has a nontrivial convex 2-partition, then inequality
n ≥ 6 holds. Let us analyze nontrivial convex 2-partition of G in dependency on its
diameter.

Suppose diam(G) = 2. Here G is a star graph. It can simply be verified that a
star graph has no nontrivial convex 2-partition.

Suppose diam(G) = 3. We choose two vertices x, x′ ∈ X(G) such that there
is a path L = [x, y, z, x′] and length of L is equal to diameter of G. Evidently,
L is a unique path between vertices x and x′ and vertices x, x′ are terminal, i.e.,
Γ(x) = y and Γ(x′) = z. From relation n ≥ 6, it follows that G contains at
least two vertices different from x, y, z, x′. Assume that v ∈ X(G) is different
from vertices x, y, z, x′, and v ∈ RL(y) such that d(y, v) ≥ 2, or v ∈ RL(z) and
d(z, v) ≥ 2. Further, we obtain a contradiction, because d(y, x′) = d(z, x) = 2 and
length of paths L1 = [x′, z, y, . . . , v], L2 = [x, y, z, . . . , v] is greater then or equal to
4. Consequently, all vertices of G different from x, y, z, x′ are adjacent only to y or
to z. It can easily be checked that if y is adjacent only to x and z, or z is adjacent
only to x′ and y, then G has no nontrivial convex 2-partition. In the converse case
G has a nontrivial convex 2-partition:

P(G) = {{x, y} ∪ RL(y), {z, x′} ∪ RL(z)}.

In other words, if diam(G) = 3, then G has a nontrivial convex 2-partition if and
only if G ∈A.

Suppose diam(G) = 4. We choose two vertices x, x′ ∈ X(G) such that there is a
path L = [x, y, z, h, x′]. Length of the L is equal to diameter of G and vertices x and
x′ are terminal. Since n ≥ 6, tree G contains at least one vertex v different from x,
y, z, h, x′. If v is adjacent to y or to h, then G has a nontrivial convex 2-partition:

P(G) = {{x, y} ∪ RL(y), {z, h, x′} ∪ RL(z) ∪ RL(h)} or

P(G) = {{x, y, z} ∪ RL(y) ∪ RL(z), {h, x′} ∪ RL(h)}, respectively.

Assume that there are no vertices different from x, y, z, h, x′ which are adjacent
to y or to h. Then, there exist vertices z′ different from y and h which are adjacent
to z. If we have |Γ(z′)| = 1 or |Γ(z′)| = 2, for all such z′, then it is not hard to check
that G has no nontrivial convex 2-partition. Now assume that there are at least two
vertices z′′ and z′′′ different from z and adjacent to z′, i.e., |Γ(z′)| ≥ 3. In this case,
we obtain a path L = [z′′, z′, z, y, x]. As mentioned above, it follows that G has a
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nontrivial convex 2-partition. Equivalently, if diam(G) = 4, then G has a nontrivial
convex 2-partition if and only if G ∈ B.

Suppose diam(G) ≥ 5. There are two vertices x and x′ in G such that d(x, x′) =
diam(G). Let L = [x, x1, x2, . . . , xk, x′], k ≥ 4, be a path between x and x′. L

contains at least 6 vertices. Moreover, L is a unique path between x and x′. Hence,
paths [x, x1, x2] and [x3, . . . , xk, x′] generate a nontrivial convex 2-partition of G:

P(G) = {{x} ∪

2
⋃

i=1

RL(xi), {x′} ∪

k
⋃

i=3

RL(xi)}.

The theorem is proved.

Theorem 5. If a tree G on n ≥ 6 vertices has a nontrivial convex partition, then
G has a nontrivial convex p-partition, for every p, 2 ≤ p ≤ θmax

cn (G).

Proof. If a tree G has a nontrivial convex partition, then there is a maximum non-
trivial convex partition Pθmax

cn
(G). If θmax

cn (G) = 2, then the theorem is proved. If
θmax
cn (G) ≥ 3, then repeating θmax

cn (G)− 2 times the procedure described in proof of
Theorem 2 we obtain a nontrivial convex 2-partition of G. Hence, G has a nontrivial
convex p-partition, for every p, 2 ≤ p ≤ θmax

cn (G).

The following corollaries are true.

Corollary 4. If a tree G on n ≥ 6 vertices has a nontrivial convex partition, then
G has a nontrivial convex 2-partition.

Corollary 5. A tree G has a nontrivial convex p-partition, for every p, 2 ≤ p ≤
θmax
c (G), if and only if one of the following conditions holds:

1) diam(G) ≥ 5;

2) G ∈A;

3) G ∈ B.

3 Determination of nontrivial convex partitions

Let C be the set of all terminal vertices of G. Let x be a vertex of G for which
|Γ(x) ∩ C| ≥ 2 or there is another vertex y ∈ Γ(x) such that Γ(y) = {x, z}, z ∈ C.

For x that satisfies the announced properties we define the set:

Sx = {x} ∪ {v ∈ X(G) : v ∈ Γ(x) ∩ C} ∪ {v1, v2 ∈ X(G) : Γ(v1) = {x, v2}, v2 ∈ C}.

The set Sx is called a nontrivial terminal set of G. Note that Sx is a nontrivial
convex set of G. We say that a terminal vertex z of a tree G corresponds to a
nontrivial terminal set Sx of G if Sx contains z.

Let S(G) be the family of all nontrivial terminal sets of G.
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Lemma 2. All nontrivial terminal sets of S(G) are disjoint.

Proof. Suppose that there are at least two different nontrivial terminal sets Sx and
Sy of S(G) such that Sx ∩ Sy 6= ∅. By the definition of nontrivial terminal set, we
have x = y and consequently Sx = Sy. Whence, we obtain a contradiction.

Lemma 3. S(G) is unique for G.

Proof. Correctness of the lemma results from the definition of nontrivial terminal
set and Lemma 2.

Lemma 4. Every set of S(G) belongs to exactly one set of Pθmax
cn

(G) such that any
two nontrivial terminal sets of S(G) do no belong to the same set of Pθmax

cn
(G).

Proof. From the definition of nontrivial terminal set and definition of nontrivial
convex partition, it follows that every set of S(G) belongs to exactly one set of
Pθmax

cn
(G). Suppose that there is a set C of Pθmax

cn
(G) that contains at least two

different nontrivial terminal sets of G. LetSC be the family of all nontrivial terminal
sets which are in C and k = |SC | ≥ 2. By Lemmas 2 and 3, we know that S(G)
is unique for G and all nontrivial terminal sets are disjoint. Further, we separate
C into disjoint nontrivial convex sets S1, S1, ..., Sk, where every set contains exactly
one nontrivial terminal set of SC . We select a vertex x from all vertices of C which
remain uncovered by new nontrivial convex sets such that x is adjacent to a vertex
y, y ∈ S, S ∈ {S1, S1, ..., Sk}, and further add x to S. If some uncovered vertices
remain, then we repeat the above procedure. Since k ≥ 2, we get a new convex cover
P(G) of G such that |P(G)| > |Pθmax

cn
(G)|. Hence, we have a contradiction.

Lemma 5. A tree G on n ≥ 3 vertices with 2 ≤ diam(G) ≤ 4 has at least one
nontrivial terminal set.

Proof. From the definition of nontrivial terminal set, we get that every tree G of
order n ≥ 3 with diam(G) = 2 contains exactly one nontrivial terminal set Sx =
X(G). It can easily be checked that a tree G ∈A has exactly two nontrivial terminal
sets, and a tree G ∈ B has at least two nontrivial terminal sets. Similarly, if a tree
G with diam(G) = 3 does not belong to A, or diam(G) = 4 and G 6∈ B, then G

has exactly one nontrivial terminal set Sx = X(G).

Lemma 6. A tree G with diam(G) ≥ 5 has at least two nontrivial terminal sets.

Proof. Let G be a tree with diam(G) ≥ 5. Let x and y be two terminal vertices
such that d(x, y) = diam(G). Assume that x does not correspond to any nontrivial
terminal set. By the definition of nontrivial terminal set, we see that x is adja-
cent to a vertex z that is adjacent to at least two vertices different from x and
all of them are nonterminal. Let z1, z2, . . . , zk, where k ≥ 2, be vertices differ-
ent from x and adjacent to z. Path between x and y contains exactly one vertex
z′ ∈ {z1, z2, . . . , zk}. Since z1, z2, . . . , zk are nonterminal vertices, to every vertex
z′′ ∈ {z1, z2, . . . , zk}\{z′} corresponds a vertex z∗ different from z such that z∗ is
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adjacent to z′′. Since for every two vertices of G there is only one path that con-
nects them, this yields that for every z∗ we get d(z∗, y) > diam(G). Consequently,
we obtain a contradiction. Similarly, we get a contradiction if assume that y does
not correspond to any nontrivial terminal set. Since diam(G) ≥ 5, vertices x and
y correspond to different nontrivial terminal sets. Hence, a connected tree G with
diam(G) ≥ 5 has at least two nontrivial terminal sets.

Algorithm 2. Determines S(G) for a tree G.

Input: A tree G.

Output: S(G).
Step 1) Fix set S(G) = ∅.

Step 2) Determine all terminal vertices C of G.

Step 3) Go through all vertices x ∈ X(G)\C. If for a vertex x of G we have
|Γ(x) ∩ C| ≥ 2 or there is another vertex y ∈ Γ(x) such that Γ(y) = {x, z}, where
z ∈ C, then we define the set Sx = {x} ∪ {v ∈ X(G) : v ∈ Γ(x) ∩ C} ∪ {v1, v2 ∈
X(G) : Γ(v1) = {x, v2}, v2 ∈ C} and then add it to S(G).

Step 4) Return S(G).

Theorem 6. Algorithm 2 determines family of nontrivial terminal sets S(G) of a
tree G in time O(n2).

Proof. Correctness of the algorithm results from Lemmas 2, 3, 5 and 6. Clearly,
steps 1) and 4) run in constant time. The step 2) operates in O(n) and the step 3) is
executed in O(n2) time. Further, the execution time of the algorithm is O(n2).

Let F(G) be a family of subtrees that is obtained after elimination of all non-
trivial terminal sets of S(G) from a tree G.

Theorem 7. The following relation holds:

θmax
cn (G) =

{

|S(G)| +
∑

G′∈F(G) θmax
cn (G′), if |X(G)| ≥ 3;

0, if 0 ≤ |X(G)| ≤ 2.

Proof. By Lemma 4, we conclude that through the elimination of all nontrivial
terminal sets of S(G) from G, in fact, we eliminate minimal nontrivial convex sets of
G which contain nontrivial terminal sets. Besides, after elimination of all nontrivial
terminal sets of S(G) from G we obtain a family of subtrees F(G) such that some
of them also contain nontrivial terminal sets.

If 0 ≤ |X(G)| ≤ 2, then evidently θmax
cn (G) = 0. In the contrary case, if |X(G)| ≥

3, then taking into account Lemmas 2 – 6, we obtain:

θmax
cn (G) = |S(G)| +

∑

G′∈F(G)

θmax
cn (G′).

The theorem is proved.
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Next, we propose recursive procedure Maxθ(G) that determines the number
θmax
cn (G) of a tree G. After, we prove that this procedure executes in polynomial

time.

Maxθ(G)

Input: A tree G.

Output: θmax
cn (G).

Step 1) If 0 ≤ |X(G)| ≤ 2, then return 0.

Step 2) Apply Algorithm 2, i.e., determine S(G), remove every nontrivial ter-
minal set of S(G) from G and obtain F(G).

Step 3) For every tree G′ of F(G) apply procedure Maxθ(G′) and after return
the number θmax

cn (G) = |S(G)| +
∑

G′∈F(G) Maxθ(G′).

Theorem 8. Procedure Maxθ(G) determines the number θmax
cn (G) of a tree G in

time O(n3).

Proof. From Theorem 7, we know that for a tree G procedure Maxθ(G) returns the
number θmax

cn (G). By Theorem 6 we obtain that in general case the processing time
of procedure Maxθ(G) is:

T (n) =

k
∑

i=1

T (ni) + O(n2),

where
∑k

i=1 ni ≤ n − 6 and k ≥ 1.

The worst behavior of procedure Maxθ(G) occurs when in every examined tree
there are exactly two nontrivial terminal sets which consist of three elements such
that after their elimination a single subtree remains. In this case, processing time
of Maxθ(G) is:

T (n) = T (n − 6) + O(n2).

Using arithmetic progression, we get T (n) = O(n3). Finally, the procedure
Maxθ(G) determines number θmax

cn (G) in time O(n3).

Corollary 6. It can be decided in time O(n3) whether a tree G on n ≥ 6 vertices
has a nontrivial convex p-partition, for a fixed p, 2 ≤ p ≤ ⌊n

3 ⌋.

4 Conclusion

In this paper we establish conditions for the existence of nontrivial convex covers
and nontrivial convex partitions of trees. We prove that a tree G on n ≥ 4 vertices
has a nontrivial convex p-cover for every p, 2 ≤ p ≤ ϕmax

cn (G). In addition, we prove
that if a tree G has a nontrivial convex partition, then G has a nontrivial convex p-
partition for every p, 2 ≤ p ≤ θmax

cn (G). Also, we propose polynomial algorithm that
recognizes whether a tree belongs to one of families A or B. Finally, we develop
polynomial algorithm for determining the number θmax

cn (G) of a tree G. But the
general convex cover problem of trees remains the task of further research.
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