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Abstract. In this paper, by using the coincidence degree theory due to J. Mawhin,
we consider the solvability of a class of nonlinear fractional two-point boundary value
problems at resonance. An example of application illustrates the existence result.
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1 Introduction

Fractional differential equations describe many phenomena in various fields of
science and engineering such as physics, chemistry, biology, visco-elasticity, electro-
magnetics, economy, etc. Several methods have been used to deal with the question
of solvability of boundary value problems (BVPs for short) for fractional differential
equations; we quote the Laplace transform method, iteration methods, the upper
and lower solution method, as well as topological methods (fixed point theory and
Leray-Schauder degree theory) (see, e.g., [1,10], and references therein).

In [1] B. Ahmad and J. Nieto studied the following Riemann-Liouville fractional
differential equation with fractional boundary conditions:

Dgru(t) = f(tu(t), t€[0,T], 1<a<2, (1.1)
DSTu (01) = bo DG u (T7), (1.2)
DSThu (01) = by DS (T7), (1.3)

where Dg, denotes the Riemann-Liouville fractional derivative of order «,
bo # 1, by # 1, and the function f : [0,7] x R — R is continuous. Clearly this
is a nonresonant problem, i.e. the associated homogeneous problem admits only the
following solution:

u(t) = et 4 ept 2,
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where the constants ci, co satisfy

al'(@).0+col(a—1) = bo(erT(@).T + col'(a — 1))
al'(a) = bal(a),

that is ¢; = ¢o = 0 for by # 1 and by # 1. Then a corresponding Green’s func-

tion can be computed. A fixed point theorem was used to show that the operator
P:Cy_o — C5_, defined by

(Pu)(t) = iy Jy (= )" F (s,u(s)) ds + 385 o f (50 (s) ds

ta2

+(1—171)1 Bo VT (a=T1) Jo (T = (1 =b1)s) f (s,u(s))ds

has at least one fixed point.
By a similar method, G.Wang, W.Liu, and C.Ren investigated in [10], the
existence and uniqueness of solutions for the fractional boundary-value problem:

Dgu(t) = f(hu(®), t€0.7], 1<a<2,
Bru@leo = 0. DEFu(l) = 3 aidi (&),

where 0 < & < T, a; € R, m > 2, and I§, stands for the Riemann-Liouville frac-
tional integral. Standard fixed point principles have been employed.

In [11], the authors investigated higher-order fractional derivatives, i.e. for
2<a<3.

When the nonlinearity of f also depends on the first derivative, Z.Bai [2] dis-
cussed the solvability of m-point fractional BVPs at resonance; the coincidence de-
gree theory as developed by Mawhin in [8] was employed. Concerning papers dealing
with fractional-order BVPs at resonance, we refer, for example, to [4-6,11,12]. See
also [9] for a resonant second-order boundary value problem.

In the present work, Mawhin’s coincidence degree theory is used to deal with
BVP (1.1), (1.2), (1.3) at the resonance case, i.e. for by = by = 1. An existence
result illustrated by means of two examples of application is provided in Section 2.

We first present some definitions and auxiliary lemmas about fractional calculus
theory.

Definition 1 (see [3,7]). The Riemann-Liouville fractional integral of order a > 0
of a function h : (0,400) — R is given by

I8k (1) = ﬁ/o (t — 5)° " 1 (s) ds,

where T" (.) refers to the function gamma, provided the right side is pointwise defined
n (0, +00).
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Definition 2 (see [7,11]). The Riemann-Liouville fractional derivative of order
a > 0 of a function h : (0,400) — R is given by

1 d Y h(s) "
Yh(t) = ————— —— ——ds=—1I""“h(t
0+ ( ) F(n _ a) dtn / (t . S)a n+1 dt" 0+ ( )

where n = [a] + 1, provided the right side is pointwise defined on (0, +00) . Here [o]
denotes the integer part of the real number «.

For av < 0, we set by convention D§,h(t) = [ "h(t), and if 0 < 3 < «, we get
DY IS h(t) =107 h ().

Given these definitions, it can be checked that the Riemann-Liouvelle fractional
integration and fractional differentiation operators of the power functions t* yield
power functions of the same form. Indeed, for A > —1 and «a > 0, we have

A PO oat A _ L+ -
[gﬂﬁt = mt @ and Dg+t = mt Q.

Also note that D8‘+t)‘ =0,forall \=a—iwith i=1,2,3,...,n (n is the smallest
integer greater than or equal to «). Also we have

Lemma 1 (see [4]). Suppose that h € L' (0,+00) and o, B are positive real numbers.
Then

S IV h(t) = ISTPh(t) and DY I h(t) = h(t).
If, in addition Dg, h(t) € L' (0,+00), then

S DG () =h(t) + et
i=1

for some constants ¢; € R (1 <i <n).
Finally, notice that the boundary value problem
D0+u(t) = fgx 2(t)) tel0,7],1< a<?2
ng 1u(Oi) = ng 1u(T ),
Dgiu(07) = Dy u(T™)

is at resonance, i.e., the corresponding homogeneous boundary value problem:

Dg,u(t) = 0, te[0,T],1<a<2
D§+ iu (07) = D§+ iu (T7),
Dgru(0F) = Dgtu(T7)

has u (t) = ct®2 as nontrivial solutions (c € R).
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2 Main result

2.1 Functional framework

Since our main existence result is based on Mawhin’s coincidence degree, we first
recall some basic facts about this theory; more details can be found in [§].

Let X, Y be two real Banach spaces and L : dom(L) C X — Y a Fredholm
operator of index zero. Then there exist two continuous projectors P : X — X
and @ : Y — Y such that In P = Ker L, KerQ = Im L, X = Ker L ® Ker P, and
Y =ImL & ImQ. It follows that the operator

Lp=1L ‘dom(L)anrp :dom(L)NKer P — Im L

is invertible; we denote its inverse by Kp (i.e. Lp' = Kp). Let 2 be an open bounded
subset of X such that dom (L)NQ # (). The map N : X — Y is said to be L-compact
on Q if QN (ﬁ) is bounded and the operator Kpg = Kp (I —Q)N : Q — X is
compact. Since Im @ and Ker L have the same dimension, then there exists a linear
isomorphism J : Im@ — Ker L. Mawhin [8] established the following existence
result for the abstract nonlinear equation Lu = Nu:

Theorem 1. Let L : X —Y be a Fredholm operator of index zero and N : X —Y
be L-compact operator on 2. Then the equation Lu = Nu has at least one solution
in dom (L) N Q if the following conditions are satisfied:

1. Lu # Nu for each (u,\) € [(dom (L)\Ker L) N 09Q] x [0,1];
2. Nu ¢ ImL, for each u € Ker L N 9%Y;
3. deg (QN |kerr, , Ker LN Q,0) # 0.

As usual, C'[0,T] will denote the Banach space of continuous real valued func-
tions defined on [0,7] with the norm |[ul| = sup,cp gy |u (t)]. For all ¢ € [0,77, we
define the function u, by wu, (t) = t"u(t), r > 0. Let C, [0,T] be the space of all
functions u such that u, € C'[0,T]. Then

Lemma 2. C,[0,T] endowed with the norm |lul, = sup,crt"|u(t)| is a real
Banach space.

Let Y = L'[0,T] be the Lebesgue space of measurable functions y such that
s — |y(s)| is Lebesgue integrable equipped with the norm ||y||; = fOT ly(s)|ds and
X = C2-4[0,T] endowed with the norm [[ull,_, = sup;c(o 7y t2=%|u (t)| . Define the
linear operator L : dom (L) N X — Y by

Lu = D u, (2.1)
where

dom(L) = {u € X : Dg u € Y, u satisfies conditions (1.2),(1.3) with by = b; = 1}.
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Finally, define the Nemytskii operator N : X — Y by
(Nu) (t) = £ (Lu (), te0,T). (2:2)
Thus, BVP (1.1), (1.2), (1.3) with by = by = 1 can be written as
Lu = Nu, u € dom(L).

In a series of lemmas, we next investigate the properties of operators L and N.

2.2 Auxiliary lemmas

Lemma 3. Let L be the operator defined by (2.1); then
T
Ker L ={ct*?:ceR} and Im L= {y € L[0,T]: / y(s)ds = 0}.
0
Proof. The equation D, u (t) = 0 admits u (t) = c1t*~* 4 cot®~? as solutions, where
c1,co are arbitrary constants. Then
Dg‘f2u(t) = Igjo‘u(t) =cl'(a)t+ el (a—1) and Dg‘jlu (t) =l (a).
Combining this with (1.2) and (1.3), we find that
ol (a—1)=al' ()T + col' (a — 1)

and hence ¢; = 0 while ¢y is any constant.
If y € Im (L), then there exists u € dom(L) such that D§, (t) =y (t). Hence

u(t) =I5y (t) + et ! + ot 2
and )
Dytu(t) = Iy () +al(e)t+ el (a—1),
DSTlu(t) = Iyt +al (a).
By the boundary conditions (1.2), (1.3), we infer that

1 T T
= —W/O (T — s)y(s)ds and /0 y(s)ds = 0.
Let y € Y satisfy fOT y(s)ds = 0. If u(t) = I§y(t) — % OT (T — s)y(s)ds, then
u € dom(L) and Dg, D§u(t) =y (t). As a consequence y € Im (L). O
Lemma 4.

(a) L:dom(L)NX — Y is a Fredholm operator of indez 0.
(b) The linear continuous projectors Q : Y —Y and P : X — X are such that

1

T
Qy = T/o y(s)ds and (Pu)(t) =

1

7]2—04 ) 1,_ ta—2‘
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Proof. Tt is easy to see that Q%y = Qu and P?u = Pu, for y € Y, u € X. For all
yeY,y1 =y— Qy e Im (L) because fOT y1(s)ds = 0. Hence Y = Im (L) 4+ Im (Q),
(Im (@) =R). For m € Im (L)NR, we have fOT mds = T'm = 0; therefore m = 0 and
Y =Im (L)®Im (Q). Thus dim(Ker L) = codim (Im L) = dim(Im Q) = dim(R) = 1.
So L is a Fredholm operator of index 0. O

Lemma 5. Let Lp = L |qom(r)nKer p: dom(L) N Ker P — Im (L) . The inverse Kp
of Lp is given by

a—1

(Kpw) () = I3y (8) = ey Ao (1)

Moreover
2T

K
H PyH2 o — F( ) Hy||17
for ally € Im (L) .
Proof. For all y € Im (L), we have

N N 7501—1
(L) ()= D5 (1500 = 70 s B (D) =9 (0,
Recall that
Ker P = {u € dom (L) : Igjo‘u(t) li=r=0} .
Thus, for v € dom (L) N Ker P, we have

tal

(KpL)u(t) = I(()X+D0+u() Tr(a)I§+D0+U(T)

27T
= u(t) + et 4 et 2 — Ozf_rzi) )to‘_l.

Since u € dom(L) N Ker P, then

(KpL)u € dom(L) N Ker P

and so
Ig;au(T) =0 and ¢t + et % € dom(L) N Ker P.
Moreover
Ig;a (1t +eat®?) = T (a) t + ol (o — 1) ;
hence

ol'(a—1)=al' (@) T+ col'(a—1) =0.
Finally ¢ = ¢y =0 and
(KpL)u(t) = u(t),

which shows that Kp = (Lp) "
Keeping in mind that

2—a

. ¢ o " T
B ) () = fras [ (=97 ulods = s [ = sy,




30 S.DJEBALI, L. GUEDDA

we deduce that

Y T2—a o T T T B oT
B K p) (01 < s [ ol ds+ T [ o)l s = s ol

Finally
1Kpylly_ = sup 27 |(Kpy) (1)] < 2L llylly -
te[0,7T] ' (a)

Lemma 6. For allu € X, t € [0,T], we have

T
KR (1= Q) Nu(t) = i [ G(ts) f(s.u(e) s
where

2 a—1 t t t2
s _t_ 1= 0<t<s<T.

Lemma 7. Let f:[0,7] x R — R be a continuous function. Assume that  is an
open bounded subset from X such that dom(L) N # (; then N is L-compact on €.

Proof. In order to prove that N is L-compact on £, we only need to show that
QN (ﬁ) is bounded and Kp (I — Q) N : Q — Y is compact.

Since f : [0,7] x R — R is continuous, {2 is bounded; therefore there exists a
constant M > 0 such that |f (t,u(t))| < M, Vu € Q, Vt € [0,T]. Consequently, for
all u € Q, we have

IQN )ll; = i[5 £ o ls))ds|] ds = [J 7 (5,00 (5)) ds
fo [f (s, (s ))ydngT.

A

Since (I — @) and Kp are continuous linear operators, then (I — Q)N (u) and
Kp (I — Q) N (u) are bounded. Hence

(I =Q)N W, < [Nl +[@N (), <2TM,

) AT? M
[Kp(I-Q)N(u)lyy < WHU—Q) (Wl £ = OR

For all t; € [0,T], t2 € [0,T], (t1 < t2), and u € £, we have
[t57*Kp (I — Q) Nu(ty) — ;7 *Kp (I — Q) Nu(ty)|

1 T

- /Gtg, su(s))dé‘—/o G (t1,5) f (s,u(s)) ds
1 T

- / (G (t2,8) — G (t1,5))f (s,u(s)) ds
M

< m/0 G (t2,5) — G (t1, 5)] ds.

Next, we distinguish between three different cases:
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1. Case t1 < t9 < s. We have

|G (t2,5) — G (t1, 5)] |t — 1] —(51 Sl

|7
[te — t1] (% + (— t2+t1)) ;

VA

then

JTIG (tays) — G (t1,8)|ds < |t —ta] fy (5 + (3 + 2Eh)) ds
— (T—Fthtl)’tQ t1’

. Case s < t1 < ty. We have

|G (t2,8) — G (t1,8)] = ‘tg_a (ta— )" =177 (s — 5)*"
+(t2 —t1) (£ — (3 + 27|

127 (ty — )7 — 27 () — s)a‘l‘
+|(t2 —t1) (7 — (5 +57)] -

Note that the function ¥, defined by

IN

Uy (1) =27 (¢ —5)" 7",

where ¢t € [0,7] and 0 < s < ¢, is increasing on [0, 7] because its derivative

wo=a-o () e ()

is positive. Then

27ty — 5)* =27 (1 — 5)* T >0

and -
TG (= ) = 87 (1 — ) s
= 5 OtQ (tg — 5)* tds — 127 fotl (ty —s)* ' ds
— la—ta
—L.
Finally
Jo |G (t2,5) = Gt 9)lds < BRI (T + BEL) |ty —
_ o+t +
= (T'+=255) [t —ta].
3. Case t1 < s < ty. We have
Gltas) =Glts)l = [ (=) "+ (la—1) (5 - (3 + Z))]

S
T
5 (ta—8)* T+ (o —t1) (% —( t2+t1 NI
57 (ty — 1) (T + 2 [ty — 1]

INIA

This shows that Kp (I — Q) N is equicontinuous, as claimed. O
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2.3 Existence theorem

We are now in position to state and prove our main existence result.
Theorem 2. Let f:[0,T] x R — R be continuous. Assume that

o (Hy) there exist two functions a, r € L*[0,T] such that for all t € [0,T] and
r € R, we have |f(t,z)] < 2~ (t)|z| + 7 (t),

o (Ho) there exists a constant M > 0 such that for allu € dom (L), if |u (t)] > M
for allt € [0,T], then fOT f(s,u(s))ds #0,

e (Hj) there exists a constant M* > 0 such that for all ¢ € R, if |¢c| > M™* then
either

T T
c/ f (s,csa_z) ds <0 or c/ f (s,csa_2) ds > 0.
0 0

Then the boundary value problem (1.1), (1.2), (1.3) with by = by = 1 has at least

one solution u € Ca_q [0,T] provided that ||a||; < %

Proof. Let
O ={uedom(L)\KerL: Lu= ANu, A€ (0,1)}.

For u € Q;, we have v € dom(L) N Ker P and Lu = ANu with A # 0 because
u ¢ Ker L; then

HUH2—a = HKPLUH2—Q
< 2Ll = 22 N,
T
< 2 TIf (s ()] ds.

From condition (Hj), we have

[f (s,u(s))] < s~ a(s)Ju(s)| +7(s) < a(s) sup s*~*Ju(s)|+7(s).

s€[0,7
Hence
T
/0 1F (s, ()| ds < llally lally_n + [y -
Then o7
s < oo (o + 1)
Finally

2T ||l
[ully—o < = M.
27 7 T(a) - 2T |lally

Consider the set
Q={uecKerL: NueImL}.
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For u € €, we have u(t) = ct* 2 and fOTf (s,csa_2) ds = 0. Then, from the
condition (Hs), there exists ¢ty € [0,T] such that |ct8_2| < M, with tg # 0. Therefore

Jully_p = sup 27 [ct* 72| = |¢| < M7 = Ms.
te[0,T

Let
Qs ={uecKerL: -AJu+ (1 =X QNu=0, A€ 0,1},
where J : Ker L — Im @ is the linear isomorphism defined by J(u) = c.

In case (Hs) is satisfied, assume that chTf (s,cso‘_z) ds < 0 holds. For all
u € Q3, we can write u = c¢t®~2 and

If A =1, then ¢ = 0. Otherwise, if Hypothesis |c| > M*, then by (H3), one has

(1-X)
T

T
c/ f (s,csa_2) ds < 0,
0

which contradicts A¢? > 0. Thus
lully_o = lel < M.
If chT f (s, 030_2) ds > 0 holds, then 23 can be defined as follows:
Q3={ueKerL: AMJu+(1—-X)QNu=0, Ae[0,1]}.

Next, we shall prove that all conditions of Theorem 1 are fulfilled.

Let © be bounded open such that Q; U Qs U Q3 C Q. We have already proved
that L is a Fredholm operator of index 0 and that N is L-compact on Q. Also, we
have

1. Lu # Nu, for each (u,\) € [(dom (L)\Ker L) N 9] x [0,1] for Q; C Q.
2. Nu ¢ Im L for each u € Ker L N 99 for Qs C Q.

3. In order to take into account the subset €23 in the above two cases, we consider
the homotopy H (u,A) = £AJu + (1 — X\) QNu. Then H (u, A) # 0, for each
u € Ker LN ON. As Q3 C Q. By the homotopy property of the degree, we
finally deduce that

deg (QN |kerr, Ker LN Q,0) = deg(H (u,0),Ker LNQ,0)
= deg(H (u,1),Ker LN,0)
= deg(xJ,Ker LNQ,0) #0,

which completes the proof of Theorem 2. O
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2.4 Example 1

Consider the boundary value problem:

D%u(t) = 3‘5— (t) (2sinu (t) — 3) + my/mcost, 0<t<T,
D0+u(0+) = DO% (), (1)
TG (09) = LLu(3).

In this example,

z (2sinz — 3) + 7/ cost.

In addition, we have
1.

3Vt
Smy/m

3
2| (2]sin x| 4 3) + my/Tcost < ——=+/t |x| + m\/7 cost.

|f (t,2)| < —

Then

) 1
a ——< = —, and r(t) = w/7mcost.

2. Let M = 80. For each u € dom (L), suppose that |u (t)] > M, for all ¢ € [0, F].
If u(t) > M, for all t € [0, §], then 2sinu (t) — 3 < —1 and thus

3Vt 3Vt
Smy/m S5m\/m

Notice that since —u (t) < —M, then

/4f(t,u(t))dt§/4< 3\/_M+7T\/7_Tcost>dt —0.06 < 0.
0 0

a(t) =

ftu(t) <-— u(t) + my/meost < ————=M + m\/7 cost.

ST/
If u(t) < =M, for all t € [0, ], then 0 < M < —u(t) and
3Vt 3Vt 3Vt :
_ < —3).
5ﬂﬁM < 57Tﬁu (t) < 577\/7_1u(t) (2sinu (t) — 3)
Hence f (t,u(t)) > ;’*&M + my/m cost, for all ¢ € [0, 7]. Consequently

s T/ 3/t
/0 f(t,u(t))dtz/o <5F\/7_TM—|—7T\/Ecost>ds:7.93>0.

Finally fO% f(t,u(t))dt #0.
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3. Let M* = 95. For every ¢ € R with |¢| > M*, we have <2sin% — 3> <
Then

& + my/mecost.

3
57T\/EC2 <2sin% - 3> + my/mecost < —

Finally

3
Smy/m

Cfo ( \i[) < 0% (—573/—62 +7T\/_CCOSt) dt

/T
20\FC + \[C<0

35

for all ¢ ¢ [O 202 ] We conclude that all conditions of Theorem 2 hold,

) 3\f
proving that problem 1 has at least one solution u in C 1[ a4l

2.5 Example 2

Consider the following boundary value problem

3
Dgu(t) = f(tu®), 0<t<l,
L 1
D(fl+u(0+) = D1§+u(1_),
I0§+u(0+) = [0§+u(1 )7
where
_Vi _
Ftay =4 1 Vi e[0,1], @ € (—00,0)
Y (z—1+3im(lz|vVi+1)), te0,1], z € [0,+00).

Next, we check all of assumptions of Theorem 2:

1. Since for all s > 0,Ins <s—1 < s, then

30

002 < Y0 (1ol 3 (1l VB 1)) + 30 < Vi (050 43

- 10
Then we take

a(t)= <%+g> and r(t)zélg

with a,r € L1[0,1] and

1 3
1 Vi 1 2 11 13
Hale/ < +£> dt = — + — () © s
0

10 7 30 10790 90 2

2. For M =91, assume that u (t) > M, for all t € [0,1]. Then

f(s,u(s)) =

—
(=R RN

(M—l—k%ln(M\/E—i—l)).
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As a consequence, we derive the estimates:

1 1
/f(s,u(s))ds > (M—l)/ Vs +—/ VsIn(M+/s + 1)ds
0 0
2 2 1 M +1)3
= M-+ <<1+M3>ln(M+1)_( 3;23)
3(M+1)2  3(M+1) 11
L VA VE 6Aﬁ>
2 2 (M+1)*+9(M+1) _
> %(M—l)—% e ~ 5.99.

Now suppose that u(t) < —M, for all ¢t € [0,1]. Then

/01 f(s,u(s))ds = /01 —ﬁds S <0

which shows that .
| fs.uts)as 2o
0
for all u € dom(L) satisfying |u(t)| > M, for all t € [0,1].
3. Let M* = % For all ¢ > M*, we have

[oeg)e - [t (a)s
= %—%HgyMM+U

c 2

L P 1
10(0 34—9n(|c|—|—)>>0,

while for ¢ < —M™, we have

f — |ds = Vs = — = .
C/O <S, \/§> S C o 10 S 3OC>O

Therefore we have showed that problem 2 has at least one solution u in C1 [0, 1].
2
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