Resonant Riemann-Liouville Fractional Differential Equations with Periodic Boundary Conditions

Smail Djebali, Lamine Guedda

Abstract. In this paper, by using the coincidence degree theory due to J. Mawhin, we consider the solvability of a class of nonlinear fractional two-point boundary value problems at resonance. An example of application illustrates the existence result.

Mathematics subject classification: 34A08, 37C25, 54H25. Keywords and phrases: Fractional differential equations, resonance, coincidence degree, Riemann-Liouville fractional derivative.

1 Introduction

Fractional differential equations describe many phenomena in various fields of science and engineering such as physics, chemistry, biology, visco-elasticity, electromagnetics, economy, etc. Several methods have been used to deal with the question of solvability of boundary value problems (BVPs for short) for fractional differential equations; we quote the Laplace transform method, iteration methods, the upper and lower solution method, as well as topological methods (fixed point theory and Leray-Schauder degree theory) (see, e. g., [1, 10], and references therein).

In [1] B. Ahmad and J. Nieto studied the following Riemann-Liouville fractional differential equation with fractional boundary conditions:

$$D_{0^{+}}^{\alpha}u(t) = f(t, u(t)), \quad t \in [0, T], \ 1 < \alpha \le 2,$$
(1.1)

$$D_{0^{+}}^{\alpha-2}u\left(0^{+}\right) = b_{0}D_{0^{+}}^{\alpha-2}u\left(T^{-}\right),\tag{1.2}$$

$$D_{0^{+}}^{\alpha-1}u\left(0^{+}\right) = b_{1}D_{0^{+}}^{\alpha-1}u\left(T^{-}\right),\tag{1.3}$$

where $D_{0^+}^{\alpha}$ denotes the Riemann-Liouville fractional derivative of order α , $b_0 \neq 1, b_1 \neq 1$, and the function $f : [0,T] \times \mathbb{R} \to \mathbb{R}$ is continuous. Clearly this is a nonresonant problem, i.e. the associated homogeneous problem admits only the following solution:

$$u(t) = c_1 t^{\alpha - 1} + c_2 t^{\alpha - 2},$$

[©] Smail Djebali, Lamine Guedda, 2016

where the constants c_1, c_2 satisfy

$$c_1\Gamma(\alpha).0 + c_2\Gamma(\alpha - 1) = b_0(c_1\Gamma(\alpha).T + c_2\Gamma(\alpha - 1))$$

$$c_1\Gamma(\alpha) = b_1c_1\Gamma(\alpha),$$

that is $c_1 = c_2 = 0$ for $b_0 \neq 1$ and $b_1 \neq 1$. Then a corresponding Green's function can be computed. A fixed point theorem was used to show that the operator $P: C_{2-\alpha} \longrightarrow C_{2-\alpha}$ defined by

$$(Pu)(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s, u(s)) ds + \frac{b_1 t^{\alpha-1}}{(1-b_1)\Gamma(\alpha)} \int_0^T f(s, u(s)) ds + \frac{b_0 t^{\alpha-2}}{(1-b_1)(1-b_0)\Gamma(\alpha-1)} \int_0^T (T-(1-b_1)s) f(s, u(s)) ds$$

has at least one fixed point.

By a similar method, G. Wang, W. Liu, and C. Ren investigated in [10], the existence and uniqueness of solutions for the fractional boundary-value problem:

$$\begin{cases} D_{0^{+}}^{\alpha} u\left(t\right) &= f\left(t, u\left(t\right)\right), \quad t \in [0, T], \quad 1 < \alpha \le 2, \\ I_{0^{+}}^{2-\alpha} u\left(t\right)|_{t=0} &= 0, \quad D_{0^{+}}^{\alpha-2} u\left(T\right) = \sum_{i=1}^{m} a_{i} I_{0^{+}}^{\alpha-1}\left(\xi_{i}\right), \end{cases}$$

where $0 < \xi_i < T$, $a_i \in \mathbb{R}$, $m \ge 2$, and $I_{0^+}^{\alpha}$ stands for the Riemann-Liouville fractional integral. Standard fixed point principles have been employed.

In [11], the authors investigated higher-order fractional derivatives, i.e. for $2 < \alpha \leq 3$.

When the nonlinearity of f also depends on the first derivative, Z. Bai [2] discussed the solvability of m-point fractional BVPs at resonance; the coincidence degree theory as developed by Mawhin in [8] was employed. Concerning papers dealing with fractional-order BVPs at resonance, we refer, for example, to [4–6, 11, 12]. See also [9] for a resonant second-order boundary value problem.

In the present work, Mawhin's coincidence degree theory is used to deal with BVP (1.1), (1.2), (1.3) at the resonance case, i. e. for $b_0 = b_1 = 1$. An existence result illustrated by means of two examples of application is provided in Section 2.

We first present some definitions and auxiliary lemmas about fractional calculus theory.

Definition 1 (see [3,7]). The Riemann-Liouville fractional integral of order $\alpha > 0$ of a function $h: (0, +\infty) \to \mathbb{R}$ is given by

$$I_{0^{+}}^{\alpha}h\left(t\right) = \frac{1}{\Gamma\left(\alpha\right)} \int_{0}^{t} \left(t-s\right)^{\alpha-1} h\left(s\right) ds,$$

where $\Gamma(.)$ refers to the function gamma, provided the right side is pointwise defined on $(0, +\infty)$. **Definition 2** (see [7, 11]). The Riemann-Liouville fractional derivative of order $\alpha > 0$ of a function $h: (0, +\infty) \to \mathbb{R}$ is given by

$$D_{0^{+}}^{\alpha}h\left(t\right) = \frac{1}{\Gamma\left(n-\alpha\right)} \frac{d^{n}}{dt^{n}} \int_{0}^{t} \frac{h\left(s\right)}{(t-s)^{\alpha-n+1}} ds = \frac{d^{n}}{dt^{n}} I_{0^{+}}^{n-\alpha}h\left(t\right),$$

where $n = [\alpha] + 1$, provided the right side is pointwise defined on $(0, +\infty)$. Here $[\alpha]$ denotes the integer part of the real number α .

For $\alpha < 0$, we set by convention $D_{0^+}^{\alpha}h(t) = I_{0^+}^{-\alpha}h(t)$, and if $0 \le \beta \le \alpha$, we get $D_{0^+}^{\beta}I_{0^+}^{\alpha}h(t) = I_{0^+}^{\alpha-\beta}h(t)$.

Given these definitions, it can be checked that the Riemann-Liouvelle fractional integration and fractional differentiation operators of the power functions t^{λ} yield power functions of the same form. Indeed, for $\lambda > -1$ and $\alpha \ge 0$, we have

$$I_{0^+}^{\alpha}t^{\lambda} = \frac{\Gamma(\lambda+1)}{\Gamma(\lambda+\alpha+1)}t^{\lambda+\alpha} \text{ and } D_{0^+}^{\alpha}t^{\lambda} = \frac{\Gamma(\lambda+1)}{\Gamma(\lambda-\alpha+1)}t^{\lambda-\alpha}$$

Also note that $D_{0+}^{\alpha} t^{\lambda} = 0$, for all $\lambda = \alpha - i$ with i = 1, 2, 3, ..., n (*n* is the smallest integer greater than or equal to α). Also we have

Lemma 1 (see [4]). Suppose that $h \in L^1(0, +\infty)$ and α, β are positive real numbers. Then

$$I_{0^{+}}^{\alpha}I_{0^{+}}^{\beta}h\left(t\right) = I_{0^{+}}^{\alpha+\beta}h\left(t\right) \text{ and } D_{0^{+}}^{\alpha}I_{0^{+}}^{\alpha}h\left(t\right) = h\left(t\right).$$

If, in addition $D_{0^{+}}^{\alpha}h\left(t\right)\in L^{1}\left(0,+\infty\right),$ then

$$I_{0^{+}}^{\alpha}D_{0^{+}}^{\alpha}h(t) = h(t) + \sum_{i=1}^{i=n} c_{i}t^{\alpha-i},$$

for some constants $c_i \in \mathbb{R} \ (1 \leq i \leq n)$.

Finally, notice that the boundary value problem

$$\left\{ \begin{array}{rll} D^{\alpha}_{0^{+}}u\left(t\right) &=& f\left(t,u\left(t\right)\right), \quad t\in\left[0,T\right], \ 1<\ \alpha\leq 2\\ D^{\alpha-2}_{0^{+}}u\left(0^{+}\right) &=& D^{\alpha-2}_{0^{+}}u\left(T^{-}\right), \\ D^{\alpha-1}_{0^{+}}u\left(0^{+}\right) &=& D^{\alpha-1}_{0^{+}}u\left(T^{-}\right) \end{array} \right.$$

is at resonance, i.e., the corresponding homogeneous boundary value problem:

$$\left\{ \begin{array}{rrr} D^{\alpha}_{0^+} u\left(t\right) &=& 0, \quad t \in [0,T]\,, \ 1 < \alpha \leq 2 \\ D^{\alpha-2}_{0^+} u\left(0^+\right) &=& D^{\alpha-2}_{0^+} u\left(T^-\right)\,, \\ D^{\alpha-1}_{0^+} u\left(0^+\right) &=& D^{\alpha-1}_{0^+} u\left(T^-\right) \end{array} \right.$$

has $u(t) = ct^{\alpha-2}$ as nontrivial solutions $(c \in \mathbb{R})$.

2 Main result

2.1 Functional framework

Since our main existence result is based on Mawhin's coincidence degree, we first recall some basic facts about this theory; more details can be found in [8].

Let X, Y be two real Banach spaces and $L : \operatorname{dom}(L) \subset X \to Y$ a Fredholm operator of index zero. Then there exist two continuous projectors $P : X \to X$ and $Q : Y \to Y$ such that $\operatorname{Im} P = \operatorname{Ker} L$, $\operatorname{Ker} Q = \operatorname{Im} L$, $X = \operatorname{Ker} L \oplus \operatorname{Ker} P$, and $Y = \operatorname{Im} L \oplus \operatorname{Im} Q$. It follows that the operator

$$L_P = L \mid_{\operatorname{dom}(L) \cap \operatorname{Ker} P} : \operatorname{dom}(L) \cap \operatorname{Ker} P \to \operatorname{Im} L$$

is invertible; we denote its inverse by K_P (i.e. $L_P^{-1} = K_P$). Let Ω be an open bounded subset of X such that dom $(L) \cap \overline{\Omega} \neq \emptyset$. The map $N : X \to Y$ is said to be L-compact on $\overline{\Omega}$ if $QN(\overline{\Omega})$ is bounded and the operator $K_{P,Q} = K_P(I-Q)N : \overline{\Omega} \to X$ is compact. Since Im Q and Ker L have the same dimension, then there exists a linear isomorphism $J : \operatorname{Im} Q \to \operatorname{Ker} L$. Mawhin [8] established the following existence result for the abstract nonlinear equation Lu = Nu:

Theorem 1. Let $L: X \to Y$ be a Fredholm operator of index zero and $N: X \to Y$ be L-compact operator on $\overline{\Omega}$. Then the equation Lu = Nu has at least one solution in dom $(L) \cap \overline{\Omega}$ if the following conditions are satisfied:

- 1. $Lu \neq Nu$ for each $(u, \lambda) \in [(\text{dom}(L) \setminus \text{Ker} L) \cap \partial\Omega] \times [0, 1];$
- 2. $Nu \notin \text{Im } L$, for each $u \in \text{Ker } L \cap \partial \Omega$;
- 3. deg $(QN|_{\operatorname{Ker} L}, \operatorname{Ker} L \cap \Omega, 0) \neq 0.$

As usual, C[0,T] will denote the Banach space of continuous real valued functions defined on [0,T] with the norm $||u|| = \sup_{t \in [0,T]} |u(t)|$. For all $t \in [0,T]$, we define the function u_r by $u_r(t) = t^r u(t)$, $r \ge 0$. Let $C_r[0,T]$ be the space of all functions u such that $u_r \in C[0,T]$. Then

Lemma 2. $C_r[0,T]$ endowed with the norm $||u||_r = \sup_{t \in [0,T]} t^r |u(t)|$ is a real Banach space.

Let $Y = L^1[0,T]$ be the Lebesgue space of measurable functions y such that $s \mapsto |y(s)|$ is Lebesgue integrable equipped with the norm $||y||_1 = \int_0^T |y(s)| ds$ and $X = C_{2-\alpha}[0,T]$ endowed with the norm $||u||_{2-\alpha} = \sup_{t \in [0,T]} t^{2-\alpha} |u(t)|$. Define the linear operator L: dom $(L) \cap X \longrightarrow Y$ by

$$Lu = D^{\alpha}_{0^+} u, \qquad (2.1)$$

where

dom $(L) = \{u \in X : D_{0^+}^{\alpha} u \in Y, u \text{ satisfies conditions } (1.2), (1.3) \text{ with } b_0 = b_1 = 1\}.$

Finally, define the Nemytskii operator $N: X \longrightarrow Y$ by

$$(Nu)(t) = f(t, u(t)), \quad t \in [0, T].$$
(2.2)

Thus, BVP (1.1), (1.2), (1.3) with $b_0 = b_1 = 1$ can be written as

$$Lu = Nu, \ u \in \operatorname{dom}(L).$$

In a series of lemmas, we next investigate the properties of operators L and N.

2.2 Auxiliary lemmas

Lemma 3. Let L be the operator defined by (2.1); then

Ker
$$L = \{ ct^{\alpha - 2} : c \in \mathbb{R} \}$$
 and Im $L = \{ y \in L[0, T] : \int_0^T y(s) ds = 0 \}.$

Proof. The equation $D_{0+}^{\alpha}u(t) = 0$ admits $u(t) = c_1t^{\alpha-1} + c_2t^{\alpha-2}$ as solutions, where c_1, c_2 are arbitrary constants. Then

$$D_{0^{+}}^{\alpha-2}u(t) = I_{0^{+}}^{2-\alpha}u(t) = c_{1}\Gamma(\alpha)t + c_{2}\Gamma(\alpha-1) \text{ and } D_{0^{+}}^{\alpha-1}u(t) = c_{1}\Gamma(\alpha).$$

Combining this with (1.2) and (1.3), we find that

$$c_{2}\Gamma\left(\alpha-1\right) = c_{1}\Gamma\left(\alpha\right)T + c_{2}\Gamma\left(\alpha-1\right)$$

and hence $c_1 = 0$ while c_2 is any constant.

If $y \in \text{Im}(L)$, then there exists $u \in \text{dom}(L)$ such that $D_{0^+}^{\alpha}(t) = y(t)$. Hence

$$u(t) = I_{0^{+}}^{\alpha} y(t) + c_1 t^{\alpha - 1} + c_2 t^{\alpha - 2}$$

and

$$D_{0^{+}}^{\alpha-2}u(t) = I_{0^{+}}^{2}y(t) + c_{1}\Gamma(\alpha)t + c_{2}\Gamma(\alpha-1), D_{0^{+}}^{\alpha-1}u(t) = I_{0^{+}}^{1}y(t) + c_{1}\Gamma(\alpha).$$

By the boundary conditions (1.2), (1.3), we infer that

$$c_1 = -\frac{1}{\Gamma(\alpha)T} \int_0^T (T-s) y(s) ds \text{ and } \int_0^T y(s) ds = 0.$$

Let $y \in Y$ satisfy $\int_0^T y(s)ds = 0$. If $u(t) = I_{0+}^{\alpha} y(t) - \frac{t^{\alpha-1}}{\Gamma(\alpha)T} \int_0^T (T-s) y(s)ds$, then $u \in \operatorname{dom}(L)$ and $D_{0+}^{\alpha} D_{0+}^{\alpha} u(t) = y(t)$. As a consequence $y \in \operatorname{Im}(L)$.

Lemma 4.

- (a) $L: \operatorname{dom}(L) \cap X \longrightarrow Y$ is a Fredholm operator of index 0.
- (b) The linear continuous projectors $Q: Y \to Y$ and $P: X \to X$ are such that

$$Qy = \frac{1}{T} \int_0^T y(s) ds \text{ and } (Pu)(t) = \frac{1}{\Gamma(\alpha - 1)} I_{0^+}^{2-\alpha} u(t) \mid_{t=T} t^{\alpha - 2}.$$

Proof. It is easy to see that $Q^2 y = Qy$ and $P^2 u = Pu$, for $y \in Y$, $u \in X$. For all $y \in Y$, $y_1 = y - Qy \in \text{Im}(L)$ because $\int_0^T y_1(s)ds = 0$. Hence Y = Im(L) + Im(Q), $(\text{Im}(Q) = \mathbb{R})$. For $m \in \text{Im}(L) \cap \mathbb{R}$, we have $\int_0^T mds = Tm = 0$; therefore m = 0 and $Y = \text{Im}(L) \oplus \text{Im}(Q)$. Thus dim(Ker L) = co dim (Im L) = dim(Im Q) = dim(\mathbb{R}) = 1. So L is a Fredholm operator of index 0.

Lemma 5. Let $L_P = L \mid_{\operatorname{dom}(L) \cap \operatorname{Ker} P}$: $\operatorname{dom}(L) \cap \operatorname{Ker} P \to \operatorname{Im}(L)$. The inverse K_P of L_P is given by

$$(K_{P}y)(t) = I_{0^{+}}^{\alpha}y(t) - \frac{t^{\alpha-1}}{T\Gamma(\alpha)}I_{0^{+}}^{2}y(T).$$

Moreover

$$\|K_P y\|_{2-\alpha} \le \frac{2T}{\Gamma(\alpha)} \|y\|_1,$$

for all $y \in \text{Im}(L)$.

Proof. For all $y \in \text{Im}(L)$, we have

$$(LK_{P}y)(t) = D_{0^{+}}^{\alpha} \left(I_{0^{+}}^{\alpha}y(t) - \frac{t^{\alpha-1}}{T\Gamma(\alpha)}I_{0^{+}}^{2}y(T) \right) = y(t).$$

Recall that

Ker
$$P = \left\{ u \in \text{dom}(L) : I_{0^+}^{2-\alpha} u(t) \mid_{t=T} = 0 \right\}$$

Thus, for $u \in \text{dom}(L) \cap \text{Ker} P$, we have

$$(K_P L) u(t) = I_{0^+}^{\alpha} D_{0^+}^{\alpha} u(t) - \frac{t^{\alpha-1}}{T \cdot \Gamma(\alpha)} I_{0^+}^2 D_{0^+}^{\alpha} u(T)$$

= $u(t) + c_1 t^{\alpha-1} + c_2 t^{\alpha-2} - \frac{I_{0^+}^{2-\alpha} u(T)}{T \cdot \Gamma(\alpha)} t^{\alpha-1}.$

Since $u \in \operatorname{dom}(L) \cap \operatorname{Ker} P$, then

 $(K_P L) u \in \operatorname{dom}(L) \cap \operatorname{Ker} P$

and so

$$I_{0^+}^{2-\alpha}u(T) = 0$$
 and $c_1t^{\alpha-1} + c_2t^{\alpha-2} \in \text{dom}(L) \cap \text{Ker} P$

Moreover

$$I_{0^{+}}^{2-\alpha} \left(c_1 t^{\alpha-1} + c_2 t^{\alpha-2} \right) = c_1 \Gamma \left(\alpha \right) t + c_2 \Gamma \left(\alpha - 1 \right);$$

hence

$$c_{2}\Gamma\left(\alpha-1\right) = c_{1}\Gamma\left(\alpha\right)T + c_{2}\Gamma\left(\alpha-1\right) = 0.$$

Finally $c_2 = c_1 = 0$ and

$$(K_PL)u(t) = u(t),$$

which shows that $K_P = (L_P)^{-1}$.

Keeping in mind that

$$t^{2-\alpha}\left(K_{P}y\right)(t) = \frac{t^{2-\alpha}}{\Gamma\left(\alpha\right)} \int_{0}^{t} \left(t-s\right)^{\alpha-1} y(s)ds - \frac{t}{T\Gamma\left(\alpha\right)} \int_{0}^{T} \left(T-s\right) y(s)ds,$$

we deduce that

$$t^{2-\alpha} |(K_P y)(t)| \leq \frac{T^{2-\alpha}}{\Gamma(\alpha)} T^{\alpha-1} \int_0^T |y(s)| \, ds + \frac{T}{T\Gamma(\alpha)} T \int_0^T |y(s)| \, ds = \frac{2T}{\Gamma(\alpha)} \|y\|_1.$$

inally
$$\|K_P y\|_{2-\alpha} = \sup_{t \in [0,T]} t^{2-\alpha} |(K_P y)(t)| \leq \frac{2T}{\Gamma(\alpha)} \|y\|_1.$$

Lemma 6. For all $u \in X$, $t \in [0, T]$, we have

$$t^{2-\alpha}K_P\left(I-Q\right)Nu\left(t\right) = \frac{1}{\Gamma\left(\alpha\right)}\int_0^T G\left(t,s\right)f\left(s,u\left(s\right)\right)ds,$$

where

$$G(t,s) = \begin{cases} t^{2-\alpha} (t-s)^{\alpha-1} + \frac{ts}{T} - \frac{t}{2} - \frac{t^2}{\alpha T}, & 0 \le s < t \le T, \\ \frac{ts}{T} - \frac{t}{2} - \frac{t^2}{\alpha T}, & 0 \le t < s \le T. \end{cases}$$

Lemma 7. Let $f : [0,T] \times \mathbb{R} \to \mathbb{R}$ be a continuous function. Assume that Ω is an open bounded subset from X such that $\operatorname{dom}(L) \cap \overline{\Omega} \neq \emptyset$; then N is L-compact on $\overline{\Omega}$. Proof. In order to prove that N is L-compact on $\overline{\Omega}$, we only need to show that $QN(\overline{\Omega})$ is bounded and $K_P(I-Q)N:\overline{\Omega} \to Y$ is compact.

Since $f : [0,T] \times \mathbb{R} \to \mathbb{R}$ is continuous, $\overline{\Omega}$ is bounded; therefore there exists a constant M > 0 such that $|f(t, u(t))| \leq M, \forall u \in \overline{\Omega}, \forall t \in [0,T]$. Consequently, for all $u \in \overline{\Omega}$, we have

$$\begin{aligned} \left\|QN\left(u\right)\right\|_{1} &= \int_{0}^{T} \left[\frac{1}{T} \left|\int_{0}^{T} f\left(s, u\left(s\right)\right) ds\right|\right] ds = \left|\int_{0}^{T} f\left(s, u\left(s\right)\right) ds\right| \\ &\leq \int_{0}^{T} \left|f\left(s, u\left(s\right)\right)\right| ds \leq MT. \end{aligned}$$

Since (I-Q) and K_P are continuous linear operators, then (I-Q)N(u) and $K_P(I-Q)N(u)$ are bounded. Hence

$$\|(I-Q) N(u)\|_{1} \leq \|N(u)\|_{1} + \|QN(u)\|_{1} \leq 2TM, \|K_{P}(I-Q) N(u)\|_{2-\alpha} \leq \frac{2T}{\Gamma(\alpha)} \|(I-Q) N(u)\|_{1} \leq \frac{4T^{2}M}{\Gamma(\alpha)}.$$

For all $t_1 \in [0,T]$, $t_2 \in [0,T]$, $(t_1 < t_2)$, and $u \in \overline{\Omega}$, we have

$$\begin{aligned} \left| t_2^{2-\alpha} K_P \left(I - Q \right) Nu \left(t_2 \right) - t_1^{2-\alpha} K_P \left(I - Q \right) Nu \left(t_1 \right) \right| \\ &= \frac{1}{\Gamma \left(\alpha \right)} \left| \int_0^T G \left(t_2, s \right) f \left(s, u \left(s \right) \right) ds - \int_0^T G \left(t_1, s \right) f \left(s, u \left(s \right) \right) ds \right| \\ &= \frac{1}{\Gamma \left(\alpha \right)} \left| \int_0^T (G \left(t_2, s \right) - G \left(t_1, s \right)) f \left(s, u \left(s \right) \right) ds \right| \\ &\leq \frac{M}{\Gamma \left(\alpha \right)} \int_0^T \left| G \left(t_2, s \right) - G \left(t_1, s \right) \right| ds. \end{aligned}$$

Next, we distinguish between three different cases:

 \mathbf{F}

1. Case $t_1 < t_2 < s$. We have

$$\begin{array}{rcl} G\left(t_{2},s\right) - G\left(t_{1},s\right)| &= |t_{2} - t_{1}| \left| \frac{s}{T} - \left(\frac{1}{2} + \frac{t_{2} + t_{1}}{\alpha T}\right) \right| \\ &\leq |t_{2} - t_{1}| \left(\frac{s}{T} + \left(\frac{1}{2} + \frac{t_{2} + t_{1}}{\alpha T}\right) \right); \end{array}$$

then

$$\int_0^T |G(t_2,s) - G(t_1,s)| \, ds \leq |t_2 - t_1| \int_0^T \left(\frac{s}{T} + \left(\frac{1}{2} + \frac{t_2 + t_1}{\alpha T}\right)\right) \, ds \\ = (T + \frac{t_2 + t_1}{\alpha}) |t_2 - t_1| \, .$$

2. Case $s < t_1 < t_2$. We have

$$\begin{aligned} |G(t_2,s) - G(t_1,s)| &= \left| t_2^{2-\alpha} (t_2 - s)^{\alpha - 1} - t_1^{2-\alpha} (t_1 - s)^{\alpha - 1} \right. \\ &+ (t_2 - t_1) \left(\frac{s}{T} - \left(\frac{1}{2} + \frac{t_2 + t_1}{\alpha T} \right) \right) | \\ &\leq \left| t_2^{2-\alpha} (t_2 - s)^{\alpha - 1} - t_1^{2-\alpha} (t_1 - s)^{\alpha - 1} \right| \\ &+ \left| (t_2 - t_1) \left(\frac{s}{T} - \left(\frac{1}{2} + \frac{t_2 + t_1}{\alpha T} \right) \right) \right|. \end{aligned}$$

Note that the function Ψ_s defined by

$$\Psi_s(t) = t^{2-\alpha} \left(t-s\right)^{\alpha-1},$$

where $t \in [0,T]$ and $0 \le s < t$, is increasing on [0,T] because its derivative

$$\Psi'_{s}(t) = (2-\alpha)\left(\frac{t-s}{t}\right)^{\alpha-1} + (\alpha-1)\left(\frac{t}{t-s}\right)^{2-\alpha}$$

is positive. Then

$$t_2^{2-\alpha} (t_2 - s)^{\alpha - 1} - t_1^{2-\alpha} (t_1 - s)^{\alpha - 1} > 0$$

and

$$\int_0^T (t_2^{2-\alpha} (t_2 - s)^{\alpha - 1} - t_1^{2-\alpha} (t_1 - s)^{\alpha - 1}) ds = t_2^{2-\alpha} \int_0^{t_2} (t_2 - s)^{\alpha - 1} ds - t_1^{2-\alpha} \int_0^{t_1} (t_1 - s)^{\alpha - 1} ds = \frac{t_2 - t_1}{\alpha}.$$

Finally

$$\int_0^T |G(t_2,s) - G(t_1,s)| \, ds \le \frac{t_2 - t_1}{\alpha} + \left(T + \frac{t_2 + t_1}{\alpha}\right) |t_2 - t_1| \\ = \left(T + \frac{t_2 + t_1 + 1}{\alpha}\right) |t_2 - t_1| \, .$$

3. Case $t_1 < s < t_2$. We have

$$\begin{aligned} |G(t_2,s) - G(t_1,s)| &= \left| t_2^{2-\alpha} (t_2 - s)^{\alpha - 1} + (t_2 - t_1) \left(\frac{s}{T} - \left(\frac{1}{2} + \frac{t_2 + t_1}{\alpha T} \right) \right) \right| \\ &\leq t_2^{2-\alpha} (t_2 - s)^{\alpha - 1} + \left| (t_2 - t_1) \left(\frac{s}{T} - \left(\frac{1}{2} + \frac{t_2 + t_1}{\alpha T} \right) \right) \right| \\ &\leq t_2^{2-\alpha} (t_2 - t_1)^{\alpha - 1} + \left(T + \frac{t_2 + t_1}{\alpha} \right) |t_2 - t_1| \,. \end{aligned}$$

This shows that $K_P(I-Q)N$ is equicontinuous, as claimed.

2.3 Existence theorem

We are now in position to state and prove our main existence result.

Theorem 2. Let $f:[0,T] \times \mathbb{R} \to \mathbb{R}$ be continuous. Assume that

- (H₁) there exist two functions $a, r \in L^1[0,T]$ such that for all $t \in [0,T]$ and $x \in \mathbb{R}$, we have $|f(t,x)| \leq t^{2-\alpha}a(t)|x| + r(t)$,
- (H₂) there exists a constant M > 0 such that for all $u \in \text{dom}(L)$, if |u(t)| > M for all $t \in [0,T]$, then $\int_0^T f(s, u(s)) ds \neq 0$,
- (H₃) there exists a constant $M^* > 0$ such that for all $c \in \mathbb{R}$, if $|c| > M^*$, then either

$$c \int_0^T f(s, cs^{\alpha-2}) ds < 0 \text{ or } c \int_0^T f(s, cs^{\alpha-2}) ds > 0.$$

Then the boundary value problem (1.1), (1.2), (1.3) with $b_0 = b_1 = 1$ has at least one solution $u \in C_{2-\alpha}[0,T]$ provided that $||a||_1 < \frac{\Gamma(\alpha)}{2T}$.

Proof. Let

$$\Omega_1 = \{ u \in \operatorname{dom}(L) \setminus \operatorname{Ker} L : Lu = \lambda Nu, \ \lambda \in (0, 1) \}$$

For $u \in \Omega_1$, we have $u \in \text{dom}(L) \cap \text{Ker } P$ and $Lu = \lambda Nu$ with $\lambda \neq 0$ because $u \notin \text{Ker } L$; then

$$\begin{aligned} \|u\|_{2-\alpha} &= \|K_P L u\|_{2-\alpha} \\ &\leq \frac{2T}{\Gamma(\alpha)} \|L u\|_1 = \frac{2T\lambda}{\Gamma(\alpha)} \|N u\|_1 \\ &\leq \frac{2T}{\Gamma(\alpha)} \int_0^T |f(s, u(s))| \, ds. \end{aligned}$$

From condition (H_1) , we have

$$|f(s, u(s))| \le s^{2-\alpha} a(s) |u(s)| + r(s) \le a(s) \sup_{s \in [0,T]} s^{2-\alpha} |u(s)| + r(s).$$

Hence

$$\int_0^T |f(s, u(s))| \, ds \le ||a||_1 \, ||u||_{2-\alpha} + ||r||_1 \, .$$

Then

$$\|u\|_{2-\alpha} \le \frac{2T}{\Gamma(\alpha)} \left(\|a\|_1 \|u\|_{2-\alpha} + \|r\|_1 \right).$$

Finally

$$\|u\|_{2-\alpha} \le \frac{2T \|r\|_1}{\Gamma(\alpha) - 2T \|a\|_1} = M_1.$$

Consider the set

$$\Omega_2 = \{ u \in \operatorname{Ker} L : Nu \in \operatorname{Im} L \}.$$

For $u \in \Omega_2$, we have $u(t) = ct^{\alpha-2}$ and $\int_0^T f(s, cs^{\alpha-2}) ds = 0$. Then, from the condition (H_2) , there exists $t_0 \in [0, T]$ such that $|ct_0^{\alpha-2}| \leq M$, with $t_0 \neq 0$. Therefore

$$||u||_{2-\alpha} = \sup_{t \in [0,T]} t^{2-\alpha} |ct^{\alpha-2}| = |c| \le M t_0^{2-\alpha} = M_2.$$

Let

$$\Omega_3 = \{ u \in \operatorname{Ker} L : -\lambda J u + (1 - \lambda) Q N u = 0, \ \lambda \in [0, 1] \}$$

where $J : \text{Ker } L \to \text{Im } Q$ is the linear isomorphism defined by J(u) = c.

In case (H_3) is satisfied, assume that $c \int_0^T f(s, cs^{\alpha-2}) ds < 0$ holds. For all $u \in \Omega_3$, we can write $u = ct^{\alpha-2}$ and

$$\lambda c^{2} = \frac{(1-\lambda)}{T} c \int_{0}^{T} f\left(s, cs^{\alpha-2}\right) ds$$

If $\lambda = 1$, then c = 0. Otherwise, if Hypothesis $|c| > M^*$, then by (H_3) , one has

$$\frac{(1-\lambda)}{T}c\int_0^T f\left(s, cs^{\alpha-2}\right)ds < 0,$$

which contradicts $\lambda c^2 \ge 0$. Thus

$$||u||_{2-\alpha} = |c| \le M^*.$$

If $c \int_0^T f(s, cs^{\alpha-2}) ds > 0$ holds, then Ω_3 can be defined as follows:

$$\Omega_3 = \left\{ u \in \operatorname{Ker} L : \lambda J u + (1 - \lambda) Q N u = 0, \ \lambda \in [0, 1] \right\}.$$

Next, we shall prove that all conditions of Theorem 1 are fulfilled.

Let Ω be bounded open such that $\overline{\Omega}_1 \cup \overline{\Omega}_2 \cup \overline{\Omega}_3 \subset \Omega$. We have already proved that L is a Fredholm operator of index 0 and that N is L-compact on $\overline{\Omega}$. Also, we have

- 1. $Lu \neq Nu$, for each $(u, \lambda) \in [(\operatorname{dom}(L) \setminus \operatorname{Ker} L) \cap \partial\Omega] \times [0, 1]$ for $\overline{\Omega}_1 \subset \Omega$.
- 2. $Nu \notin \operatorname{Im} L$ for each $u \in \operatorname{Ker} L \cap \partial \Omega$ for $\overline{\Omega}_2 \subset \Omega$.
- 3. In order to take into account the subset Ω_3 in the above two cases, we consider the homotopy $H(u, \lambda) = \pm \lambda J u + (1 - \lambda) Q N u$. Then $H(u, \lambda) \neq 0$, for each $u \in \text{Ker } L \cap \partial \Omega$. As $\overline{\Omega}_3 \subset \Omega$. By the homotopy property of the degree, we finally deduce that

$$\deg \left(QN \mid_{\operatorname{Ker} L}, \operatorname{Ker} L \cap \Omega, 0 \right) = \deg \left(H \left(u, 0 \right), \operatorname{Ker} L \cap \Omega, 0 \right)$$
$$= \deg \left(H \left(u, 1 \right), \operatorname{Ker} L \cap \Omega, 0 \right)$$
$$= \deg \left(\pm J, \operatorname{Ker} L \cap \Omega, 0 \right) \neq 0,$$

which completes the proof of Theorem 2.

2.4 Example 1

Consider the boundary value problem:

$$\begin{cases} D_{0^+}^{\frac{3}{2}} u\left(t\right) &= \frac{3\sqrt{t}}{5\pi\sqrt{\pi}} u\left(t\right) \left(2\sin u\left(t\right) - 3\right) + \pi\sqrt{\pi}\cos t, \quad 0 < t < \frac{\pi}{4}, \\ D_{0^+}^{\frac{1}{2}} u\left(0^+\right) &= D_{0^+}^{\frac{1}{2}} u\left(\frac{\pi}{4}^-\right), \\ I_{0^+}^{\frac{1}{2}} u\left(0^+\right) &= I_{0^+}^{\frac{1}{2}} u\left(\frac{\pi}{4}^-\right). \end{cases}$$
(1)

In this example,

$$\alpha = \frac{3}{2}, T = \frac{\pi}{4}, \text{ and } f(t, x) = \frac{3\sqrt{t}}{5\pi\sqrt{\pi}}x(2\sin x - 3) + \pi\sqrt{\pi}\cos t.$$

In addition, we have

1.

$$|f(t,x)| \le \frac{3\sqrt{t}}{5\pi\sqrt{\pi}} |x| (2|\sin x|+3) + \pi\sqrt{\pi}\cos t \le \frac{3}{\pi\sqrt{\pi}}\sqrt{t} |x| + \pi\sqrt{\pi}\cos t.$$

Then

$$a(t) = \frac{3}{\pi\sqrt{\pi}}, \|a\|_1 = \frac{3}{4\sqrt{\pi}} < \frac{\Gamma\left(\frac{3}{2}\right)}{2\frac{\pi}{4}} = \frac{1}{\sqrt{\pi}}, \text{ and } r(t) = \pi\sqrt{\pi}\cos t.$$

2. Let M = 80. For each $u \in \text{dom}(L)$, suppose that |u(t)| > M, for all $t \in [0, \frac{\pi}{4}]$. If u(t) > M, for all $t \in [0, \frac{\pi}{4}]$, then $2 \sin u(t) - 3 \le -1$ and thus

$$f(t, u(t)) \leq -\frac{3\sqrt{t}}{5\pi\sqrt{\pi}}u(t) + \pi\sqrt{\pi}\cos t \leq -\frac{3\sqrt{t}}{5\pi\sqrt{\pi}}M + \pi\sqrt{\pi}\cos t.$$

Notice that since -u(t) < -M, then

$$\int_{0}^{\frac{\pi}{4}} f(t, u(t)) dt \le \int_{0}^{\frac{\pi}{4}} \left(-\frac{3\sqrt{t}}{5\pi\sqrt{\pi}}M + \pi\sqrt{\pi}\cos t \right) dt = -0.06 < 0.$$

If u(t) < -M, for all $t \in [0, \frac{\pi}{4}]$, then 0 < M < -u(t) and

$$\frac{3\sqrt{t}}{5\pi\sqrt{\pi}}M < -\frac{3\sqrt{t}}{5\pi\sqrt{\pi}}u(t) \le \frac{3\sqrt{t}}{5\pi\sqrt{\pi}}u(t)\left(2\sin u(t) - 3\right).$$

Hence $f(t, u(t)) \ge \frac{3\sqrt{t}}{5\pi\sqrt{\pi}}M + \pi\sqrt{\pi}\cos t$, for all $t \in [0, \frac{\pi}{4}]$. Consequently

$$\int_{0}^{\frac{\pi}{4}} f(t, u(t)) dt \ge \int_{0}^{\frac{\pi}{4}} \left(\frac{3\sqrt{t}}{5\pi\sqrt{\pi}}M + \pi\sqrt{\pi}\cos t\right) ds = 7.93 > 0.$$

Finally $\int_{0}^{\frac{\pi}{4}} f(t, u(t)) dt \neq 0.$

3. Let $M^* = 95$. For every $c \in \mathbb{R}$ with $|c| > M^*$, we have $\left(2\sin\frac{c}{\sqrt{t}} - 3\right) \leq -1$. Then

$$\frac{3}{5\pi\sqrt{\pi}}c^2\left(2\sin\frac{c}{\sqrt{t}}-3\right) + \pi\sqrt{\pi}c\cos t \le -\frac{3}{5\pi\sqrt{\pi}}c^2 + \pi\sqrt{\pi}c\cos t.$$

Finally

$$c \int_0^{\frac{\pi}{4}} f\left(t, \frac{c}{\sqrt{t}}\right) dt \leq \int_0^{\frac{\pi}{4}} \left(-\frac{3}{5\pi\sqrt{\pi}}c^2 + \pi\sqrt{\pi}c\cos t\right) dt \\ = -\frac{3}{20\sqrt{\pi}}c^2 + \frac{\pi\sqrt{\pi}}{\sqrt{2}}c < 0,$$

for all $c \notin \left[0, \frac{20\pi^2}{3\sqrt{2}}\right]$. We conclude that all conditions of Theorem 2 hold, proving that problem 1 has at least one solution u in $C_{\frac{1}{2}}[0, \frac{\pi}{4}]$.

2.5 Example 2

Consider the following boundary value problem

$$\begin{cases} D_{0_{+}}^{\frac{3}{2}}u(t) &= f(t, u(t)), \quad 0 < t < 1, \\ D_{0_{+}}^{\frac{1}{2}}u(0^{+}) &= D_{0_{+}}^{\frac{1}{2}}u(1^{-}), \\ I_{0_{+}}^{\frac{1}{2}}u(0^{+}) &= I_{0_{+}}^{\frac{1}{2}}u(1^{-}), \end{cases}$$

$$(2)$$

where

$$f(t,x) = \begin{cases} -\frac{\sqrt{t}}{10}, & t \in [0,1], x \in (-\infty,0) \\ \frac{\sqrt{t}}{10} \left(x - 1 + \frac{1}{3} \ln\left(|x| \sqrt{t} + 1 \right) \right), & t \in [0,1], x \in [0,+\infty). \end{cases}$$

Next, we check all of assumptions of Theorem 2:

1. Since for all s > 0, $\ln s \le s - 1 < s$, then

$$|f(t,x)| \le \frac{\sqrt{t}}{10} \left(|x| + \frac{1}{3} \left(|x| \sqrt{t} + 1 \right) \right) + \frac{\sqrt{t}}{10} = \sqrt{t} \left(\frac{1}{10} + \frac{\sqrt{t}}{30} \right) |x| + 4\frac{\sqrt{t}}{30}.$$

Then we take

$$a(t) = \left(\frac{1}{10} + \frac{\sqrt{t}}{30}\right)$$
 and $r(t) = 4\frac{\sqrt{t}}{30}$

with $a, r \in L^1[0, 1]$ and

$$\|a\|_{1} = \int_{0}^{1} \left(\frac{1}{10} + \frac{\sqrt{t}}{30}\right) dt = \frac{1}{10} + \frac{2}{90} = \frac{11}{90} < \frac{\Gamma\left(\frac{3}{2}\right)}{2} \simeq 0.443.$$

2. For M = 91, assume that u(t) > M, for all $t \in [0, 1]$. Then

$$f(s, u(s)) \ge \frac{\sqrt{s}}{10} \left(M - 1 + \frac{1}{3} \ln \left(M \sqrt{s} + 1 \right) \right).$$

As a consequence, we derive the estimates:

$$\begin{split} \int_{0}^{1} f(s, u(s)) ds &\geq (M-1) \int_{0}^{1} \frac{\sqrt{s}}{10} ds + \frac{1}{30} \int_{0}^{1} \sqrt{s} \ln(M\sqrt{s}+1) ds \\ &= \frac{2}{30} (M-1) + \frac{2}{90} \left(\left(1 + \frac{1}{M^{3}} \right) \ln(M+1) - \frac{(M+1)^{3}}{3M^{3}} \right. \\ &\quad + \frac{3(M+1)^{2}}{2M^{3}} - \frac{3(M+1)}{M^{3}} + \frac{11}{6M^{3}} \right) \\ &\geq \frac{2}{30} (M-1) - \frac{2}{90} \frac{(M+1)^{3} + 9(M+1)}{3M^{3}} \simeq 5.99. \end{split}$$

Now suppose that u(t) < -M, for all $t \in [0, 1]$. Then

$$\int_0^1 f(s, u(s)) ds = \int_0^1 -\frac{\sqrt{s}}{10} ds = -\frac{2}{30} < 0$$

which shows that

$$\int_0^1 f(s, u(s))ds \neq 0,$$

for all $u \in \text{dom}(L)$ satisfying |u(t)| > M, for all $t \in [0, 1]$.

3. Let $M^* = \frac{2}{3}$. For all $c > M^*$, we have

$$\begin{split} c \int_0^1 f\left(s, \frac{c}{\sqrt{s}}\right) ds &= \int_0^1 c \frac{\sqrt{s}}{10} \left(\frac{c}{\sqrt{s}} - 1 + \frac{1}{3} \ln\left(\frac{|c|}{\sqrt{s}} \sqrt{s} + 1\right)\right) ds \\ &= \frac{c^2}{10} - \frac{2}{30}c + \frac{2}{90}c \ln(|c| + 1) \\ &= \frac{c}{10} \left(c - \frac{2}{3} + \frac{2}{9}\ln(|c| + 1)\right) > 0, \end{split}$$

while for $c < -M^*$, we have

$$c\int_{0}^{1} f\left(s, \frac{c}{\sqrt{s}}\right) ds = c\int_{0}^{1} -\frac{\sqrt{s}}{10} ds = -\frac{2}{30}c > 0.$$

Therefore we have showed that problem 2 has at least one solution u in $C_{\frac{1}{2}}[0,1]$.

References

- [1] AHMAD BASHIR, NIETO JUAN J. Riemann-Liouville fractional differential equations with fractional boundary conditions. Fixed Point Theory, 2012, 13, No. 2, 329–336.
- [2] BAI ZHANBING. *m-point boundary value problems at resonance*. Electron. J. Qual. Theory Differ. Equ., 2010, No. 37, 15 pp.
- [3] BAI ZHANBING. On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal., 2010, 72, No. 2, 916–924.

- [4] CHEN YI, TANG XIANHUA. Positive solutions of fractional differential equations at resonance on the half-line. Bound. Value Probl., 2012, 2012:64, 13 pp.
- [5] HU ZHIGANG LIU WENBIN, CHEN TAIYONG. Two-point boundary value problems for fractional differential equations at resonance. Bull. Malays. Math. Sci. Soc., 2013, (2) 36, No. 3, 747–755.
- [6] JIANG WEIHUA. The existence of solutions to boundary value problems of fractional differential equations at resonance. Nonlinear Anal., 2011, 74, No. 5, 1987–1994.
- [7] KILBAS ANATOLY A., SRIVASTAVA HARI M., TRUJILLO JUAN J. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B. V., Amsterdam, 2006. xvi+523 pp.
- [8] MAWHIN JEAN. Topological degree methods in nonlinear boundary value problems. Expository lectures from the CBMS Regional Conference held at Harvey Mudd College, Claremont, Calif., June 9-15, 1977. CBMS Regional Conference Series in Mathematics, 40. American Mathematical Society, Providence, R. I., 1979. v+122 pp.
- [9] NIETO JUAN J. Existence of a solution for a three-point boundary value problem for a secondorder differential equation at resonance. Bound. Value Probl. 2013, 2013:130, 7 pp.
- [10] WANG GANG, LIU WENBIN, REN CAN. Existence of solutions for multi-point nonlinear differential equations of fractional orders with integral boundary conditions. Electron. J. Qual. Theory Differ. Equ., 2012, No. 54, 10 pp.
- [11] XU NA, LIU WENBIN, XIAO LISHUN. The existence of solutions for nonlinear fractional multipoint boundary value problems at resonance. Bound. Value Probl., 2012, 2012:65, 14 pp.
- [12] ZHANG YINGHAN, BAI ZHANBING. Existence of solutions for nonlinear fractional three-point boundary value problems at resonance. J. Appl. Math. Comput., 2011, 36, No. 1-2, 417–440.

SMAIL DJEBALI
Department of Mathematics, Faculty of Sciences
Al Imam Mohammad Ibn Saud Islamic University (IMSIU)
P.O. Box 90950, Riyadh 11623, Saudi Arabia
Laboratoire Théorie du point Fixe & Applications
École Normale Supérieure, B.P. 92, 16006 Kouba, Algiers

Algeria E-mail: *djebali@hotmail.com*

LAMINE GUEDDA Department of Maths-Informatique Hamma Lakhdar University, 39000 El-Oued, Algeria E-mail: lquedda_iq@ymail.com Received August 23, 2015