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Abstract. In this paper, by using the coincidence degree theory due to J.Mawhin,
we consider the solvability of a class of nonlinear fractional two-point boundary value
problems at resonance. An example of application illustrates the existence result.
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1 Introduction

Fractional differential equations describe many phenomena in various fields of
science and engineering such as physics, chemistry, biology, visco-elasticity, electro-
magnetics, economy, etc. Several methods have been used to deal with the question
of solvability of boundary value problems (BVPs for short) for fractional differential
equations; we quote the Laplace transform method, iteration methods, the upper
and lower solution method, as well as topological methods (fixed point theory and
Leray-Schauder degree theory) (see, e. g., [1, 10], and references therein).

In [1] B. Ahmad and J. Nieto studied the following Riemann-Liouville fractional
differential equation with fractional boundary conditions:

Dα
0+u (t) = f (t, u (t)) , t ∈ [0, T ] , 1 < α ≤ 2, (1.1)

Dα−2
0+ u

(

0+
)

= b0D
α−2
0+ u

(

T−)

, (1.2)

Dα−1
0+ u

(

0+
)

= b1D
α−1
0+ u

(

T−)

, (1.3)

where Dα
0+ denotes the Riemann-Liouville fractional derivative of order α,

b0 6= 1, b1 6= 1, and the function f : [0, T ] × R → R is continuous. Clearly this
is a nonresonant problem, i.e. the associated homogeneous problem admits only the
following solution:

u(t) = c1t
α−1 + c2t

α−2,
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where the constants c1, c2 satisfy

c1Γ(α).0 + c2Γ(α − 1) = b0(c1Γ(α).T + c2Γ(α − 1))
c1Γ(α) = b1c1Γ(α),

that is c1 = c2 = 0 for b0 6= 1 and b1 6= 1. Then a corresponding Green’s func-
tion can be computed. A fixed point theorem was used to show that the operator
P : C2−α −→ C2−α defined by

(Pu) (t) = 1
Γ(α)

∫ t

0 (t − s)α−1 f (s, u (s)) ds + b1tα−1

(1−b1)Γ(α)

∫ T

0 f (s, u (s)) ds

+ b0tα−2

(1−b1)(1−b0)Γ(α−1)

∫ T

0 (T − (1 − b1) s) f (s, u (s)) ds

has at least one fixed point.

By a similar method, G. Wang, W. Liu, and C.Ren investigated in [10], the
existence and uniqueness of solutions for the fractional boundary-value problem:







Dα
0+u (t) = f (t, u (t)) , t ∈ [0, T ] , 1 < α ≤ 2,

I2−α
0+ u (t) |t=0 = 0, Dα−2

0+ u (T ) =
m
∑

i=1
aiI

α−1
0+ (ξi) ,

where 0 < ξi < T, ai ∈ R, m ≥ 2, and Iα
0+ stands for the Riemann-Liouville frac-

tional integral. Standard fixed point principles have been employed.

In [11], the authors investigated higher-order fractional derivatives, i. e. for
2 < α ≤ 3.

When the nonlinearity of f also depends on the first derivative, Z.Bai [2] dis-
cussed the solvability of m-point fractional BVPs at resonance; the coincidence de-
gree theory as developed by Mawhin in [8] was employed. Concerning papers dealing
with fractional-order BVPs at resonance, we refer, for example, to [4–6,11,12]. See
also [9] for a resonant second-order boundary value problem.

In the present work, Mawhin’s coincidence degree theory is used to deal with
BVP (1.1), (1.2), (1.3) at the resonance case, i. e. for b0 = b1 = 1. An existence
result illustrated by means of two examples of application is provided in Section 2.

We first present some definitions and auxiliary lemmas about fractional calculus
theory.

Definition 1 (see [3, 7]). The Riemann-Liouville fractional integral of order α > 0
of a function h : (0,+∞) → R is given by

Iα
0+h (t) =

1

Γ (α)

∫ t

0
(t − s)α−1 h (s) ds,

where Γ (.) refers to the function gamma, provided the right side is pointwise defined
on (0,+∞) .
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Definition 2 (see [7, 11]). The Riemann-Liouville fractional derivative of order
α > 0 of a function h : (0,+∞) → R is given by

Dα
0+h (t) =

1

Γ (n − α)

dn

dtn

∫ t

0

h (s)

(t − s)α−n+1 ds =
dn

dtn
In−α
0+ h (t) ,

where n = [α] + 1, provided the right side is pointwise defined on (0,+∞) . Here [α]
denotes the integer part of the real number α.

For α < 0, we set by convention Dα
0+h (t) = I−α

0+ h (t), and if 0 ≤ β ≤ α, we get

Dβ

0+Iα
0+h (t) = Iα−β

0+ h (t) .

Given these definitions, it can be checked that the Riemann-Liouvelle fractional
integration and fractional differentiation operators of the power functions tλ yield
power functions of the same form. Indeed, for λ > −1 and α ≥ 0, we have

Iα
0+tλ = Γ(λ+1)

Γ(λ+α+1) t
λ+α and Dα

0+tλ = Γ(λ+1)
Γ(λ−α+1) t

λ−α.

Also note that Dα
0+tλ = 0, for all λ = α− i with i = 1, 2, 3, . . . , n (n is the smallest

integer greater than or equal to α). Also we have

Lemma 1 (see [4]). Suppose that h ∈ L1 (0,+∞) and α, β are positive real numbers.
Then

Iα
0+Iβ

0+h (t) = Iα+β

0+ h (t) and Dα
0+Iα

0+h (t) = h (t) .

If, in addition Dα
0+h (t) ∈ L1 (0,+∞) , then

Iα
0+Dα

0+h (t) = h (t) +

i=n
∑

i=1

cit
α−i,

for some constants ci ∈ R (1 ≤ i ≤ n).

Finally, notice that the boundary value problem







Dα
0+u (t) = f (t, u (t)) , t ∈ [0, T ] , 1 < α ≤ 2

Dα−2
0+ u (0+) = Dα−2

0+ u (T−) ,

Dα−1
0+ u (0+) = Dα−1

0+ u (T−)

is at resonance, i. e., the corresponding homogeneous boundary value problem:







Dα
0+u (t) = 0, t ∈ [0, T ] , 1 < α ≤ 2

Dα−2
0+ u (0+) = Dα−2

0+ u (T−) ,

Dα−1
0+ u (0+) = Dα−1

0+ u (T−)

has u (t) = ctα−2 as nontrivial solutions (c ∈ R).
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2 Main result

2.1 Functional framework

Since our main existence result is based on Mawhin’s coincidence degree, we first
recall some basic facts about this theory; more details can be found in [8].

Let X, Y be two real Banach spaces and L : dom(L) ⊂ X → Y a Fredholm
operator of index zero. Then there exist two continuous projectors P : X → X
and Q : Y → Y such that ImP = Ker L, Ker Q = ImL, X = Ker L ⊕ Ker P, and
Y = Im L ⊕ ImQ. It follows that the operator

LP = L
∣

∣

dom(L)∩Ker P : dom(L) ∩ Ker P → Im L

is invertible; we denote its inverse by KP (i.e. L−1
P = KP ). Let Ω be an open bounded

subset of X such that dom (L)∩Ω 6= ∅. The map N : X → Y is said to be L-compact
on Ω if QN

(

Ω
)

is bounded and the operator KP,Q = KP (I − Q)N : Ω → X is
compact. Since ImQ and Ker L have the same dimension, then there exists a linear
isomorphism J : Im Q → Ker L. Mawhin [8] established the following existence
result for the abstract nonlinear equation Lu = Nu:

Theorem 1. Let L : X → Y be a Fredholm operator of index zero and N : X → Y
be L-compact operator on Ω. Then the equation Lu = Nu has at least one solution
in dom (L) ∩ Ω if the following conditions are satisfied:

1. Lu 6= Nu for each (u, λ) ∈ [(dom (L) �Ker L) ∩ ∂Ω] × [0, 1] ;

2. Nu /∈ Im L, for each u ∈ Ker L ∩ ∂Ω;

3. deg (QN |Ker L ,Ker L ∩ Ω, 0) 6= 0.

As usual, C [0, T ] will denote the Banach space of continuous real valued func-
tions defined on [0, T ] with the norm ‖u‖ = supt∈[0,T ] |u (t)| . For all t ∈ [0, T ], we
define the function ur by ur (t) = tru (t), r ≥ 0. Let Cr [0, T ] be the space of all
functions u such that ur ∈ C [0, T ]. Then

Lemma 2. Cr [0, T ] endowed with the norm ‖u‖r = supt∈[0,T ] t
r |u (t)| is a real

Banach space.

Let Y = L1 [0, T ] be the Lebesgue space of measurable functions y such that

s 7−→ |y(s)| is Lebesgue integrable equipped with the norm ‖y‖1 =
∫ T

0 |y(s)| ds and
X = C2−α [0, T ] endowed with the norm ‖u‖2−α = supt∈[0,T ] t

2−α |u (t)| . Define the
linear operator L : dom (L) ∩ X −→ Y by

Lu = Dα
0+u, (2.1)

where

dom(L) = {u ∈ X : Dα
0+u ∈ Y, u satisfies conditions (1.2), (1.3) with b0 = b1 = 1} .
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Finally, define the Nemytskii operator N : X −→ Y by

(Nu) (t) = f (t, u (t)) , t ∈ [0, T ] . (2.2)

Thus, BVP (1.1), (1.2), (1.3) with b0 = b1 = 1 can be written as

Lu = Nu, u ∈ dom(L).

In a series of lemmas, we next investigate the properties of operators L and N .

2.2 Auxiliary lemmas

Lemma 3. Let L be the operator defined by (2.1); then

Ker L =
{

ctα−2 : c ∈ R
}

and Im L =

{

y ∈ L [0, T ] :

∫ T

0
y(s)ds = 0

}

.

Proof. The equation Dα
0+u (t) = 0 admits u (t) = c1t

α−1 +c2t
α−2 as solutions, where

c1, c2 are arbitrary constants. Then

Dα−2
0+ u(t) = I2−α

0+ u(t) = c1Γ (α) t + c2Γ (α − 1) and Dα−1
0+ u (t) = c1Γ (α) .

Combining this with (1.2) and (1.3), we find that

c2Γ (α − 1) = c1Γ (α) T + c2Γ (α − 1)

and hence c1 = 0 while c2 is any constant.
If y ∈ Im (L) , then there exists u ∈ dom(L) such that Dα

0+ (t) = y (t). Hence

u (t) = Iα
0+y (t) + c1t

α−1 + c2t
α−2

and
Dα−2

0+ u(t) = I2
0+y (t) + c1Γ (α) t + c2Γ (α − 1) ,

Dα−1
0+ u (t) = I1

0+y (t) + c1Γ (α) .

By the boundary conditions (1.2), (1.3), we infer that

c1 = − 1

Γ (α) T

∫ T

0
(T − s) y(s)ds and

∫ T

0
y(s)ds = 0.

Let y ∈ Y satisfy
∫ T

0 y(s)ds = 0. If u(t) = Iα
0+y (t) − tα−1

Γ(α)T

∫ T

0 (T − s) y(s)ds, then

u ∈ dom(L) and Dα
0+Dα

0+u (t) = y (t) . As a consequence y ∈ Im (L) .

Lemma 4.

(a) L : dom (L) ∩ X −→ Y is a Fredholm operator of index 0.

(b) The linear continuous projectors Q : Y → Y and P : X → X are such that

Qy =
1

T

∫ T

0
y(s)ds and (Pu) (t) =

1

Γ (α − 1)
I2−α
0+ u (t) |t=T tα−2.
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Proof. It is easy to see that Q2y = Qy and P 2u = Pu, for y ∈ Y, u ∈ X. For all
y ∈ Y , y1 = y − Qy ∈ Im (L) because

∫ T

0 y1(s)ds = 0. Hence Y = Im (L) + Im (Q),

(Im (Q) = R). For m ∈ Im (L)∩R, we have
∫ T

0 mds = Tm = 0; therefore m = 0 and
Y = Im (L)⊕Im (Q). Thus dim(Ker L) = codim (Im L) = dim(Im Q) = dim(R) = 1.
So L is a Fredholm operator of index 0.

Lemma 5. Let LP = L |dom(L)∩Ker P : dom(L) ∩ Ker P → Im (L) . The inverse KP

of LP is given by

(KP y) (t) = Iα
0+y (t) − tα−1

TΓ (α)
I2
0+y (T ) .

Moreover

‖KP y‖2−α ≤ 2T

Γ (α)
‖y‖1 ,

for all y ∈ Im (L) .

Proof. For all y ∈ Im (L), we have

(LKP y) (t) = Dα
0+

(

Iα
0+y (t) − tα−1

TΓ (α)
I2
0+y (T )

)

= y (t) .

Recall that
Ker P =

{

u ∈ dom (L) : I2−α
0+ u(t) |t=T = 0

}

.

Thus, for u ∈ dom(L) ∩ Ker P , we have

(KP L) u (t) = Iα
0+Dα

0+u (t) − tα−1

T.Γ(α)I
2
0+Dα

0+u (T )

= u (t) + c1t
α−1 + c2t

α−2 − I
2−α

0+
u(T )

T.Γ(α) tα−1.

Since u ∈ dom(L) ∩ KerP , then

(KP L)u ∈ dom(L) ∩ Ker P

and so
I2−α
0+ u(T ) = 0 and c1t

α−1 + c2t
α−2 ∈ dom(L) ∩ Ker P.

Moreover
I2−α
0+

(

c1t
α−1 + c2t

α−2
)

= c1Γ (α) t + c2Γ (α − 1) ;

hence
c2Γ (α − 1) = c1Γ (α) T + c2Γ (α − 1) = 0.

Finally c2 = c1 = 0 and
(KP L) u (t) = u (t) ,

which shows that KP = (LP )−1 .
Keeping in mind that

t2−α (KP y) (t) =
t2−α

Γ (α)

∫ t

0
(t − s)α−1 y(s)ds − t

TΓ (α)

∫ T

0
(T − s) y(s)ds,
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we deduce that

t2−α |(KP y) (t)| ≤ T 2−α

Γ (α)
Tα−1

∫ T

0
|y(s)| ds +

T

TΓ (α)
T

∫ T

0
|y(s)| ds =

2T

Γ (α)
‖y‖1 .

Finally

‖KP y‖2−α = sup
t∈[0,T ]

t2−α |(KP y) (t)| ≤ 2T

Γ (α)
‖y‖1 .

Lemma 6. For all u ∈ X, t ∈ [0, T ], we have

t2−αKP (I − Q) Nu (t) =
1

Γ (α)

∫ T

0
G (t, s) f (s, u (s)) ds,

where

G (t, s) =

{

t2−α (t − s)α−1 + ts
T
− t

2 − t2

αT
, 0 ≤ s < t ≤ T,

ts
T
− t

2 − t2

αT
, 0 ≤ t < s ≤ T.

Lemma 7. Let f : [0, T ] × R → R be a continuous function. Assume that Ω is an
open bounded subset from X such that dom(L)∩Ω 6= ∅; then N is L-compact on Ω.

Proof. In order to prove that N is L-compact on Ω, we only need to show that
QN

(

Ω
)

is bounded and KP (I − Q)N : Ω → Y is compact.
Since f : [0, T ] × R → R is continuous, Ω is bounded; therefore there exists a

constant M > 0 such that |f (t, u (t))| ≤ M, ∀u ∈ Ω, ∀ t ∈ [0, T ] . Consequently, for
all u ∈ Ω, we have

‖QN (u)‖1 =
∫ T

0

[

1
T

∣

∣

∣

∫ T

0 f (s, u (s)) ds
∣

∣

∣

]

ds =
∣

∣

∣

∫ T

0 f (s, u (s)) ds
∣

∣

∣

≤
∫ T

0 |f (s, u (s))| ds ≤ MT.

Since (I − Q) and KP are continuous linear operators, then (I − Q)N (u) and
KP (I − Q) N (u) are bounded. Hence

‖(I − Q)N (u)‖1 ≤ ‖N (u)‖1 + ‖QN (u)‖1 ≤ 2TM,

‖KP (I − Q)N (u)‖2−α ≤ 2T

Γ (α)
‖(I − Q)N (u)‖1 ≤ 4T 2M

Γ (α)
.

For all t1 ∈ [0, T ] , t2 ∈ [0, T ], (t1 < t2), and u ∈ Ω, we have
∣

∣t2−α
2 KP (I − Q)Nu (t2) − t2−α

1 KP (I − Q)Nu (t1)
∣

∣

=
1

Γ (α)

∣

∣

∣

∣

∫ T

0
G (t2, s) f (s, u (s)) ds −

∫ T

0
G (t1, s) f (s, u (s)) ds

∣

∣

∣

∣

=
1

Γ (α)

∣

∣

∣

∣

∫ T

0
(G (t2, s) − G (t1, s))f (s, u (s)) ds

∣

∣

∣

∣

≤ M

Γ (α)

∫ T

0
|G (t2, s) − G (t1, s)| ds.

Next, we distinguish between three different cases:
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1. Case t1 < t2 < s. We have

|G (t2, s) − G (t1, s)| = |t2 − t1|
∣

∣

s
T
−

(

1
2 + t2+t1

αT

)
∣

∣

≤ |t2 − t1|
(

s
T

+
(

1
2 + t2+t1

αT

))

;

then
∫ T

0 |G (t2, s) − G (t1, s)| ds ≤ |t2 − t1|
∫ T

0

(

s
T

+
(

1
2 + t2+t1

αT

))

ds
= (T + t2+t1

α
) |t2 − t1| .

2. Case s < t1 < t2. We have

|G (t2, s) − G (t1, s)| =
∣

∣

∣
t2−α
2 (t2 − s)α−1 − t2−α

1 (t1 − s)α−1

+ (t2 − t1)
(

s
T
−

(

1
2 + t2+t1

αT

))
∣

∣

≤
∣

∣

∣
t2−α
2 (t2 − s)α−1 − t2−α

1 (t1 − s)α−1
∣

∣

∣

+
∣

∣(t2 − t1)
(

s
T
−

(

1
2 + t2+t1

αT

))∣

∣ .

Note that the function Ψs defined by

Ψs (t) = t2−α (t − s)α−1 ,

where t ∈ [0, T ] and 0 ≤ s < t, is increasing on [0, T ] because its derivative

Ψ′
s (t) = (2 − α)

(

t − s

t

)α−1

+ (α − 1)

(

t

t − s

)2−α

is positive. Then

t2−α
2 (t2 − s)α−1 − t2−α

1 (t1 − s)α−1 > 0

and
∫ T

0 (t2−α
2 (t2 − s)α−1 − t2−α

1 (t1 − s)α−1)ds

= t2−α
2

∫ t2
0 (t2 − s)α−1 ds − t2−α

1

∫ t1
0 (t1 − s)α−1 ds

= t2−t1
α

.

Finally

∫ T

0 |G (t2, s) − G (t1, s)| ds ≤ t2−t1
α

+ (T + t2+t1
α

) |t2 − t1|
= (T + t2+t1+1

α
) |t2 − t1| .

3. Case t1 < s < t2. We have

|G (t2, s) − G (t1, s)| =
∣

∣

∣
t2−α
2 (t2 − s)α−1 + (t2 − t1)

(

s
T
−

(

1
2 + t2+t1

αT

))

∣

∣

∣

≤ t2−α
2 (t2 − s)α−1 +

∣

∣(t2 − t1)
(

s
T
−

(

1
2 + t2+t1

αT

))
∣

∣

≤ t2−α
2 (t2 − t1)

α−1 + (T + t2+t1
α

) |t2 − t1| .

This shows that KP (I − Q)N is equicontinuous, as claimed.
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2.3 Existence theorem

We are now in position to state and prove our main existence result.

Theorem 2. Let f : [0, T ] × R → R be continuous. Assume that

• (H1) there exist two functions a, r ∈ L1 [0, T ] such that for all t ∈ [0, T ] and
x ∈ R, we have |f(t, x)| ≤ t2−αa (t) |x| + r (t) ,

• (H2) there exists a constant M > 0 such that for all u ∈ dom (L), if |u (t)| > M

for all t ∈ [0, T ] , then
∫ T

0 f (s, u (s)) ds 6= 0,

• (H3) there exists a constant M∗ > 0 such that for all c ∈ R, if |c| > M∗, then
either

c

∫ T

0
f

(

s, csα−2
)

ds < 0 or c

∫ T

0
f

(

s, csα−2
)

ds > 0.

Then the boundary value problem (1.1), (1.2), (1.3) with b0 = b1 = 1 has at least

one solution u ∈ C2−α [0, T ] provided that ‖a‖1 < Γ(α)
2T

.

Proof. Let

Ω1 = {u ∈ dom(L)�Ker L : Lu = λNu, λ ∈ (0, 1)} .

For u ∈ Ω1, we have u ∈ dom(L) ∩ Ker P and Lu = λNu with λ 6= 0 because
u /∈ Ker L; then

‖u‖2−α = ‖KP Lu‖2−α

≤ 2T
Γ(α) ‖Lu‖1 = 2Tλ

Γ(α) ‖Nu‖1

≤ 2T
Γ(α)

∫ T

0 |f (s, u (s))| ds.

From condition (H1), we have

|f (s, u (s))| ≤ s2−αa (s) |u (s)| + r (s) ≤ a (s) sup
s∈[0,T ]

s2−α |u (s)| + r (s) .

Hence
∫ T

0
|f (s, u (s))| ds ≤ ‖a‖1 ‖u‖2−α + ‖r‖1 .

Then

‖u‖2−α ≤ 2T

Γ (α)

(

‖a‖1 ‖u‖2−α + ‖r‖1

)

.

Finally

‖u‖2−α ≤ 2T ‖r‖1

Γ (α) − 2T ‖a‖1

= M1.

Consider the set

Ω2 = {u ∈ Ker L : Nu ∈ Im L} .
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For u ∈ Ω2, we have u (t) = ctα−2 and
∫ T

0 f
(

s, csα−2
)

ds = 0. Then, from the

condition (H2), there exists t0 ∈ [0, T ] such that
∣

∣ctα−2
0

∣

∣ ≤ M, with t0 6= 0. Therefore

‖u‖2−α = sup
t∈[0,T ]

t2−α
∣

∣ctα−2
∣

∣ = |c| ≤ Mt2−α
0 = M2.

Let
Ω3 = {u ∈ Ker L : −λJu + (1 − λ)QNu = 0, λ ∈ [0, 1]} ,

where J : KerL → ImQ is the linear isomorphism defined by J(u) = c.

In case (H3) is satisfied, assume that c
∫ T

0 f
(

s, csα−2
)

ds < 0 holds. For all
u ∈ Ω3, we can write u = ctα−2 and

λc2 =
(1 − λ)

T
c

∫ T

0
f

(

s, csα−2
)

ds.

If λ = 1, then c = 0. Otherwise, if Hypothesis |c| > M∗, then by (H3) , one has

(1 − λ)

T
c

∫ T

0
f

(

s, csα−2
)

ds < 0,

which contradicts λc2 ≥ 0. Thus

‖u‖2−α = |c| ≤ M∗.

If c
∫ T

0 f
(

s, csα−2
)

ds > 0 holds, then Ω3 can be defined as follows:

Ω3 = {u ∈ KerL : λJu + (1 − λ) QNu = 0, λ ∈ [0, 1]} .

Next, we shall prove that all conditions of Theorem 1 are fulfilled.
Let Ω be bounded open such that Ω1 ∪ Ω2 ∪ Ω3 ⊂ Ω. We have already proved

that L is a Fredholm operator of index 0 and that N is L-compact on Ω. Also, we
have

1. Lu 6= Nu, for each (u, λ) ∈ [(dom (L) �Ker L) ∩ ∂Ω] × [0, 1] for Ω1 ⊂ Ω.

2. Nu /∈ Im L for each u ∈ Ker L ∩ ∂Ω for Ω2 ⊂ Ω.

3. In order to take into account the subset Ω3 in the above two cases, we consider
the homotopy H (u, λ) = ±λJu + (1 − λ)QNu. Then H (u, λ) 6= 0, for each
u ∈ Ker L ∩ ∂Ω. As Ω3 ⊂ Ω. By the homotopy property of the degree, we
finally deduce that

deg (QN |Ker L,Ker L ∩ Ω, 0) = deg (H (u, 0) ,Ker L ∩ Ω, 0)

= deg (H (u, 1) ,Ker L ∩ Ω, 0)

= deg (±J,Ker L ∩ Ω, 0) 6= 0,

which completes the proof of Theorem 2.
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2.4 Example 1

Consider the boundary value problem:















D
3
2

0+u (t) = 3
√

t
5π

√
π
u (t) (2 sin u (t) − 3) + π

√
π cos t, 0 < t < π

4 ,

D
1
2

0+u (0+) = D
1
2

0+u
(

π
4
−)

,

I
1
2

0+u (0+) = I
1
2

0+u
(

π
4
−)

.

(1)

In this example,

α =
3

2
, T =

π

4
, and f (t, x) =

3
√

t

5π
√

π
x (2 sin x − 3) + π

√
π cos t.

In addition, we have

1.

|f (t, x)| ≤ 3
√

t

5π
√

π
|x| (2 |sin x| + 3) + π

√
π cos t ≤ 3

π
√

π

√
t |x| + π

√
π cos t.

Then

a (t) =
3

π
√

π
, ‖a‖1 =

3

4
√

π
<

Γ
(

3
2

)

2π
4

=
1√
π

, and r (t) = π
√

π cos t.

2. Let M = 80. For each u ∈ dom (L) , suppose that |u (t)| > M , for all t ∈ [0, π
4 ].

If u (t) > M , for all t ∈ [0, π
4 ], then 2 sin u (t) − 3 ≤ −1 and thus

f (t, u (t)) ≤ − 3
√

t

5π
√

π
u (t) + π

√
π cos t ≤ − 3

√
t

5π
√

π
M + π

√
π cos t.

Notice that since −u (t) < −M , then

∫ π

4

0
f (t, u (t)) dt ≤

∫ π

4

0

(

− 3
√

t

5π
√

π
M + π

√
π cos t

)

dt = −0.06 < 0.

If u (t) < −M , for all t ∈ [0, π
4 ], then 0 < M < −u (t) and

3
√

t

5π
√

π
M < − 3

√
t

5π
√

π
u (t) ≤ 3

√
t

5π
√

π
u (t) (2 sin u (t) − 3) .

Hence f (t, u (t)) ≥ 3
√

t
5π

√
π
M + π

√
π cos t, for all t ∈ [0, π

4 ]. Consequently

∫ π

4

0
f (t, u (t)) dt ≥

∫ π

4

0

(

3
√

t

5π
√

π
M + π

√
π cos t

)

ds = 7.93 > 0.

Finally
∫

π

4
0 f (t, u (t)) dt 6= 0.
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3. Let M∗ = 95. For every c ∈ R with |c| > M∗, we have
(

2 sin c√
t
− 3

)

≤ −1.

Then

3

5π
√

π
c2

(

2 sin
c√
t
− 3

)

+ π
√

πc cos t ≤ − 3

5π
√

π
c2 + π

√
πc cos t.

Finally

c
∫

π

4
0 f

(

t, c√
t

)

dt ≤
∫

π

4
0

(

− 3
5π

√
π
c2 + π

√
πc cos t

)

dt

= − 3
20

√
π
c2 + π

√
π√
2

c < 0,

for all c /∈
[

0, 20π2

3
√

2

]

. We conclude that all conditions of Theorem 2 hold,

proving that problem 1 has at least one solution u in C 1
2
[0, π

4 ].

2.5 Example 2

Consider the following boundary value problem















D
3
2
0+

u (t) = f (t, u (t)) , 0 < t < 1,

D
1
2
0+

u (0+) = D
1
2
0+

u (1−) ,

I
1
2
0+

u (0+) = I
1
2
0+

u (1−) ,

(2)

where

f (t, x) =

{

−
√

t
10 , t ∈ [0, 1] , x ∈ (−∞, 0)√

t
10

(

x − 1 + 1
3 ln

(

|x|
√

t + 1
))

, t ∈ [0, 1] , x ∈ [0,+∞).

Next, we check all of assumptions of Theorem 2:

1. Since for all s > 0, ln s ≤ s − 1 < s, then

|f(t, x)| ≤
√

t

10

(

|x| + 1

3

(

|x|
√

t + 1
)

)

+

√
t

10
=

√
t

(

1

10
+

√
t

30

)

|x| + 4

√
t

30
.

Then we take

a (t) =

(

1

10
+

√
t

30

)

and r (t) = 4

√
t

30

with a, r ∈ L1 [0, 1] and

‖a‖1 =

∫ 1

0

(

1

10
+

√
t

30

)

dt =
1

10
+

2

90
=

11

90
<

Γ
(

3
2

)

2
≃ 0.443.

2. For M = 91, assume that u (t) > M , for all t ∈ [0, 1]. Then

f(s, u(s)) ≥
√

s

10

(

M − 1 +
1

3
ln

(

M
√

s + 1
)

)

.
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As a consequence, we derive the estimates:

∫ 1

0
f(s, u(s))ds ≥ (M − 1)

∫ 1

0

√
s

10
ds +

1

30

∫ 1

0

√
s ln(M

√
s + 1)ds

=
2

30
(M − 1) +

2

90

((

1 +
1

M3

)

ln(M + 1) − (M + 1)3

3M3

+
3(M + 1)2

2M3
− 3(M + 1)

M3
+

11

6M3

)

≥ 2

30
(M − 1) − 2

90

(M + 1)3 + 9(M + 1)

3M3
≃ 5.99.

Now suppose that u(t) < −M, for all t ∈ [0, 1]. Then

∫ 1

0
f(s, u(s))ds =

∫ 1

0
−
√

s

10
ds = − 2

30
< 0

which shows that
∫ 1

0
f(s, u(s))ds 6= 0,

for all u ∈ dom(L) satisfying |u(t)| > M, for all t ∈ [0, 1].

3. Let M∗ = 2
3 . For all c > M∗, we have

c

∫ 1

0
f

(

s,
c√
s

)

ds =

∫ 1

0
c

√
s

10

(

c√
s
− 1 +

1

3
ln

( |c|√
s

√
s + 1

))

ds

=
c2

10
− 2

30
c +

2

90
c ln(|c| + 1)

=
c

10

(

c − 2

3
+

2

9
ln(|c| + 1)

)

> 0,

while for c < −M∗, we have

c

∫ 1

0
f

(

s,
c√
s

)

ds = c

∫ 1

0
−
√

s

10
ds = − 2

30
c > 0.

Therefore we have showed that problem 2 has at least one solution u in C 1
2
[0, 1].
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