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Cubic systems with degenerate infinity and invariant

straight lines of total parallel multiplicity five

Alexandru Şubă∗ , Vadim Repeşco

Abstract. In this paper cubic systems which have degenerate infinity and invariant
straight lines of total multiplicity five are classified. It is proved that, modulo affine
transformations and time rescaling, there are 24 classes of such systems. For every
class the qualitative investigation was carried out in the Poincaré disc.
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Keywords and phrases: Cubic differential system, invariant straight line, phase
portrait.

1 Introduction and statement of main results

We consider the real cubic differential system

dx
dt

=
3

∑

r=0
Pr (x, y) ≡ P (x, y) , dy

dt
=

3
∑

r=0
Qr (x, y) ≡ Q (x, y) , gcd (P,Q) = 1, (1)

where Pr, Qr are homogeneous polynomials of degree r and |P3(x, y)| + |Q3(x, y)| 6≡ 0.
A curve f(x, y) = 0, f ∈ C[x, y], is said to be an invariant algebraic curve of (1) if

there exists a polynomial Kf ∈ C[x, y] such that the identity ∂f
∂x

P (x, y)+ ∂f
∂y

Q(x, y) ≡
≡ f(x, y)Kf (x, y) holds. We say that an invariant algebraic curve f(x, y) = 0 has
the parallel multiplicity equal to m, if m is the greatest positive integer such that
fm−1 divides Kf .

The system (1) is called Darboux integrable if there exists a non-constant function
of the form F = fλ1

1 · · · fλs

s , where fj is an invariant algebraic curve and λj ∈ C,
j = 1, s, such that either F is a first integral or is an integrating factor for (1).
We will be interested in invariant algebraic curves of degree one, that is invariant
straight lines αx + βy + γ = 0, (α, β) 6= (0, 0).

There are a great number of works dedicated to the investigation of polynomial
differential systems with invariant straight lines.

The problem of estimating the number of invariant straight lines which a polyno-
mial differential system can have was considered in [1]; the problem of coexistence of
invariant straight lines and limit cycles in [4,5]; the problem of coexistence of invari-
ant straight lines and singular points of center type for cubic systems in [3,10]. The
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classification of all cubic systems with the maximum number of invariant straight
lines, taking into account their multiplicities, is given in [6].

In [1] it was proved that the cubic system (1) can have in the finite part of the
phase plane at most eight invariant straight lines. Cubic systems with exactly eight
invariant straight lines has been studied in [6,7] and with total parallel multiplicity
of invariant straight lines equal to seven in [11, 13]. A qualitative investigation of
systems (1) with six real invariant straight lines along two (three) directions is given
in [8] ([9]). In [12] we examined some cubic systems with degenerate infinity that
have invariant straight lines of total parallel multiplicity five or six, three of which are
parallel. In [14] all canonical forms of the cubic systems with degenerate infinity that
have invariant straight line of total parallel multiplicity equal to six were obtained.

In this paper we continue the investigation from [8, 9, 12, 14] and give a full
qualitative study of cubic systems (1) with degenerated infinity and invariant straight
lines of total multiplicity six.

Theorem 1. Assume that a cubic system with degenerate infinity possesses invari-
ant straight lines of total parallel multiplicty five. Then via an affine transformation
and time rescaling this system can be brought to one of the systems 1)–24). Moreover,
up to topological equivalence, its phase portrait on the Poincaré disc corresponds to
one of the portraits given in Fig. 1 – Fig. 23. In the table below for each of the
systems 1) – 24) the first arrow points to the straight lines and the first integral F
(or integrating factor µ) that corresponds to the system.

1)







ẋ = x (x + 1) (x − a) , a > 0, c 6= 2,
ẏ = y

(

−a + c x − y + x2
)

, a + c > 1;
Configuration (3r, 1r, 1r)

→ (2) → Fig. 1;

2)







ẋ = x (x + 1) (x − a) , a > 0, b > 0,
ẏ = y

(

b + (b − a)x − y + x2
)

, b − a 6= 0;
Configuration (3r, 1r, 1r)

→ (3) → Fig. 2;

3)







ẋ = x(x + 1)(x − a), a > 0,
ẏ = y(x + 1)(x − a) + x2 + y2;
Configuration (3r, 1c1, 1c1)

→ (4) → Fig. 3;

4)







ẋ = x(x + 1)(x − a), a > 0,
ẏ = (x + 1)2 + xy(x − a) + by2, b > 0;
Configuration (3r, 1c1, 1c1)

→ (5) → Fig. 4;

5)







ẋ = (x − a)(x2 + 1), a ∈ R,
ẏ = y(1 − ac + cx − y + x2), c 6= 0;
Configuration (1r + 2c0, 1r, 1r)

→ (6) → Fig. 5;

6)







ẋ = (x − a)(x2 + 1), a ∈ R,
ẏ = (x − a)2 + y + 1

b
y2 + x2y, b > 0;

Configuration (1r + 2c0, 1c1, 1c1)
→ (7) → Fig. 6;
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7)







ẋ = x2(x + 1), a > 0,
ẏ = y

(

(a + 1)x − y + x2
)

;
Configuration (3(2)r, 1r, 1r)

→ (8) → Fig. 7;

8)







ẋ = x2(x + 1),
ẏ = y(a + ax − y + x2), a 6= 0;
Configuration (3(2)r, 1r, 1r)

→ (9) → Fig. 8;

9)







ẋ = x2(x + 1), a > 0,
ẏ = ax2 + xy + ay2 + x2y;
Configuration (3r, 1c1, 1c1)

→ (10) → Fig. 9;

10)







ẋ = x2(x + 1), a 6= 0,
ẏ = a(x + 1)2 + ay2 + x2y;
Configuration (3(2)r, 1c1, 1c1)

→ (11) → Fig. 10;

11)







ẋ = x3, a > 0,
ẏ = y(ax − y + x2);
Configuration (3(3)r, 1r, 1r)

→ (12) → Fig. 11;

12)







ẋ = x3, a > 0,
ẏ = ax2 + ay2 + x2y;
Configuration (3(3)r, 1c1, 1c1)

→ (13) → Fig. 12;

13)







ẋ = x(x − 1)(y + a),
ẏ = y(y − 1)(x + a), a /∈ {−1;−1/2; 0};
Configuration (2r, 2r, 1r)

→ (14) → Fig. 13;

14)







ẋ = x2(y + a), a > 0, b > 0,
ẏ = y2(x + b), ab 6= 0;
Configuration (2(2)r, 2(2)r, 1r)

→ (15) → Fig. 14;

15)







ẋ = (x2 + 1)(y + a),
ẏ = (y2 + 1)(x + a), a 6= 0;
Configuration (2c0, 2c0, 1r)

→ (16) → Fig. 15;

16)







ẋ = x(a − 2ay + x2 + y2), a /∈ {0; 1/2; 1},
ẏ = ay + (a − 1)x2 − (a + 1)y2 + x2y + y3;
Configuration (2c1, 2c1, 1r)

→ (17) → Fig. 16;

17)







ẋ = 2(x

2 + by + bx2 − xy − by2 + x3 + xy2),
ẏ = (2y − 1)(2bx − y + x2 + y2), b 6= 0;
Configuration (2c1, 2c1, 1r)

→ (18) → Fig. 17;

18)















ẋ = ax2 + 2bxy − ay2 + x3 + xy2,
ẏ = −bx2 + 2axy + by2 + x2y + y3,
|a| + |b| 6= 0, a ≥ 0;

Configuration (2(2)c1, 2(2)c1, 1r)

→ (19) → Fig. 18;

19)















ẋ = x(x − 1)(1 + (a − 1)x + (b − 1)y),
ẏ = y(−1 + 2x + y + (a − 1)x2 + (b − 1)xy),

ab(b − 1)(b + 1)(a − b) 6= 0;
Configuration (2r, 1r, 1r, 1r)

→ (20) → Fig. 19;
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20)















ẋ = (1 + (x − a)2)(x + by), b 6= 0,
ẏ = (a2 + 1)(y − bx) + (ab − 1)x2 − 2axy−
−(ab + 1)y2 + x2y + bxy2;

Configuration (2c0, 1r, 1c1, 1c1)

→ (21) → Fig. 20;

21)















































ẋ = x + cy + (2a + c)x2 + 2(−1 + ac)xy − cy2+
+(a2 + b2 − b + ac)x3 + (−2a − c + a2c+
+b2c)x2y − (b − 1 + ac)xy2,

ẏ = −cx + y + (b − ac)x2 + 2(a + c)xy + (b − 2+
+ac)y2 + (a2 + b2 − b + ac)x2y + (−2a − c+
+a2c + b2c)xy2 − (b − 1 + ac)y3,

bc(|a| + |b2 − 1|) 6= 0;
Configuration (1r, 1c1, 1c1, 1c1, 1c1)

→ (22) → Fig. 17,
Fig. 21;

22)































ẋ = x(1 + 2ax − 2y + (a2 + b2 − c)x2−
−2axy − (c − 1)y2),

ẏ = y + cx2 + 2axy + (c − 2)y2 + (a2 + b2−
−c)x2y − 2axy2 − (c − 1)y3,

bc(b2 − c2)(|a| + |b2 − 1|) 6= 0;
Configuration (1r, 1c1, 1c1, 1c1, 1c1)

→ (23) → Fig. 16;

23)































ẋ = x(1 + (a + b)x − 2y + (ab − c)x2−
−(a + b)xy + (1 − c)y2)

ẏ = y + cx2 + (a + b)xy + (c − 2)y2 + (ab−
−c)x2y − (a + b)xy2 + (1 − c)y3,

c(b − a) 6= 0;
Configuration (1r, 1r, 1r, , 1c1, 1c1)

→ (24) → Fig. 22;

24)































ẋ = x(1 + (a + b)x − 2y + abx2 + (1 − a−
−b − c)xy + cy2),

ẏ = y(1 + αx − (c + 1)y + abx2 − αxy + cy2),
α = a + b + c − 1,
ab(a − 1)(b − 1)(c − 1) 6= 0, a > b;

Configuration (1r, 1r, 1r, 1r, 1r)

→ (25) → Fig. 23.

l1 = x + 1, l2 = x, l3 = x − a, l4 = y, l5 = (a + c − 1)x − y;
F = (l1/l3)

a+c−1(l4/l5)
a+1;

(2)

l1 = x + 1, l2 = x, l3 = x − a, l4 = y, l5 = b(x + 1) − y;

F = lb2l
−b
3 la4 l−a

5 ;
(3)

l1 = x + 1, l2 = x, l3 = x − a, l4,5 = y ± ibx;
µ(x, y) = 1/(l1l3l4l5);

(4)

l1 = x + 1, l2 = x, l3 = x − a, l4,5 = y ± i
√

b (x + 1);
µ(x, y) = 1/(l2l3l4l5);

(5)

l1 = x − i, l2 = x − a, l3 = x + i, l4 = y, l5 = cx − y − ac;
µ(x, y) = 1/(l1l3l4l5), F = y exp(−c · arctan(x))/l5;

(6)
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l1 = x − i, l2 = x − a, l3 = x + i, l4,5 = y ± i(x − a);
µ(x, y) = 1/(l1l3l4l5);

(7)

l1 = x + 1, l2 ≡ l3 = x, l4 = y, l5 = ax − y;

F = l1−a
l la−1

2 l−1
4 l5;

(8)

l1 = x + 1, l2 ≡ l3 = x, l4 = y, l5 = a + ax − y;
F = y exp(a/x)/(a + ax − y).

(9)

l1 = x + 1, l2 ≡ l3 = x, l4,5 = y ± ix; µ(x, y) = 1/(l1l2l4l5); (10)

l1 = x + 1, l2 ≡ l3 = x, l4,5 = y ± i(x + 1); µ(x, y) = 1/(l22l4l5); (11)

l1,2,3 = x, l4 = y, l5 = ax − y; F = y exp(a/x)/(ax − y); (12)

l1,2,3 = x, l4,5 = y ± ix; µ(x, y) = 1/(l21l4l5). (13)

l1 = x, l2 = x − 1, l3 = y, l4 = y − 1, l5 = x − y;
F = (l1/l3)

a(l4/l2)
a+1;

(14)

l1 ≡ l2 = x, l3 ≡ l4 = y, l5 = ax − by;

F = l1l
−1
3 exp((ax − by)/(xy));

(15)

l1,2 = x ± i, l3,4 = y ± i, l5 = x − y; µ(x, y) = 1/(l1l2l3l4); (16)

l1,2 = y ∓ ix, l3,4 = y ∓ ix − 1, l5 = x; µ(x, y) = 1/(l1l2l3l4); (17)

l1,2 = y ∓ ix, l3,4 = y ∓ ix − 1, l5 = 2y − 1; µ(x, y) = 1/(l1l2l3l4); (18)

l1,3 = y − ix, l2,4 = y + ix, l5 = bx − ay; µ(x, y) = 1/(l1l2)
2. (19)

l1 = x, l2 = x − 1, l3 = y, l4 = x + y − 1, l5 = ax + by;

F = l1l
−b
2 lb4l

−1
5 ;

(20)

l1,2 = x − a ± i, l3,4 = y ± ix, l5 = ax + y − a2 − 1;
µ(x, y) = 1/(l1l2l3l4.

(21)

l1,2 = y ∓ xi, l3,4 = y − (a ± bi)x − 1, l5 = 1 + ax − y + by;
µ(x, y) = 1/(l1l2l3l4);

(22)

l1,2 = y ∓ xi, l3,4 = y − (a ± bi)x − 1, l5 = x;
µ(x, y) = 1/(l1l2l3l4);

(23)

l1,2 = y ∓ ix, l3 = y − ax − 1, l4 = y − bx − 1, l5 = x;
µ(x, y) = 1/(l1l2l3l4);

(24)

l1 = x, l2 = y, l3 = y − x, l4 = y − ax − 1, l5 = y − bx − 1;

F = l
(b−a)
2 l

(a−b)
3 l

(c−1)
4 l

(1−c)
5 .

(25)
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Fig. 1 Fig. 2 Fig. 3 Fig. 4

Fig. 5 Fig. 6 Fig. 7 Fig. 8

Fig. 9 Fig. 10 Fig. 11 Fig. 12

a) b)
Fig. 13 Fig. 14 Fig. 15

a) b)
Fig. 16 Fig. 17 Fig. 18
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a) b) c) d)
Fig. 19

e) f) g)
Fig. 19 Fig. 20

a) b) a)
Fig. 21 Fig. 22 Fig. 23

b) c) d) e)
Fig. 23

2 Some properties of cubic systems with straight lines

By a configuration of straight lines we understand the R
2 plane with a certain

number of straight lines.
To each two-dimensional differential system (with invariant straight lines) we

can associate a configuration consisting of invariant straight lines of this system. It
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is easy to show that the converse is not always true.
The problem arises to determine for invariant straight lines such properties that

allow to construct all realizable configurations of invariant straight lines for (1).
Below we shall enumerate these properties. Their proofs are rather easy and we
omit them.

Proposition 1. The system (1) has at most nine singular points in the finite part
of the phase plane.

Proposition 2. There are at most 3 singular points of system (1) on any invariant
straight line in the finite part of the phase plane.

A straight line l will be called complex if l ∈ C[x, y] \ R[x, y].

Proposition 3. Complex invariant straight lines of system (1) occur in complex
conjugate pairs (l and l̄).

Proposition 4. The intersection point (x0, y0) of two invariant straight lines l1
and l2 of system (1) is a singular point. Moreover, if l1, l2 ∈ R[x, y] or l2 ≡ l̄1, then
x0, y0 ∈ R.

Proposition 5. A complex straight line l can pass through at most one point with
real coordinates.

Proposition 6. If a straight line passes through two distinct real points or through
two complex conjugate points, then this straight line is real.

A complex straight line passing through a real point will be called a relative
complex straight line and a complex straight line not passing through any real point
– a purely imaginary straight line.

Proposition 7. Through any point of a purely imaginary straight line at most one
real straight line can pass.

Proposition 8. A complex invariant straight line of system (1) is purely imaginary
iff this straight line is parallel to its conjugate one (l ‖ l̄).

Proposition 9. Let l1 and l2 be two parallel invariant straight lines of the system
(1), then only one of the following properties occurs:
1. l1, l2 ∈ R[x, y]; 2. l1 is real and l2 is purely imaginary;
3. l1 and l2 are purely imaginary; 4. l1 and l2 are relative complex.

We say that the cubic system (1) has degenerate infinity if the following identity

yP3(x, y) − xQ3(x, y) ≡ 0 (26)

holds. In such a case the infinity consists only of singular points.

Proposition 10. The identity (26) is invariant under any affine transformation of
the system (1).

Proposition 11. Invariant straight lines of the cubic system (1) with degenerate
infinity passing through the same point M0 (x0, y0), x0, y0 ∈ C, have at most three
slopes.
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Proposition 12. Through any point of a complex invariant straight line of the cubic
system with degenerate infinity at most one real straight lines can pass.

Proposition 13. A straight line passing through three distinct singular points of
system (1) with degenerate infinity is invariant for (1).

Proposition 14. The maximum number of invariant straight lines for a differential
cubic system with degenerate infinity is equal to six.

Proposition 15. Let the cubic system (1) have two concurrent invariant straight
lines l1, l2. If l1 has the parallel multiplicity equal to m, 1 ≤ m ≤ 3, then this
system cannot have more than 3 − m singular points on l2 \ l1.

We say that three straight lines are in generic position if all lines have different
slopes and no more than two lines pass through a point.

Proposition 16. Let the cubic system (1) have 3 invariant straight lines in generic
position, then their total parallel multiplicity is at most four.

Proposition 17. The cubic system (1) with degenerate infinity can have at most
one triplet of parallel invariant straight lines.

Proposition 18. The cubic system (1) with degenerate infinity can have at most
two pair of parallel invariant straight lines.

3 The proof of Theorem 1

Using Propositions 17 and 18, the family of cubic systems [(1)][(26)] with six
invariant straight lines can be divided in four classes:

A) Systems with a triplet of parallel invariant straight lines;

B) Systems with two pairs of parallel invariant straight lines;

C) Systems with only a pair of parallel invariant straight lines;

D) Systems with invariant straight lines of different slopes.

The class A) was studied in [8,12] and is characterized by the systems 1)–12) of
Theorem 1.

3.1 Class B): two pairs of parallel invariant straight lines

For cubic systems in class B) the following 8 configurations of invariant straight
lines are possible:

B1) (2r,2r,1r) B2) (2(2)r, 2r, 1r, ) B3) (2(2)r,2(2)r,1r)
B4) (2r, 2c0, 1r) B5) (2(2)r, 2c0 , 1r) B6) (2c0,2c0,1r)
B7) (2c1,2c1,1r) B8) (2(2)c1,2(2)c1,1r)
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By (2r, 2r, 1r) we denoted the configuration which consists of five distinct real
straight lines l1, . . . , l5 ∈ R[x, y], of which l1, l2 and l3, l4 form two pairs of parallel
straight lines, i.e. l1 ‖ l2, l3 ‖ l4, l1 6‖ l3 and lj 6‖ l5, j = 1, . . . , 4. In the case
of configuration (2c0, 2c0, 1r) we have five straight lines l1, . . . , l5, where l1, l2, l3
and l4 are purely imaginary, l5 is real, l1, l2 and l3, l4 form two pairs of parallel
straight lines. The configuration (2(2)r, 2r, 1r) consists of five real straight lines,
where l1 ≡ l2, l3 ‖ l4, l1 6‖ l3, lj 6‖ l5, j = 1, . . . , 4, and the straight line l1 (or l2) has
parallel multiplicity equal to two.

Proposition 19. Cubic systems with degenerate infinity possessing invariant straight
lines of the configuration (2(2)r, 2r) can not have other invariant straight lines.

Indeed, a system of this configuration can be brought to the form:

ẋ = x2(y + a), ẏ = y(y − 1)(x + b).

Since this system has only the following singular points: (0, 0), (0, 1), (−b,−a) and
a(a + 1)b 6= 0, the above proposition follows.

Remark 1. Propositions 2, 7 and 15 (Proposition 19) do not allow the realization of
configurations B4) and B5) (configuration B2)) in the class of cubic systems with
degenerate infinity.

Configuration B1) (2r,2r,1r). Via an affine transformation and time resca-
ling the system [(1)][(26)] with two pairs of real invariant straight lines can be written
in the form:

ẋ = x(x − 1)(y + a), ẏ = y(y − 1)(x + b), a, b /∈ {−1; 0}. (27)

The system (27) has the invariant straight lines l1 = x, l2 = x − 1, l3 = y,
l4 = y − 1 and the singular points (0, 0), (1, 0), (0, 1), (1, 1), (−b,−a). Therefore,
any other invariant straight line of (27) must pass through the singular points (0, 0)
and (1, 1) or through the singular points (1, 0) and (0, 1). When (0, 0), (1, 1) ∈ l5 and
l5 is invariant for (27), we get b = a, i.e. the system 13) of Theorem 1. The case
(1, 0), (0, 1) ∈ l5 provides an affine equivalent system with the system 13).

Configuration B3) (2(2)r,2(2)r,1r). The cubic system with degenerate infin-
ity possessing real invariant straight lines with the configuration (2(2)r, 2(2)r) can
be written as:

ẋ = x2(y + a), ẏ = y2(x + b), (28)

This system has the invariant straight lines l1,2 = x, l3,4 = y, l5 = ax − by, i.e. we
obtained the system 14) of Theorem 1.

Configuration B6) (2c0,2c0,1r) In this case the pairs of parallel invariant
straight lines can be brought to the form l1,2 = x ± i and l3,4 = y ± i. The system
[(1)][(26)] with these invariant straight lines has the form

ẋ = (x2 + 1)(y + a), ẏ = (y2 + 1)(x + b), (29)

with the following singular points: (−i,−i), (−i, i), (i, i), (i,−i), (−b,−a). Any
other invariant straight line of system (29) can pass only through the pairs of re-
ciprocally conjugate singular points (−i,−i), (i, i) or (−i, i), (i,−i), therefore it is
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described by equation l5 = x + y or l5 = x − y, respectively. The invariance for
(29) is conditioned by b = a or b = −a. When b = a we have the system 15) of
Theorem 1. The case b = −a is affine equivalent with the system 15).

Configuration B7) (2c1,2c1,1r) Via an affine change of coordinates, the
straight lines l1, . . . , l4 can be brought to the form l1,2 = y ± ix, l3,4 = y ± ix − 1.
The cubic system [(1)][(26)] with these invariant straight lines has the form:

{

ẋ = ax + by + bx2 − 2axy − by2 + x3 + xy2,
ẏ = −bx + ay + (a − 1)x2 + 2bxy − (a + 1)y2 + x2y + y3.

(30)

The obtained system has the following singular points: (0, 0), (−i/2, 1/2), (0, 1),
(i/2, 1/2), (−b, a). Any other real invariant straight line l5 can pass only through
the singular points (0, 0), (0, 1) or (−i/2, 1/2), (i/2, 1/2), therefore it is described by
equation l5 = x or l5 = 2y−1, respectively. This straight line is invariant for system
(30) iff b = 0 or a = 1/2. Thus, was obtained the systems 16) and 17) of Theorem 1.

Configuration B8) (2(2)c1,2(2)c1,1r) Via an affine transformation and time
rescaling, we can bring the pair of conjugate complex invariant straight lines to the
form l1,2 = y ± ix. The cubic system [(1)][(26)] with these invariant straight lines
has the form:
{

ẋ = a10x+a01y +a20x
2 +a11xy+(a20 − b11)y

2 +a30x
3 +a21x

2y +a12xy2,
ẏ =−a01x+a10y+(b02 − a11)x

2 + b11xy + b02y
2 +a30x

2y +a21xy2 +a12y
3.

(31)

Each of straight lines l1,2 = y ± ix has parallel multiplicity equal to two iff
a01 = a10 = a21 = 0, a11 = 2b02, b11 = 2a20, a30 = a12. Via a time rescaling, we
can make a12 = 1. Denoting by a20 = a and b02 = b, we obtain the system 18) of
Theorem 1.

3.2 Class C): one pair of parallel invariant straight lines

For cubic systems in class C) the following 6 configurations of invariant straight
lines are possible:

C1) (2r,1r,1r,1r) C2) (2(2)r, 2r, 1r, 1r) C3) (2r, 1r, 1c1 , 1c1)
C4) (2(2)r, 1r, 1c1 , 1c1) C5) (2c0, 1r, 1r, 1r) C6) (2c0,1r,1c1,1c1)

Remark 2. Propositions 2, 7 and 15 do not allow the realization of configurations
C2) and C4) in the class of cubic systems with degenerate infinity.

Proposition 20. The configurations C3) and C5) do not realize in the class of cubic
systems with degenerate infinity.

Proof. Let the cubic system [(1)][(26)] has only two distinct parallel invariant
straight lines l1 and l2. If these straight lines are real, then [(1)][(26)] can be written
in the following form:

{

ẋ = x(x − a)(a20 + a30x + a21y),
ẏ = b00 + b10x + b01y + b20x

2 + b11xy + b02y
2 + a30x

2y + a21xy2,
(32)
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and if these straight lines are complex, then we have the system

{

ẋ = (x2 + 1)(a20 + a30x + a21y),
ẏ = b00 + b10x + b01y + b20x

2 + b11xy + b02y
2 + a30x

2y + a21xy2.
(33)

The invariant straight lines of the system (32) (respectively, (33)) are l1 = x and
l2 = x− a (respectively, l1,2 = x± i). Taking into account that the right-hand sides
of these systems have no common factors, it is easy to see that, for both systems,
each straight line l1 and l2 can pass through at most two singular points.

Let the system (32) have another real invariant straight line, then via an affine
transformation, this system can be brought to the form:

{

ẋ = x(x − a)(a20 + a30x + a21y),
ẏ = y(b01 + b11x + b02y + a30x

2 + a21xy).
(34)

The invariant straight lines of (34) are: l1 = x, l2 = x−a, l3 = y. All singular points
have real coordinates, thus, considering Proposition 6, all other invariant straight
lines must be real, i.e. the configuration C3) is not possible.

The system (33) has at most four invariant straight lines, because of Proposition
7 and the fact that on each invariant straight line l1, l2 only two singular points lie.
Therefore, the configuration C5) is not realizable.

Configuration C1) (2r,1r,1r,1r). Let the straight lines l1, l2, l3, l4 with con-
figuration (2r, 1r, 1r) be invariant for system [(1)][(26)]. These straight lines can be
brought to the form l1 = x, l2 = x − 1, l3 = y and l4 = x + y − 1. Therefore, the
system [(1)][(26)] has the following form:

{

ẋ = x(x − 1)(b01 + b11 + a30x + a21y),
ẏ = y(b01 + b11x − b01y + a30x

2 + a21xy).
(35)

The intersection points of the straight lines of the system (35) are (0, 0), (0, 1) and
(1, 0). Through the singular point (1, 0) the invariant straight lines l2, l3 and l4 pass.
According to Proposition 11 any other real invariant straight line must pass through
the point (0, 0) or (0, 1).

Let l5 be a real straight line for system (35) passing through the point (0, 0), i.e.
it is described by equation y = Ax. This straight line is invariant for the system (35)
iff b11 = −2b01, A = (a30 − b01)/(b01 − a21). Without loss of generality we consider
b01 = −1. Let a30 = a−1 and a21 = b−1, then we obtain the system 19) of Theorem
1. The conditions ab(b − 1)(b + 1)(a − b) 6= 0 will guarantee that the system 19)
is not from another class. Similarly, from the system (35), we can obtain a system
possessing five invariant straight lines with (0, 1) ∈ l5, but it will be affine equivalent
with system 19).

Configuration C6) (2c0,1r,1c1,1c1). Let the system [(1)][(26)] have four
invariant straight lines with configuration (2c0, 1c1, 1c1). The straight lines can be
written as l1,2 = x−a±i and l3,4 = y±ix. The system [(1),(26)] with these invariant
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straight lines looks as






ẋ = ((x − a)2 + 1)(a30x + a21y),
ẏ = (a2 + 1)(a30y − a21x) + b20x

2 − 2aa30xy + (b20 − 2aa21)y
2+

+a30x
2y + a21xy2

(36)

and has the following singular points: O1(a − i, 1 + ai), O2(a + i, 1 − ai), O3(a +
i,−1 + ai), O4(a− i,−1− ai), O5(0, 0), O6(a21(1 + a2)/b20,−a30(1 + a2)/b20), O1 =
l1 ∩ l4, O2 = l2 ∩ l3, O3 = l2 ∩ l4, O4 = l1 ∩ l3. Any other real invariant straight line
of the system (36) must pass through one of two pairs of conjugate complex singular
points {O1, O2} or {O3, O4}, therefore, l5 = ax + y − a2 − 1 or l5 = ax− y − a2 − 1,
respectively. In the first case, l5 = ax + y − a2 − 1 is invariant for (36) iff b20 =
aa21 − a30. Furthermore, if a30 = 0, then the system (36) has six invariant straight
lines. Let a30 6= 0 and denote a21 = b · b30. After rescaling the time t = 1/a30τ , we
get the system 20) of Theorem 1. In the second case, l5 = ax−y−a2−1 is invariant
for the system (36) iff b20 = aa21 + a30. Moreover, (36) has exactly five invariant
straight lines if a30 6= 0. The obtained system is affine equivalent with system 20).

3.3 Class D): invariant straight lines with different slopes

For cubic systems in class B) the following three configurations of invariant
straight lines are possible:

D1) (1r,1c1,1c1,1c1,1c1) D2) (1r,1r,1r,1c1,1c1)
D3) (1r,1r,1r,1r,1r)

Configuration D1) (1r,1c1,1c1,1c1,1c1). Let the system [(1)][(26)] have
the invariant straight lines lj ∈ C[x, y] \ R[x, y], j = 1, 4, lj = lj+1, j = 1, 3,
lj 6‖ lk, j 6= k. Via an affine transformation and time rescaling we can bring them to
the form l1,2 ≡ y ± ix = 0, l3,4 = y − (a± bi)x − 1 = 0, a, b ∈ R, b(|a|+ |b± 1|) 6= 0.
There are two affine different systems [(1)][(26)] with these invariant straight lines:







ẋ = y + x2 + 2axy − y2 + (2a − b02)x
3 + (a2 + b2 − 1)x2y − b02xy2,

ẏ = −x + (b02 − 2a)x2 + 2xy + b02y
2 + (2a − b02)x

2y+
+(a2 + b2 − 1)xy2 − b02y

3;
(37)















ẋ = x + cy + (2a + c)x2 + 2(−1 + ac)xy − cy2 + (−2 + a2 + b2 − b02+
+2ac)x3 + (−2a − c + a2c + b2c)x2y − (1 + b02)xy2,

ẏ = −cx + y + (2 + b02 − 2ac)x2 + 2(a + c)xy + b02y
2 + (−2 + a2+

b2 − b02 + 2ac)x2y + (−2a − c + a2c + b2c)xy2 − (1 + b02)y
3.

(38)

Let Oj,k be the intersection point of the invariant straight lines lj and lk, j 6= k.
Then, O1,2 = (0, 0), O1,3 = (−1/(−i + a + bi), 1/(1 − b + ai)), O1,4 = (−1/(−i +
a − bi), 1/(1 + b + ai)), O3,4 = (0, 1), O2,3 ≡ O1,4 and O2,4 ≡ O1,3. The straight
line passing through singular points O1,3 and O2,4 (O1,4 and O2,3) is described by
equation 1 + ax − y + by = 0 (1 + ax − y − by = 0). Using only the information
provided by singular points we can state that besides the invariant straight lines
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l1,2,3,4, the systems (37), (38) can have also the invariant straight lines described by
equations 1 + ax − y + by = 0, 1 + ax − y − by = 0 and x = 0.

The straight line x = 0 can’t be invariant for (37), because the coefficients of
the monomials y, −y2 from right-hand side of first equation from system (37) are
constant. The straight lines l5 = 1+ax−y+by and l6 = 1+ax−y−by are invariant
for (37) only simultaneously, therefore this system can’t have exactly five invariant
straight lines.

The straight line l5 = 1 + ax − y + by (l5 = 1 + ax − y − by) is invariant for the
system (38) iff b02 = ac − 2 + b (b02 = ac − 2 − b), i.e. we obtained the system 21)
of Theorem 1 (a system affine equivalent with 21)).

Also, the straight line x = 0 is invariant for the system (38) iff c = 0. In (38) we
take c = 0 and denote b02 = c− 2, where c is a real parameter. This way we get the
system 22) of Theorem 1.

Configuration D2) (1r,1r,1r,1c1,1c1). The complex invariant straight lines
of the system [(1)][(26)], via an affine transformation, can be brought to the form
l1,2 = y ± ix. According to Proposition 11, two of real invariant straight lines l3,4,5

can’t pass through the intersection point (0, 0) of l1 and l2. Therefore, via a rotation
and a contraction x → kx, y → ky, k ∈ R

∗, we can bring the intersection point
of the straight lines l3 and l4 in (0, 1), i.e. these straight lines are described by
l3 = y − ax− 1 and l4 = y − bx− 1, a, b ∈ R, a 6= b. The fifth invariant straight line
must pass through the points (0, 0) and (0, 1), i.e. it is described by l5 = x. Asking
that these straight lines to be invariant for the system [(1)][(26)] we get the system
23) of Theorem 1.

Configuration D3) (1r,1r,1r,1r,1r). Let the system [(1)][(26)] have at least
five real invariant straight lines with diffefrent slopes lj, j = 1, 5. Via an affine
transformation we can bring these straight lines to be described by equations:
x = 0, y = 0, y = x, y = ax + 1, y = bx + 1, ab(a − 1)(b − 1) 6= 0, a < b. The
cubic system with these invariant straight lines has the form 24) of Theorem 1.

3.4 Qualitative investigation of systems 13)-24)

In this section, the qualitative study of systems 13) − 24) of Theorem 1 will be
done. For this purpose, in order to determine the topological behavior of trajectories,
the singular points will be examined. Using also the information provided by the
existence of invariant straight lines, we will construct all phase portraits of systems
3) − 11) on Poincaré disk.

We denote by SP singular points; λ1 and λ2 the characteristic roots of the SP ;
TSP − type of SP ; S − saddle (λ1λ2 < 0); N s − stable node (λ1, λ2 < 0); N i −
instable node (λ1, λ2 > 0); DN s(i) − improper stable (instable) node (λ1 = λ2 6= 0);
C – centre, P i(s)– instable (stable) parabolic sector, F i(s) – instable (stable) focus.

In the next tables, the first column will indicate the singular points of the sys-
tems; the second column - the eigenvalues corresponding to these singular points
and the third column - the types of the singularities. All these points are simple
and together with the invariant straight lines, fully determine the phase portrait for
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each of the systems 13)–24).

Table 1. Systems 13), 15), 16), 17), 19), 20), 21), 22) and 23)

SP λ1; λ2 TSP SP λ1; λ2 TSP
System 13); Fig. 15

J = {a|a ∈ (−1, 0)} a <−1 J a <−1 J
O1(0, 0) −a ;−a DN i DN i O2(1, 0) a; −a − 1 S Ns

O3(0, 1) a ;−a− 1 S Ns O4(1, 1) a + 1; a + 1 DNs DN i

O5(−a,−a) ±a(a + 1) S S X∞(1, 0, 0) −a; −a − 1 N i S
Y∞(0, 1, 0) −a; −a − 1 Ns S

System 15); Fig. 15
O(−a,−a) ±(a2 + 1) S X∞(1, 0, 0) −a ± i F s

Y∞(0, 1, 0) −a ± i F s

System 16); Fig. 16
G = {a|a ∈ (0, 1)} G a > 1 G a > 1

O1(0, 0) a; a DN i DN i O2(0, 1) 1 − a; 1 − a DN i DNs

O3(0, a) ±a(a − 1) S S
System 17); Fig. 17)

O1(0, 0) 1 ± 2bi F i O2(0, 1) 1 ± 2bi F i

O3(−b, 1
2 ) ± 1

2

(

4b2 + 1
)

S
System 20); Fig. 20

O1(0, 0) (a2 + 1)(1 ± ib) F i O2

(

b(a2+1)
ab−1 , a

2+1
1−ab

)

± (a2+1)(b2+1)
ab−1 S

I∞(0, 1, 0) 1 ± bi F i

System 21; Fig. 17.a), Fig. 21
b < 0 b > 0

O1(0, 0) 1 ± ci F i O3(
−c

ac−b+1 , 1
a−b+1) ± b(c2+1)

ac−b+1 S

O2(0, 1) b(−1 ± ci) F i F s

System 22); Fig. 16
c < 0 c > 0

O1(0, 0) 1; 1 N i O3(0, 1
1−c

) ± 1
1−c

S

O2(0, 1) −c; −c N i Ns

System 23); Fig. 22
c < 0 c > 0

O1(0, 0) 1; 1 N i O3(0, 1
1−c

) ± 1
1−c

S

O2(0, 1) −c; −c N i Ns

Systems 13), 15)–17), 19)–23). All these systems have hyperbolic singular points
in the finite part of the phase plane and at the infinity. These singular points, their
type and the phase portraits corresponding to each system are shown in Table 1.

System 14). This system has two singular points in the finite part of the phase
plane and other two at the infinity. Their coordinates, their types and the phase
portraits corresponding to each system are shown in Table 2.

As we see from Table 2, the origin is a nonhyperbolic singular point. Using polar
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Table 2. System 14); Fig. 14

SP λ1; λ2 TSP SP λ1; λ2 TSP

O1(0, 0) 0 ;0 HP sHP i O2(−b,−a) ab; −ab S

X∞(1, 0, 0) −a ;−a DN s Y∞(0, 1, 0) −b; −b DN s

Blow-up of the origin (0, 0)

M1(0, 0) a ;−a S M2(0,
π
2 ) b; −b S

M3(0, π) a ;−a S M4(0,
3π
2 ) b; −b S

M5(0, arctg
b
a
) ab√

a2+b2
;0 DN i M6(0,arctg

b
a
+π) −ab√

a2+b2
; −ab√

a2+b2
DN s

coordinates and after rescaling the time t = τ/ρ, this systems takes the form:
{

ρ̇ = ρ
(

a cos3 θ + ρ cos3 θ sin θ + b sin3 θ + ρ cos θ sin3 θ
)

,

θ̇ = cos θ sin θ(a cos θ − b sin θ).

We get six singular points of the form Mi(0, θi), their coordinates and types are
given in Table 2. Using this information, we get Fig. 24a) and after ”compressing”
all these points to the origin we obtain Fig. 24b), i.e. the origin can be described
as HP sHP i singular point.

   arctg     __a

b    arctg     __b

a

a) b) a) b)
Fig. 24 Fig. 25

System 18). The system has only two singular points in the finite part of the phase
plane (Table 3). To study neighborhood of the origin of coordinates we will use the
blow-up method. In polar coordinates the system has the form:

{

ρ̇ = ρ (a cos θ + b sin θ + ρ)

θ̇ = a sin θ − b cos θ

Table 3. System 18); Fig. 18

SP λ1; λ2 TSP SP λ1; λ2 TSP

O1(0, 0) 0 ;0 EP iP iE O2(−a,−b) ±
(

a2 + b2
)

S

Solving the equation a sin θ − b cos θ = 0 gives us the information that O1(0, 0)
consists of two hyperbolic singular points: M1(0, arctg

b
a
) – instable improper node

and M2(0, arctg
b
a

+ π) – stable improper node.
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S1 S2

S3

S4

S5

S6

S7

S8 S9

b

a

Fig. 26

Compressing these points to the origin of co-
ordinates we get that the neighborgood of the
origin consists of two eliptic sectors separated
by a separatrix (Fig. 25).

System 19). If a 6= 1, then this system has
the singular points O1(0, 0), O2(0, 1), O3(1, 0),
O4(−1/(a − 1), 0), O5(1,−a/b), O6(b/(b −
a),−a/(b − a)).

The straight lines a = 0, b = 0, a = 1 and
a−b = 0 divide the plane of coefficients (a, b) in 9
sectors (Fig. 26). Using relative positions of the
singular points and the invariant straight lines,
also the qualitative structure of these points, we
notice that some systems with coefficients from
the different sectors have the same trajectories. In particular, the phase portraits
of systems with coefficients from S6 and S7 are topologically equivalent, and the
phase portraits of systems S2 (respectively, S3, S8) and S5 (respectively, S4, S9) are
equivalent. Therefore we obtain Table 4 which contains information about sectors
S1, S3, S5, S6 and S8.

Table 4. System 19), a 6= 1.

S.P. O1(0, 0) O2(0, 1) O3(1, 0) O4(− 1
a−1 , 0) O5(1,−a

b
) O6(

b
b−a

,− a
b−a

) I∞(0, 1, 0)

Fig.λ1 −1 1 a − a
a−1 −a a

a−b
−1

λ2 −1 −b a a
a−1

a
b

ab
a−b

−b

S1

NDs

S
NDs

S

S
N i

N s 19a)

S3 NDi N s 19b)

S5

N i

N s

S S

19c)

S6 NDs N i 19d)

S8 NDi N s 19e)

If a = 1, then the singular point O4(−1/(a − 1), 0) goes to the infinity. We note
that the cases b ∈ (0, 1) and b ∈ (1,+∞) are topologically equivalent, therefore we
have Table 5.

Table 5. System 19), a = 1.

S.P. O1(0, 0) O2(0, 1) O3(1, 0) O5(1,−1
b
) O6(

b
b−1 ,− 1

b−1 ) I∞(1, 0, 0) I∞(0, 1, 0)

Fig.λ1 −1 1 1 −1 a
a−b

−1 −1

λ2 −1 −b 1 1
b

ab
a−b

1 −b

b < 0
NDs N i

NDi N s N i

S
S 19f)

b > 1 S S N s N s 19g)
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a

b

1

1

a - 
b =

 0

S

S S

S S S

1

2 3

4 5 6

Fig. 27

System 24). This system has three real param-
eters under conditions ab(a−1)(b−1)(c−1) 6= 0,
a > b, so the space of coefficients must be three-
dimensional. We can simplify this by restrain-
ing the parameter c and obtaining three simpler
cases. If c 6= 0 then the system has seven sin-
gular point in the finite part of the phase plane
and if c = 0, then the system has six singular
points (see Table 6).

Using the above conditions and the informa-
tion provided by characteristic roots of singular
points, we get six sectors S1, . . . , S6 ilustrated in
Fig. 27.

Table 6. System 24)

SP (0, 0) (0, 1)
(

0, 1
c

) (

− 1
a
, 0

) (

−1
b
, 0

)

(

1
1−a

, 1
1−a

) (

1
1−b

, 1
1−b

)

Fig.λ1 1 c − 1 c−1
c

b−a
a

a−b
a

b−a
a−1

a−b
b−1

λ2 1 c − 1 − c−1
c

1−c
b

1−c
b

c−1
a−1

c−1
b−1

c < 1

S1

N i

N s

S

S

N i

N s

S

23a)
S2 N i 23b)
S3 N s

23a)c 6= 0 S4

N i N i

S5

S6 N s

23c)

c > 1

S1

N i

N s

S S

N i

S2

N s

23a)
S3

S4 N i 23c)
S5 N s 23a)
S6

c = 0

S1

N s I∞(0, 1, 0)
S

N i

N s

S

23d)
S2 N i 23e)
S3 N s

23d)S4 S
N i N i

S5

S6 N s 23e)
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5–16.
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Chişinău, Republic of Moldova
E-mail: repescov@gmail.com

Received May 27, 2016


