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Abstract. The general integral for ternary differential system with quadratic nonlin-
earities of the Darboux form was constructed by using the Lie theorem on integrating
factor. The case is achieved when the comitant of the linear part of differential system,
which is a GL(3,R)-invariant particular integral, describes an invariant variety.
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1 Preliminaries

Consider the ternary differential system with quadratic nonlinearities

dﬁ'
dt

= ala® +al g2’ = Pl(z) (j,o, B =T.3), (1)

where ajaﬁ is a symmetric tensor in lower indices, in which the complete convolution

is done and = = (2!, 22, 2%) is the vector of phase variables. The expressions ajz®

represent the linear part of the system (1) and ai ﬁwawﬁ represent the quadratic part
of this system. The coefficients and the variables take values from the field of real
numbers R. We will use the center-affine group GL(3,R) given by substitutions

¥ = qha®(det(qh) # 0) (joa =T.3).
It is well known that F(x) = C is a first integral of system (1) if and only if
A(F) =0, where

and in index j the complete convolution is done.

The system (1) has two functional-independent first integrals, which form the
general integral of this system.

Suppose system (1) admits a two-dimensional commutative Lie algebra of ope-
rators [1]

0
oz’

X0 =¢, (a=1,2 j=1,3), (3)
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where & (x) (j = 1,3) are polynomials in the coordinates of the vector z =
(z1,22,23). This means that the coordinates of the operators (3) satisfy the de-
terminant equations

(€8)a1 Pt + (€L) 2 P2+ (€L) 3 P? = €L PL + €2 P + €2 P,
(E2) 1 PY 4 (€2),2 P2 + (€2),s PP = €L PA + 2P% + 3 P2, (4)
() P+ (€3) 2 P2+ (€3) s PP = ¢LP3 + E2P% + 2P (o= 1,2).

Denote by
& & g
A=|¢& & & (5)
Pt p? p3

the determinant of coordinates of the operators (2) and (3). From [1] the following
assertion follows for system (1).

Theorem 1. Suppose the ternary polynomial system (1) admits the two-dimensional
commutative Lie algebra with operators (3). Then the function u = A~! is the Lie
integrating factor for the Pfaff’s equations

(EaP? = 4 P°)dat + (,P° — &4 PY)da® 4+ (2P — P de® =0 (e =1,2),
which define the general integral of the system (1), where A # 0 has the form (5).

Consider the comitant of system (1) from [2] with respect to the center-affine
group. It depends on two cogradient vectors z = (z',22,23) and y = (y',y%, y?)

defined in [3], whose tensorial form is
n= a%‘vazﬁxvx‘sy“eaw,

where €46, is the unit trivector with coordinates €123 = —e1320 = €312 = —€321 =
931 = —€213 = 1 and €45, = 0 (@, d, p = 1,3) in the other cases.
In [2] the following assertions were proved:

Theorem 2. The system (1) with n =0 can be written in the form

dxI . . ,
d—xt = ol x4 207 (gz' + ha? + ka®) = PI(z) (j=1,3) (6)
and will be called the ternary differential system with quadratic nonlinearities of the

Darboux form.

Theorem 3. The system (6) has the GL(3,R)-invariant particular integral

B

.« Y .0
01 = ayagalx

x”x”gﬁ,ﬂj’ (7)

where oy is the comitant of (1) with respect to the center-affine group GL(3,R).



INVARIANT INTEGRABILITY CONDITIONS FOR TERNARY ... 59

Remark 1. Let 32 be the mixt comitant from [4] of system (6) with respect to the
center-affine group

o = agazﬁua, (8)

which depends on coordinates of the contravariant vector z = (x!,2% 23) and of
the covariant vector u = (u1,ug2,u3) defined in [3]. If 59 # 0, then at least one
coefficient of the linear part of system (6) is not equal to zero. Otherwise, from
sy = 0 it follows that al, = 0 (j,a = T,3) and the system (6) can be reduced to a
trivial homogeneous quadratic system.

Remark 2. Let ¢; be the mixt comitant from [2] of system (1) with respect to the
center-affine group
¢ = a2’ uq, (9)

which depends on coordinates of the contravariant vector x = (2!, 22, 3) and of the
covariant vector u = (u1, ue, us) defined in [3]. If g1 # 0, then at least one coefficient
of the quadratic part of system (1) and hence of system (6) is not equal to zero.
Otherwise, from g; = 0 it follows that afxﬁ =0 (j,a,8 = 1,3) and the system (1)
and hence the system (6) can be reduced to a linear system.

As it follows from [2], the following assertions hold

Lemma 1. Assume in (7) that o1 = 0. Then under the center-affine transformation

3
_ _ a _
Tt :x2, z2 ::171+—§x2, =3
a

where a} # 0, the quadratic part of system (6) preserves the form and the coefficients
from the linear part of the system obey one of the following conditions:

ay=az=ai=a3=a} =a3=0; a3 = aj; (10)
ay=az=ai=a3=a} =a3=0; a3 =ay; (11)
ay=ay=ai=0a3=a} =a3=0; a3 =ay; (12)
ay=a3=ai =a} =d3 =0; a3 #0; aj =al; (13)
ay=ajy=af =al =a)=0; a5 =ay; a3 #0; (14)
ay=aj =a3=a}=a3 =0; a} #0; af =a3; (15)
ay=ai=a=a3=0; a3#0; a3=aj; (16)
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a2 =di=d}=a3=0; a} #0; a} =a}; (17)
=l =ai =0 ab# 0 o =AW g (13)
2
B=a=0; a2#£0; al= (a1 aglga% - 03)7 aé _ ag(aiz_ 03)7 (19)
1 1
af =al=0; af #0; a= 7(1%(&%3_ ), g lU- “335,“% —9) )
2 2

Lemma 2. Suppose for linear part of system (1) or (6) we have o1 = 0, where oy
is from (7). Then the characteristic equation of these systems has real roots.

Proof. The characteristic equation of the systems (1) and (6) looks
M —n\2—mA—1=0, (21)

where [,m and n are the center-affine invariants of these systems

1 1
[ = 6(9?—39192”93), m = 5(92—9%), n =0 (22)
with
01 =as, O= agag, 03 = a‘;‘agag. (23)

According to [5], the discriminant of the equation (21) can be written
D = —271* — 18lmn + 4m?> — 4in® + m?*n> (24)

and it is a center-affine invariant of the systems (1) and (6).

By Lemma 1, from o1 = 0, without considering the center-affine transforma-
tion (1), we have the conditions (10)—(20). Then for each of them, calculating the
expressions (22)—(24), we get D = 0. O

2 Lie’s integrating factor and the general integral of system (6) with

Ulzﬂand %2Q1$0

Theorem 4. Suppose the coefficients of the linear part of system (6) satisfy condi-
tions (10) with »2q1 Z 0 from (8)—(9). Then the general integral of this system with
notations x = x', y = x2, z = 23 consists of the following two first integrals:

Fi=y:l =01, FB=a%y 10U —% = (), (25)

where
® = ajaj + 2[a3gx + ai(hy + k2)]. (26)
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Proof. Assume that the coordinates of the operator (3) have the form

g = Alga® + Al g 227 (a>1; B,y =1.3), (27)

and satisfy the determinant equations (4). Solving (4) under the conditions sq; Z 0

from (8)—(9) and the expressions (27), we obtain for differential system (6) the

following operators (z = z', y = 22, z = 23):

Y] = (af + 2gm):176£ + 2gxyaa + 29mz§ ,
Y, = 2h:vy88 + (a3 + 2hy)yaa + 2hyzaﬁ,
Y3 = 2hxz§ + (a3 + 2hy)za§ + 2h2? gz (28)
Y, = 2ka;ya£ + 2ky? aa + (a3 + 2/<;z)y(%,
Ys = 2kxz 88 + 2/<;yz(% + (a3 + 2kz)z({%
These operators compose the Lie algebra L5 with the structure equations
[Y1,Y;] =0 (i =2,5), [Ya,Y3] = —a3Ys, [Yo,Ys] = a3Ya, [Ya,Y5] =0, (29)

[Y3,Ys] = a3(Ys — Ya), [Y3,Y5] = —a3Ys, [Ya,Y5] = a3Ya.

Using the operators Y7 and Y, which form by (28) and (29) a two-dimensional
commutative Lie algebra, we obtain from (5) (making abstraction of a constant) the
Lie integrating factor u~! = 2y2®, where ® is given in (26).

Taking into account this expression and Theorem 1, we obtain the functional-
independent integrals (25)—(26) of system (6). The conditions (10) and s2q; # 0
from (8)—(9) imply that not all coefficients in this system are equal to zero. O

Theorem 5. Assume the coefficients of the linear part of system (6) satisfy the
conditions (11) with saq1 Z 0 from (8)—(9). Then the general integral of this system

with notations x = x', y = 2%, z = x> is composed from the following two first
integrals:
Fi=zz =0 F= x_“gy“%q)“g_a% = (Y, (30)
where
® = ajaj + 2[a3(gx + k2) + athy]. (31)

Proof. We make the substitutions z! = 22, #2 = z', % = 22 in (6) under the condi-

tions (11). Then we obtain the system (6) with conditions (10) for which the general
integral is determined in Theorem 4. Using this result and the above-mentioned no-
tations, we obtain for system (6) the integrals (30)—(31) on the conditions (11). O
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Theorem 6. If the coefficients of the linear part of system (6) satisfy the condi-
tions (12) with s2q1 Z 0 from (8)—(9), then the general integral of this system with
notations x = x', y = 22, z = 23 consists of two first integrals:

— _ 3 1 3_.1
Fi=a"ly=C F=y %2190% % = (y,

where
® = aja3 + 2[a3(gz + hy) + ajkz].

The proof of Theorem 6 is similar to Theorem 5 if we make the substitutions

!l =23, 72 =22, 3 = 2! in (6) and take into account the conditions (10).

Theorem 7. Suppose the coefficients of the linear part of system (6) satisfy the
conditions (13) with s2q1 # 0 from (8)—(9). Then the general integral of this system

with notations x = x', y = a2, z = 23 consists of the following two first integrals:
Fi=xz'=0C; FB= x_“%[(a% —ad)y — a%z]“}q)“%_“% = Oy, (32)
where
® = aja3 + 2[adgr + aihy + (a3k — a3h)z). (33)

Proof. Assume the coordinates of the operator (3) have the form (27). Solving the
system (4) we obtain the following operators (z = z', y = 22, z = 2?) for the
differential system (6):

0 0 0
Y] = (af + 2gm)xa—x + 2gmya—y + 2gmz%,

0 0 0
Yy = (al + 2gm)za—x + 2gyza—y + 2gz2£,

0
Y3 = 2[aZh + (al — a%)k]an—x + [aja3 + 2(a3h+

+(a% — a%)k;)y]oc2 + [(a% — a%)(a% + 2kz) + 2a§hz]az2,
0y 0z (34)
0
Y, = 2[a§h + (a% — a%)k]xza—x + [a%(a% + 2hy)+
0 0
+2(at — a%)ky]za—y + (a1 — a3)(al + 2kz2) + 2a§hz]z%,
0
Ys = 2[athy — (a3h — a%k)z]x% + {ala3 + 2[aihy—

0 0
—(agh — a%k)z]}ya—y + [a%a% + Z(Q%hy — (agh — a%k)z)]za.

These operators form the Lie algebra Ls with the structure equations
Y1, Y2] = —a1Ys, [V1,Y3]=a1Ys, [V1,Ys]=[¥1,Y5) = [Va,Y5] =0,
[YVQ,}%] = a%[(a% - a%)Yl + YZ;], [Yév Y;l] = a%(a% - a%)Y% (35)
[Y2,Ys] = —aja3Ys, [Y3,Yi] =ai(aj —a3)Ys, [¥3,Y5]=aja3Ys.
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Using the operators Y7 and Yy, which form by (34) and (35) a two-dimensional
commutative Lie algebra, we obtain from (5) the Lie integrating factor of the form

u = azl(al — ad)y — 2o,
where @ is from (33).
Taking into account this expression and Theorem 1, we obtain the functional-
independent integrals (32)—(33) of system (6). The conditions (13) and g # 0
from (8)—(9) imply that not all coefficients in this system are equal to zero. O

Theorem 8. Assume the coefficients of the linear part of system (6) satisfy the
conditions (14) with »aq1 Z 0 from (8)—(9). Then the general integral of this system
with notations v = x', y = 22, z = x> consists of two first integrals:

Fy = [(ap — a3)y +a3z]a™! = Cy;

36
Fy = z“%[(ai —a3)y + a%z]_“g@ag_“% = Cy, (36)
where
® = alad + 2(ad(gz + hy) + (ol — a3h)2). (37)
Proof. Let the coordinates of the operator (3) have the form (27). Solving (4) we

obtain for differential system (6) the following operators (z = 2!, y = 22, 2z = 23):

0 0 0
Y] = (af + 2gm)$% + 2gxya—y + 2gmz&,

0 0
Yy = (a1 +2g2)[(a1 — a3)y + a32] 5 + 20[(a1 — az)y + agz]ya—er

20l(al — o3 21,9
+2g[(a; — a3)y + 0373]«2&27
Y3 = 2hm23 + (al + Zhy)x2 + 2h:13z£,
ox dy 0z (38)
0
Yy = 2h[(a} — a3)y + a3zle=— + (a} 4 2hy)[(a} — a3)y + a3z]—+
ox dy
o) — a3 2.1, 9
+2h[(a; — az)y + agz]zaza
Ys = 2[a3hy + (alk — a%h)z]x% + {aja} + 2[a3hy+
0 0
+(ajk — agh)z]}ya—y + [ala3 + 2(a3hy + (alk — a%h)z)]z&.

These operators form the Lie algebra Ls with the structure equations
Y1, Y2] = —a1Ys, [V1,Y3]=a1Ys, [V1,Ys]=[¥1,Y5) = [Va,Y5] =0,
[V2,Y3] = ail(a§ — ap)Y1 + Vi, [¥2,Ya] = aj(aj - a1)Ya, (39)
[Y2,Ys] = —aja3Ys, [V3,Ya] = ai(a] —a3)Vs, [¥3,Ys] = aja3Ys.
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Using the operators Y7 and Y3, which form by (38) and (39) a two-dimensional
commutative Lie algebra, we obtain from (5) the Lie integrating factor of the form

pot = zzl(a) — a3)y + a32] @,
where @ is from (37).
Taking into account this expression and Theorem 1, we obtain the functional-
independent integrals (36)—(37) of system (6). The conditions (14) and g # 0
from (8)—(9) imply that not all coefficients in this system are equal to zero. O

Theorem 9. Suppose the coefficients of the linear part of system (6) satisfy the
conditions (15) with »aq1 Z 0 from (8)—(9). Then the general integral of this system
with notations v = x', y = a2, z = & consists of two first integrals:

Fi=yz"t=0Cy;

(40)
L=y (a2 — al)z — aéz]“g U3 = (O,
where
® = ajaj + 2[a3gx + ajhy + (ark — ajg)z]. (41)
Proof. Let us make the substitutions z! = 22, 2 = 2!, 23 = 23 in (6) taking

into account (15). We obtain the system (6) under the conditions (13) for which
the general integral is determined in Theorem 7. Using this result and the above-
mentioned notations, we obtain for (6) the integrals (40)—(41) with conditions (15).

]

Theorem 10. Assume the coefficients of the linear part of system (6) satisfy the
conditions (16) with s2q1 # 0 from (8)—(9). Then the general integral of this system
with notations x = x', y = 2%, z = x> is composed from the following two first
integrals:

F = (—d3x + ay)[(al — ad)y + aZ2) ™t = Cy; )
Py = 2% (a} — ad)y + a32] 805 = Oy,

where
® = ajal + 2[a}(gx + hy) + (aik — a3g — a3h)z]. (43)
Proof. Let the coordinates of the operator (3) have the form (27). Then solving the

system (4) we obtain the operators (z = 2!, y = 22, z = 23):

0 0
Y = (a% + 2ga:)(a§x — a%y)—x + 2g(a§x — aéy)y— + 2g(a§x — aéy)

P By *82’

P 0
Vs = (a1 +292)[(a — ad)y + a%Z]a—x +2g[(a} — ad)y + a§2]y8—y+

0
+2gl(a — ady + a2
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0
Ys = {ag[a%aé + 2(a§g + a%h)x]y + sz}%—i-
0
—I-{ag[a%ag + 2(a;1),g + agh)y] + Wz}ya—y—l-
0
Hadlalal + 2ado + a3hp] + W2}z
0
Y, = {ag[Z(a§)2hx2 + (a§)2(a% + 2gx)y] + aész}%—l—
0
+{a3[(a3)*(a1 + 2hy)z + 2(a3)*gy°] + azlaWyz}a—er (44)
0
Hablad(ala] + 2ady) + 2(63)ha) + a2}z
111 3/ 1 2 1 0
Y5 = {a3[2aja3kaz — a3f(a) — a3) (a1 + 2g2)y + 2a3g22]] — alwxz}%‘i'

0
+{a3[a{a3(a3 + 2ky)z — 2a8[(a] — a3)gy + a3gz]y] — aiWyz}a—Jr

8
+{a§[a (a1a3 + 2a39y) alag(al —2kz) — 2a39(a1y + agz)] - a1Wz}z

where W = 2a2(atk — a2h — alg).
These operators form the Lie algebra Ls with the structure equations
[V, Y5] = a3(a3)*[V1, Ya] = —a3[¥1,Ys] = aza3[Ys, V3] = —ajaga3(ag)*Ya,
Y3, Ya] = —a3[Y1, Ya] = —aja3ailaz(a3Yy — Y3) + Vi,
[Y1,Y3] = [Y2,Y5] =0, [Y4,Y5] = aza3[Ys,Yy] =

= ajazazajlaj(a3 — ai)Y1 — azajYs + (a] — a3)Ys + Yz).

(45)

We use the operators Y7 and Y3, which form by (44) and (45) a two-dimensional
commutative Lie algebra. Then from (5) we obtain the Lie integrating factor of the
form

pot = (—adz + agy)2((a
where @ is from (43).

Taking into account this expression and Theorem 1, we obtain the functional-
independent integrals (42)—(43) of system (6). The conditions (16) and s2q; # 0
from (8)—(9) imply that not all coefficients in this system are equal to zero. O

% - ag)y + a%z]@,

Theorem 11. Let the coefficients of the linear part of system (6) satisfy the condi-
tions (17) with sc0q1 Z 0 from (8)—(9). Then the general integral of this system with
notations x = x', y = 22, z = 23 consists of two first integrals:

Fi=yz"! =0y;
1 1 2 1 1 2 2 1 (46)
Fy = 2%[(a; — a3)x + agy + azz] 229%™ % = Oy,
where
® = aj(aj + 29z) + 2[(arh — azg)y + (aik — a3g)z]. (47)
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Proof. Suppose the coordinates of the operator (3) have the form (27). Then from
system (4) we obtain the following operators (z = x!, y = 22, 2z = 2?) for differential
system (6):

0
V1 = {aya3 + 2[azg + (a3 — ai)h]év}y%Jr

0 0
+[2a3gy + (a3 + 2hy)(a3 — ai)]ya—y +2[agg + (a3 — a%)h]W@,

0
Yy = [aza3 + 2(azg + (a3 — ap)h)a]z7+

0 0
+[2a39y + (a3 + 2hy) (a3 — a%)]za—y + 2azg + (a3 = an)h]=" o,
0 0
Y3 = 2(ask — aéh)azya—x + [—a}a3 + 2(a3k — aéh)y]ya—y+
+azaj + 2(azh — aéh)z]ya%, (48)
0 0
Yy = 2(adk — aéh)azza—x + [~aza3 + 2(a3k — aéh)y]za—y—i-
+[aza3 + 2(azk — aéh)z]z(%,
0
Ys = [asa3(al 4+ 2g2) + 2(aly + alz)(ath — a%g)]a:a—x—i-
0
+{[aza3 (a1 + 292) + 2(azy + a3z)(ath — azg)ly + a%aéa%z}a—y+
+2[asadgr + (aly + alz)(ath — a%g)]za.
These operators form the Lie algebra Ls with the structure equations
V1,Yo] = a3(af — a3)Ya [Y1,Y3] = a3laYs + (a3 — a})Y3),
aja3[Y1,Yi] = —a5[¥1, Y5] = —ajaz[Va, Yi] = (Y2, Y5] = ajazaza3Ya, (49)
Y2, Y3] = —a3[a3Yi + (a1 — a3)Ya],
ai[V3, Ya] = —[Y3,Ys] = aja3(asYs + a3Ya), [Ya,Ys)=0.

If we use the operators Yy and Y5, which form by (48) and (49) a two-dimensional
commutative Lie algebra, we obtain from (5) the Lie integrating factor of the form

it = 2(aby + ak2)[(a} — ad)a + aby + a2,

where @ is from (47).

Taking into account this expression and Theorem 1, we obtain the functional-
independent integrals (46)—(47) of system (6). The conditions (17) and g Z 0
from (8)—(9) imply that not all coefficients in this system are equal to zero. O



INVARIANT INTEGRABILITY CONDITIONS FOR TERNARY ... 67

Theorem 12. If the coefficients of the linear part of system (6) satisfy the condi-
tions (18) with »2q1 #Z 0 from (8)—(9), then the general integral of this system with
notations x = x', y = 22, z = 23 consists of two first integrals:

Fy = 2[(ay — a3)a + agy + azz] ™' = Cy

1

50
Py = (aby + a2 [(al — ) + aby + alodesdad —cy OV

where
o = a%a%a% + 2{a§ [a%g:ﬂ + (a%h agg)y + (a2k: — agg) z] + ag(al az)hz} (51)

Proof. Assume the coordinates of the operator (3) have the form (27). Then system

(4) yields the following operators (z = x!, y = 22, z = 2?):

0 0
Y1 = (o +2g0)l(a1 — ap)w +aplgo + 2l(ai — a)z +azylyz +
0
+2gl(a1 — ad)z + apylz o,
0 0 9 0
Yy = (al + 2933)28— + 2gyza—y + 29z 5

0 0
Y3 = 2(ask — aéh)xz% + [~ala3 + 2(a3k — aéh)y]za—y—k

—I—[a%a% + 2((1%1{: — aéh)z]zg,
82 (52)

0
Y = {alaba? + 2adadoe + (alh — abg)(aly + ol +

o
+[ata3(azy + azz) + 2[asasgr + (arh — ayg)(azy + aéZ)]yla—er

0
+2[aya3gx + (ath — asg)(azy + azz)]z 95
0 0
+ [alazas (a3 — al)z + Wy + a%(aé)2a§2]a—y+

Ys = (ala%a3a2+W) p

0
+laraza3((o1 = ap)z + ayy) + W2l o~

where W = 2alalg(a3z—aly—adz)—2aih[(a3z—aly)(al —a3)—atalz]—2ala3k((a3
at)r — azy).

These operators form the Lie algebra Ls with the structure equations
[Y1,Ya] = aj(a3 — a})Ya, [Y2,Ys] = ajad[—azY1 + ayazYs + (af — a3)Y3),
a3[V1,Ys] = —[V1,Y3] = —aza3[Vs, V3] = a3[Y2, V4] = ajazaza3Ys,

[Y1,Y5] = a1lazazasYy — as(a3)®a3Ys — ag(ai — a3)Ya + (af — a3)Ys),

[V3,Y4] =0, a3[Vs,Ys] = —[Va,Ys] = aladal[—aiadYs + alYy — V3]

(53)

Using the operators Y3 and Yy, which form by (52) and (53) a two-dimensional
commutative Lie algebra, we obtain from (5) the Lie integrating factor of the form

p=t = 2(azy + az2)|(a1 — a3)x + azy + az2] @,
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where @ is from (51).

Taking into account this expression and Theorem 1, we obtain the functional-
independent integrals (50)—(51) of system (6). The conditions (18) and g Z 0
from (8)—(9) ensure that not all coefficients in this system are equal to zero. O

Theorem 13. Suppose the coefficients of the linear part of system (6) satisfy the
conditions (19) with s2q1 # 0 from (8)—(9). Then the general integral of this system
with notations x = x', y = a2, z = 2 consists of two first integrals:

Fy = z[—afz + (a1 — a3)y — a3z] ™ = C;

(54)
Fy =2~ (D afe — (0} — af)y — afe] @I = 0y,

where

® = afaj(a; + a3 — ) + 2{ai(a3g — ath)x + [a3g(ar + a3 — a3)—

1
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—aj(a3g — aih)]y + [—a3(g(a1 — a3) + aih) + aik(a; + a3 — a3)]z}. (55)

Proof. Assuming the coordinates of the operator (3) have the form (27), we obtain
from (4) the following operators (z = 2!, y = 22, z = 23):

0 0 0
Vi = [-2Wz — a3(ad - ag)]za—x + [a3a3 — 2Wy]za—y —2W 22— 55’
Yo =(Va— a2a3)z2 + Vyz2 + (a?a3 + Vz)zé
343 ox ay 1“3 02’
Y3 = [a2a3Tx + 2a3Ux% 4 2(a3gT — alU)xy + a3(a3T + 2Um)z]a—i+
+a2a3T + 203Uz + 2(a3gT — alU)y + 203U 2]y ;
0
+2[aiUz + (a39T — alU)y + a3Uz)z 5’
Yy = {afaj(a3gT — ajU)x + aj(—aja3 + a3T)Uy+
+2a3[a3g*T — (alg + ah)Ulzy — a3a3W Tz — 2a§WUxZ}£+ (56)

‘1‘[—(@%)2@%&5 + a%a%(aggT - a2U)y + 2a3 [a%gQT (alg + alh)U]y2—
0 0
—2a§UWyz]a— + {2a3[a36*T — (aig + a2h)Ulyz — 2a§UWz2}—z,
Vs = {a3[—afa3[(a] — a3)g + ath] + (a})*kT)z—
—azaj(aj — ag)Uy +ajl(a; — a3)g + aih]Vay — a3ai(aig — atk)Tz+

+a3Usz} + {—a3a3(a3g — a2k)Ty + a3[(at — ad)g+
+a%h]Vy + a3UVyz}a— + {—(al) agUm + a%ag(a% — a%)Uy—i—

ag[(ai — a3)g + alh]Vyz +a UVzQ}%,
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where
W = (a3 — a3)g — aih,V = —2(a3g — aik),

57
T=a}+a3—a3U=a3g—alh. (57)

These operators form the Lie algebra Ls with the structure equations

V1, Ys] = —afa3Yy, [Y31,Y3] =alaiTYs,
Y1, Y] = a}(a3)?[(a] — a3)g + aih]Y1,

TV
[Yl, Y5] = —a%ag[——Yl (T — ag)UYQ + WYs + Y4],

|4
[Y2,Ys] =0, [Y2,Yy] = afa3aiUYi, [Ya,Ys]=alaj(a3UYs + —Y3 —Y3), (58)
v
[V, Ya] = —aiaza3TUYL, [Y3,Y5] = afas(—a3TUYs — —- Y3 + 1),

2TUV
%3 U Y1 4+ aATUWY; + [a3a3g*T — iU~

[Ya,Y5] = al 3{
—alagk[( — a3)g + CLthYg — a%UY4 + ag[( — a3) + alh]Y5}

where T, U and V are from (57).

Using the operators Y3 and Y3, which form by (56) and (58) a two-dimensional
commutative Lie algebra, we obtain from (5) the Lie integrating factor of the form

p=! = z(—aiz + () — af)y — a3z)(—aix — (0} — af)y — a32)®,

where @ is from (55).

Taking into account this expression and Theorem 1, we obtain the functional-
independent integrals (54)—(55) of system (6). The conditions (19) and g # 0
from (8)—(9) imply that not all coefficients in this system are equal to zero. O

Theorem 14. Assume the coefficients of the linear part of system (6) satisfy the
conditions (20) with »2q1 # 0 from (8)—(9). Then the general integral of this system

with notations x = x', y = a2, z = x> consists of two first integrals:

Fy = (a3x — a32)[a3y + (ay — a3)2] ™! = Cu

99
Fy = (a3z — a%z)“l a3 —aj a3y — (a] ag)z]“%qf%““%“g = (9, (59)

where
® = aj(aj — a3 — a3)(al + 2g2) + 203 (a3g — alh + a3k)y+

1

(60)
+2[~ay(ay — a3)g +ai(ay — ai — a3)h + aj(azh — a3k))z.

Proof. Let the coordinates of the operator (3) have the form (27). Then solving (4)
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we obtain for differential system (6) the operators (z = 2!,y = 2%,z = 2?):

0 3} 0
Y1 = (a} + 29z (a3z — a%z)% + 2g(a3z — a%z)ya—y + 2g(a3z — agz)za,

0
Yo = (a1 + 292)(a3y + (o1 — a3)z) 5 + 29(a3y + (a1 — a3)2)y 5 -+

0
+2g(ady + (a} — a3)2)—,

0
Y3 = (2a3Way + atadTz — 2(a3W — alhT)zz)—+

Ox
+lata3T 4 2a3Wy — 2(a3W — a%hT)z]yaay laia3T+
+2a3Wy — 2(a3W — a%hT)z]zi,

Y, = {—2az(a1hT + ag(agh - ag’k) a%(ai )g)fﬂy-l-

0
+ajab(a; — a3)Tz + 2(a; — a3)[(ag — a3)(a3h — ajk) — aéaig]wz}%Jr
+{a1a3(a3 — a3)Ty — 2a3]arhT + a3(a3h — ask) — ayg(aj — a3)]y’—

(a

3
—aj(aj — a%)(al a3)Tz + 2(aj — a3)[(a3h — a3k)(a; — a3)—

—a%a%g]yz}a—y +{—a1(a3)*Ty — 2a3[ar kT + +a5(a3h — a3k)—

0
—ayg(ar — ap)lyz + 2(ar — a3)[(a3h — a3k)(a1 — a3) — azazgle’} -,
Vs = {—alad[(al — a})h + a3k]Tz + 2a3a3gWry+
0
+atadlalg + (al — ad)h + a3k]Tz — 2adg(a3W — a%hT)xz}a—x—l—
+laja3(ay — a3)gTa + ajaza3gly + 2a5a30Wy*—

~alad(a} — )Tz - 2adg(@3W — alhT)yel S+

0
+ad (2T + 2abalgWy= — 2abg(@W — alhT):2 L,

where W = ayg — a3h + a3k, T =ai — a3 — aj.

These operators form the Lie algebra Ls with the structure equations
aAT[Y1,Ys] = [Y1,Y4] = ad[Ya, Y3] = —T[V3, V4] = —aladadTYs,
[Y1,Y3] = 0, [Y1,Y5] = aqa3[(agg + (a1 — a3)h + a3k)TY1 — az3gYs + Vs,
Y2, V3] = alad—(2a} — af — ad)gTVi — [abg + (a} — ad)h + a3k TV +
+(a1 — a3)gYs — gYal, [Ya,Ya] = aqa3(ai — a3)TYz,

[Y3,Ys] = ajasT{~[asg + (a — a3)h + a3k]TY: + azgYs — Ys},
Y4, Ys] = —aa3T{[asg(a1 — a3) — [(a1 — a3)h + a3k](a; — a3)|TY1+
+ad(adg + (al — a3)h + a3k)TYs + ad(a3 — a3)gVs + adgYy — (a] — a3)Ys}.

(61)

(62)
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If we use the operators Y7 and Y3, which form by (61) and (62) a two-dimensional
commutative Lie algebra, we obtain from (5) the Lie integrating factor of the form

p~t = (a3e — ag2)[asy + (a1 — a3)z][a3y — (a1 — ag)£]@,
where ® is from (60).
Taking into account this expression and Theorem 1, we obtain the functional-
independent integrals (59)—(60) of system (6). The conditions (20) and s2q; # 0
from (8)—(9) imply that not all coefficients in this system are equal to zero. O
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