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On invariants and canonical form of matrices of second

order with respect to semiscalar equivalence

B.Z. Shavarovskii

Abstract. We indicate a complete system of invariants and suggest a canonical
form for one class of polynomial matrices of second order with respect to semiscalar
equivalence.

Mathematics subject classification: 15A21.

Keywords and phrases: semiscalar equivalence, canonical matrix, complete system
of invariants, classification .

The notion of semiscalar equivalence of polynomial matrices is introduced and
considered first in [1] (see also [2]). Related results are obtained in [3],[4]. These
researches take on further development in [5] – [8]. The most important compo-
nents of the problem of semiscalar equivalence are the search of invariants and the
construction of normal forms for matrices with respect to such equivalence. Large
difficulties in this problem arise already for matrices of second order. In this paper,
some classes of order two polynomial matrices are singled out for which complete
system of invariants is obtained and canonical form with respect to semiscalar equiv-
alence is indicated. This form enables one to solve the classification problem for some
polynomial matrices up to semiscalar equivalence.

We consider a ring M(2, C[x]) of order two polynomial matrices over the field
of complex numbers C. According to [1] the matrices A(x), B(x) ∈ M(2, C[x]) are
called semiscalarly equivalent if CA(x)Q(x) = B(x) for some invertible matrices C ∈
GL(2, C), Q(x) ∈ GL(2, C[x]). The determinant |A(x)| is called the characteristic
polynomial of A(x) and its roots are called the characteristic roots of matrices A(x).
By Theorem 1 [1] (see also Theorem 1 §1, Section IV [2]) every matrix of full rank
is semiscalarly equivalent to lower triangular form with invariant polynomials on
the main diagonal. Without loss of generality, we can assume that first invariant
polynomial of considered matrix is identity.

In this paper we use the standard notations. In particular, c(t)(α) is the value
at x = α of the t-th derivative of the polynomial c(x).

Proposition 1. Let be given a matrix

A(x) =

∥

∥

∥

∥

1 0
a(x) ∆(x)

∥

∥

∥

∥

, deg a(x) < deg ∆(x), (1)

and a partition
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M = M1 ∪ . . . ∪ Mw, Mu ∩ Mv = ∅, u 6= v, (2)

of the set M of characteristic roots of matrix A(x) into subsets Mu such that α, β ∈
Mu if a(α) = a(β). Subsets Mu are uniquely defined by a class of semiscalarly
equivalent matrices {CA(x)Q(x)}.

Proof. Let a matrix A(x) be semiscalarly equivalent to a matrix

B(x) =

∥

∥

∥

∥

1 0
b(x) ∆(x)

∥

∥

∥

∥

, deg b(x) < deg ∆(x). (3)

Then there exists

∥

∥

∥

∥

s11 s12

s21 s22

∥

∥

∥

∥

∈ GL(2, C),

∥

∥

∥

∥

r11(x) r12(x)
r21(x) r22(x)

∥

∥

∥

∥

∈ GL(2, C[x]),

such that

∥

∥

∥

∥

s11 s12

s21 s22

∥

∥

∥

∥

∥

∥

∥

∥

1 0
a(x) ∆(x)

∥

∥

∥

∥

=

∥

∥

∥

∥

1 0
b(x) ∆(x)

∥

∥

∥

∥

∥

∥

∥

∥

r11(x) r12(x)
r21(x) r22(x)

∥

∥

∥

∥

. (4)

On the basis of (4) we can write the relation

s21 + s22a(x) = b(x)r11(x) + ∆(x)r21(x). (5)

Setting x = α and x = β in (5), we obtain the relations

s21 + s22a(α) = b(α)r11(α), (6)

s21 + s22a(β) = b(β)r11(β). (7)

From (4) it follows that r11(x) = s11 + s12a(x). Since a(α) = a(β), then r11(α) =
r11(β) and from (6) and (7) we have r11(α)(b(α) − b(β)) = 0. Equality (4) implies
that r12(x) = s12∆(x). Therefore r11(α) 6= 0 and b(α) = b(β). The notion of
semiscalar equivalence is a symmetrical relation. Then from b(α) = b(β) a similar
argument yields a(α) = a(β). This completes the proof.

Consider now the case in which in (2) w = 1, i.e., a(α) = a(β) for arbitrary roots
α, β ∈ M . We may assume (without loss of generality) that a(α) = 0.

Let M = {αi, i = 1, . . . , p}, ni and mi be the multiplicities of root αi in the
polynomials ∆(x) and a(x), respectively. Since deg a(x) < deg ∆(x) = s, for some
root αj ∈ M multiplicities nj and mj satisfy the condition mj < nj. Let it be the
roots αj , j = 1, . . . , q, 1 ≤ q ≤ p and mq+l ≥ nq+l, l = 1, . . . , p − q (the case in
which a(x) ≡ 0 is trivial).
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Theorem 1. Let every characteristic root αi ∈ M of matrix A(x) of the form (1)
satisfy the condition a(αi) = 0. Let also multiplicities mj and nj of root αj ∈
M in the polynomials a(x) and ∆(x), respectively, satisfy the inequality mj < nj.
Then multiplicities mj are uniquely defined by a class of semiscalarly equivalent
matrices {CA(x)Q(x)} and rows

∥

∥ aj0 aj1 . . . aj, lj−mj−1

∥

∥, lj = min(2mj , nj),
of coefficients from decompositions

a(x) =

s−mj−1
∑

t=0

ajt(x − αj)
mj+t (8)

are determined up to constant factor independent of j = 1, . . . , q.

Proof. Let matrices (1) and (3) be semiscalarly equivalent. If a(αi) = b(αi) = 0
then from relation (5) it follows that s21 = 0. Then

s22a(x) − s11b(x) − s12a(x)b(x) = ∆(x)r21(x), (9)

where s11 6= 0, s22 6= 0. Let for multiplicities mj, m′

j, nj of root x = αj in the polyno-
mials a(x), b(x), ∆(x), respectively, inequalities m′

j < mj < nj be valid. Differenti-

ating both members of equality (9) m′

j times at x = αj , we obtain s11b
(m′

j)(αj) = 0.

It is impossible, since s11 6= 0 and b(m′

j )(αj) 6= 0. Then m′

j ≥ mj . Considering
that semiscalar equivalence is a symmetric relation, we have m′

j ≤ mj . Therefore
m′

j = mj . The first part of the theorem is proved.

By analogy to (8), write decomposition for the entry b(x) of matrix (3):

b(x) =

s−mj−1
∑

t=0

bjt(x − αj)
mj+t. (10)

Comparing the coefficients of equal degrees of binomial x − αj on both sides of
equality (9), we obtain















s22aj0 − s11bj0 = 0,
s22aj1 − s11bj1 = 0,

. . . . . . . . . . . . . . . . . . . . . . . .

s22aj, lj−mj−1 − s11bj, lj−mj−1 = 0,

(11)

where lj = min(2mj , nj), j = 1, . . . , q, s11 6= 0, s22 6= 0. From equalities (11) it
follows that aj0 = kbj0, aj1 = kbj1, . . . , aj, lj−mj−1 = kbj, lj−mj−1, where k = s11s

−1
22 .

This completes the proof of the theorem.

Corollary 1. Matrix (1) in the class {CA(x)Q(x)} of semiscalarly equivalent matri-
ces is determined up to a constant factor if multiplicities nj and mj in polynomials
∆(x) and a(x) of every its characteristic root αi, i = 1, . . . , p, satisfy the inequality
2mi ≥ ni.
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Proof. Let matrices (1) and (3) be semiscalarly equivalent. By Theorem 1 we have
a(αi) = b(αi) = 0, a(si)(αi) = b(si)(αi) = 0, si = 1, . . . , mi − 1, i = 1, . . . , p. From
theorem we have also a(hi)(αi) = kb(hi)(αi), hi = mi, . . . , ni−1. Then the values of
polynomial a(x) and values of its derivative at αi, i = 1, . . . , p, of order 1, . . . , ni−1
are proportional to corresponding values of polynomial b(x) and to corresponding
values of the derivative of this polynomial. Since deg a(x), deg b(x) <

∑

ni = s,
then polynomials a(x) and b(x) differ from each other by a constant factor. Corollary
is proved.

Consider now the case when the conditions of the corollary are not satisfied, i.e.,
for some root αi the inequality 2mi < ni is fulfilled.

Theorem 2. Let nj be the multiplicity of the root αj in the characteristic polynomial
∆(x), deg ∆(x) = s, of the matrices (1) and (3). Besides, let w = 1 in the partition
(2) of set M of theirs characteristic roots and

a(x) =

s−mj−1
∑

t=0

ajt(x − αj)
mj+t, b(x) =

s−mj−1
∑

t=0

bjt(x − αj)
mj+t

be binomial decompositions of the entries a(x), b(x) of these matrices. Matrices (1)
and (3) are semiscalarly equivalent if and only if for every characteristic root αj such
that mj < nj and for every pair of characteristic roots αi, αl such that 2mi < ni,
2ml < nl, there exists the same number k 6= 0, the following conditions hold:

1)
∥

∥ aj0 aj1 . . . aj, lj−mj−1

∥

∥ = k
∥

∥ bj0 bj1 . . . bj, lj−mj−1

∥

∥,
lj = min(2mj , nj);

2)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

aj1 aj2 . . . aj, sj−1 ajsj

aj0 aj1
. . . aj, sj−2 aj, sj−1

. . .
. . .

. . .
...

. . . aj1 aj2

0 aj0 aj1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ksj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

bj1 bj2 . . . bj, sj−1 bjsj

bj0 bj1
. . . bj, sj−2 bj, sj−1

. . .
. . .

. . .
...

. . . bj1 bj2

0 bj0 bj1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (12)

sj = 1, . . . , mj − 1, mj + 1, . . . , nj − mj − 1;
3)

aimi
a−2

i0 − alml
a−2

l0 = k−1(bimi
b−2
i0 − blml

b−2
l0 ). (13)

Proof. Necessity. Let matrices (1) and (3) be semiscalarly equivalent. The condition
1) follows from Theorem 1. If for characteristic root αj such that mj < nj satisfies
the inequality 2mj ≥ nj, then the condition 2) follows from the condition 1). In the
opposite case such that 2mj < nj from the equality (9) we obtain the systems















s22aj0 − s11bj0 = 0,
s22aj1 − s11bj1 = 0,

. . . . . . . . . . . . . . . . . . . . . . . .

s22aj, mj−1 − s11bj, mj−1 = 0,

(14)
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













s22ajmj
− s11bjmj

− s12aj0bj0 = 0,
s22aj, mj+1 − s11bj, mj+1 − s12(aj0bj1 + aj1bj0) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s22aj, nj−mj−1 − s11bj, nj−mj−1 − s12
∑nj−2mj−1

u=0 ajubj, nj−2mj−u−1 = 0.

(15)

Since s11, s22 6= 0, from (14) we can write

aj0 = kbj0, aj1 = kbj1, . . . , aj, mj−1 = kbj, mj−1, k = s11s
−1
22 . (16)

From this is follows that equality (12) is satisfied for sj = 1, . . . , mj − 1. As
appears from (15), if ajmj

= kbjmj
, that s12 = 0 and ajsj

= kbjsj
for si = mi +

1, . . . , ni − mi − 1. From this it follows that equality (12) is valid for the same
si = mi +1, . . . , ni−mi−1. For this reason we think in what follows ajmj

6= kbjmj
,

k = s11s
−1
22 . From the first and second equations (15) by excluding s12 we obtain

aj0aj, mj+1 − ajmj
(kbj1 + aj1) = k2bj0bj, mj+1 − kbjmj

(kbj1 + aj1). (17)

If mj = 1, then aj0aj2 − a2
j1 = k2(bj0bj2 − b2

j1). This means that conditions (12) are
fulfilled for sj = mj + 1. If mj > 1, then aj1 = kbj1 and from (17) by multiplication

a
mj−1
j0 = kmj−1b

mj−1
j0 can be obtained

a
mj

j0 aj, mj+1 − 2a
mj−1
j0 aj1ajmj

= kmj+1(b
mj

j0 bj, mj+1 − 2b
mj−1
j0 bj1bjmj

). (18)

Denote by Ajuv, Bjuv submatrices obtained, respectively, from matrices

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

aj1 aj2 . . . ajmj
aj, mj+1

aj0 aj1
. . . aj, mj−1 ajmj

. . .
. . .

. . .
...

. . . aj1 aj2

0 aj0 aj1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

bj1 bj2 . . . bjmj
bj, mj+1

bj0 bj1
. . . bj, mj−1 bjmj

. . .
. . .

. . .
...

. . . bj1 bj2

0 bj0 bj1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, (19)

by obliterating of two last columns and u-th and v-th rows. Denote also by
δj, mj+1(A), δj, mj+1(B) the determinants of matrices (19) respectively. Decompose
them for minors of order two that are contained in the last two columns. Because
|Ajuv| = |Bjuv| = 0 for u 6= mj + 1, we have

δj, mj+1(A) = (−1)mj+1

(∣

∣

∣

∣

ajmj
aj, mj+1

aj0 aj1

∣

∣

∣

∣

∣

∣Aj, 1, mj+1

∣

∣ −

−

∣

∣

∣

∣

aj, mj−1 ajmj

aj0 aj1

∣

∣

∣

∣

∣

∣Aj, 2, mj+1

∣

∣ + . . . +

∣

∣

∣

∣

aj1 aj2

aj0 aj1

∣

∣

∣

∣

∣

∣Aj, mj , mj+1

∣

∣

)

,
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δj, mj+1(B) = (−1)mj+1

(
∣

∣

∣

∣

bjmj
bj, mj+1

bj0 bj1

∣

∣

∣

∣

∣

∣Bj, 1, mj+1

∣

∣ −

−

∣

∣

∣

∣

bj, mj−1 bjmj

bj0 bj1

∣

∣

∣

∣

∣

∣Bj, 2, mj+1

∣

∣ + . . . +

∣

∣

∣

∣

bj1 bj2

bj0 bj1

∣

∣

∣

∣

∣

∣Bj, mj , mj+1

∣

∣

)

.

Since the rows
∥

∥ aj0 aj1 . . . aj, mj−1

∥

∥,
∥

∥ bj0 bj1 . . . bj, mj−1

∥

∥ differ by a
multiplier k (see (16)), each summand of expression in parenthesis for δj, mj+1(A),
except first two, differs from the corresponding summand for δj, mj+1(B) by a mul-
tiplier kmj+1. From this fact and from the equality (18) follows equality (12) for
sj = mj + 1.

Denote by δjsj
(A) and δjsj

(B) the determinants in left and right parts of equality
(12), respectively. Suppose by induction δjr(A) = krδjr(B) for all r such that
mj < r < nj − mj − 1. Accept for the sake of determinacy r > 2mj . In the case
where r ≤ 2mj the proof radically is not different. From first r-th equality (15)
exclude s12 and by sufficiently evident transformations we obtain











































































































(aj, mj+1 − (aj0bj0)
−1ajmj

∑1
u=0 ajubj, 1−u)(−aj0)

mj δj, r−mj
(A) =

= kr+1(bj, mj+1 − (aj0bj0)
−1bjmj

∑1
u=0 ajubj, 1−u)(−bj0)

mjδj, r−mj
(B),

(aj, mj+2 − (aj0bj0)
−1ajmj

∑2
u=0 ajubj, 2−u)(−aj0)

mj+1δj, r−mj−1(A) =

kr+1(bj, mj+2 − (aj0bj0)
−1bjmj

∑2
u=0 ajubj, 2−u)(−bj0)

mj+1δj, r−mj−1(B),
.........................................................................................................

(aj, r−mj+1 − (aj0bj0)
−1ajmj

∑r−2mj+1
u=0 ajubj, r−2mj−u+1−

−aj, r−mj+1 + (aj0bj0)
−1ajmj

∑r−2mj+1
u=0 ajubj, r−2mj−u+1)(−aj0)

r−mjδjmj
(A) =

kr+1(bj, r−mj+1 − (aj0bj0)
−1bjmj

∑r−2mj+1
u=0 ajubj, r−2mj−u+1−

−bj, r−mj+1 + (aj0bj0)
−1bjmj

∑r−2mj+1
u=0 ajubj, r−2mj−u+1)(−bj0)

r−mjδjmj
(B),

...................................................................................................

(ajr − (aj0bj0)
−1ajmj

∑r−mj

u=0 ajubj, r−mj−u)(−aj0)
r−1δ1(A) =

kr+1(bjr − (aj0bj0)
−1bjmj

∑r−mj

u=0 ajubj, r−mj−u)(−bj0)
r−1δ1(B),

(aj, r+1 − (aj0bj0)
−1ajmj

∑r−mj+1
u=0 ajubj, r−mj−u+1)(−aj0)

r =

kr+1(bj, r+1 − (aj0bj0)
−1bjmj

∑r−mj+1
u=0 ajubj, r−mj−u+1)(−bj0)

r.

(20)

If we add left parts of equality (20) and separately right parts we obtain

(−aj0)
raj, r+1 + (−aj0)

r−1ajrδj1(A) + . . . + (−aj0)
r−mjaj, r−mj+1δjmj

(A) + . . . +

+(−aj0)
mj aj, mj+1δj, r−mj

(A) + (−aj0)
mj−1ajmj

δj, r−mj+1(A)−

−(aj0bj0)
−1ajmj

(bj1δj, r−mj
(A)(−aj0)

mj+1 + bj2δj, r−mj−1(A)(−aj0)
mj+2 + . . . +

+bj, r−mj
δj1(A)(−aj0)

r) + (aj0bj0)
−1ajmj

(bj1δj, r−mj
(A)(−aj0)

mj+1+

+bj2δj, r−mj−1(A)(−aj0)
mj+2 + . . . + bj, r−mj

δj1(A)(−aj0)
r + bj, r−mj+1(−aj0)

r+1)−
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−(aj, r−mj+1 − (aj0bj0)
−1ajmj

r−2mj+1
∑

u=0

ajubj, r−2mj−u+1)(−aj0)
r−mjδjmj

(A) =

kr+1((−bj0)
rbj, r+1 + (−bj0)

r−1bjrδj1(B) + . . . + (−bj0)
r−mjbj, r−mj+1δjmj

(B) + . . . +

+(−bj0)
mjbj, mj+1δj, r−mj

(B) + (−bj0)
mj−1bjmj

δj, r−mj+1(B)−

−(aj0bj0)
−1bjmj

(aj1δj, r−mj
(B)(−bj0)

mj+1 + aj2δj, r−mj−1(B)(−bj0)
mj+2 + . . . +

+aj, r−mj
δj1(B)(−bj0)

r) + (aj0bj0)
−1bjmj

(aj1δj, r−mj
(B)(−bj0)

mj+1+

+aj2δj, r−mj−1(B)(−bj0)
mj+2 + . . . + aj, r−mj

δj1(B)(−bj0)
r + aj, r−mj+1(−bj0)

r+1)−

−(bj, r−mj+1 − (aj0bj0)
−1bjmj

r−2mj+1
∑

u=0

ajubj, r−2mj−u+1)(−bj0)
r−mjδjmj

(B)) . (21)

Group similar terms in both parts of obtained equality to have

(−aj0)
raj, r+1 + (−aj0)

r−1ajrδj1(A) + . . . + (−aj0)
r−mjaj, r−mj+1δjmj

(A)+

+ . . . + (−aj0)
mjaj, mj+1δj, r−mj

(A) + (−aj0)
mj−1aj, mj

δj, r−mj+1(A)+

+(aj0bj0)
−1ajmj

bj, r−mj+1(−aj0)
r+1 − (aj, r−mj+1−

−(aj0bj0)
−1ajmj

r−2mj+1
∑

u=1

ajubj, r−2mj−u+1)(−aj0)
r−mjδjmj

(A) =

kr+1((−bj0)
rbj, r+1 + (−bj0)

r−1bjrδj1(B) + . . . + (−bj0)
r−mjbj, r−mj+1δjmj

(B)+

+ . . . + (−bj0)
mjbj, mj+1δj, r−mj

(B) + (−bj0)
mj−1bj, mj

δj, r−mj+1(B)+

+(aj0bj0)
−1bjmj

aj, r−mj+1(−bj0)
r+1 − (bj, r−mj+1−

−(aj0bj0)
−1bjmj

r−2mj+1
∑

u=1

ajubj, r−2mj−u+1)(−bj0)
r−mjδjmj

(B). (22)

It follows from (15) that

aj, r−mj+1 + (aj0bj0)
−1ajmj

r−2mj+1
∑

u=0

ajubj, r−2mj−u+1 =

= k(bj, r−mj+1 + (aj0bj0)
−1bjmj

r−2mj+1
∑

u=0

ajubj, r−2mj−u+1).

From this relation it is easy to be sure that the following equality is true

(aj0bj0)
−1ajmj

bj, r−mj+1(−aj0)
r+1 − (aj, r−mj+1−

−(aj0bj0)
−1ajmj

r−2mj+1
∑

u=0

ajubj, r−2mj−u+1)(−aj0)
r−mjδjmj

(A) =

= kr+1((aj0bj0)
−1bjmj

aj, r−mj+1(−bj0)
r+1 − (bj, r−mj+1−
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−(aj0bj0)
−1bjmj

r−2mj+1
∑

u=0

ajubj, r−2mj−u+1)(−bj0)
r−mjδjmj

(B). (23)

From (16) and induction hypothesis we can write

(−aj0)
mj−2aj, mj−1δj, r−mj+2(A) + . . . + (−aj0)aj2δj, r−1(A) + aj1δjr(A) =

= kr+1((−bj0)
mj−2bj, mj−1δj, r−mj+2(B) + . . . + (−bj0)bj2δj, r−1(B) + bj1δjr(B).

(24)
Comparing (22), (23) and (24), we obtain equality

(−aj0)
raj, r+1 + (−aj0)

r−1ajrδj1(A) + . . . + (−aj0)aj2δj, r−1(A) + aj1δjr(A) =

= kr+1((−bj0)
rbj, r+1 + (−bj0)

r−1bjrδj1(B)+ . . . + (−bj0)bj2δj, r−1(B)+ bj1δjr(B)),
(25)

i.e., δj, r+1(A) = kr+1δj, r+1(B), k = s11s
−1
22 . The necessity of conditions 2) of the

theorem is proved.
Let

a(x) =

s−mi−1
∑

t=0

ait(x − αi)
mi+t, a(x) =

s−ml−1
∑

t=0

alt(x − αl)
ml+t,

b(x) =

s−mi−1
∑

t=0

bit(x − αi)
mi+t, b(x) =

s−ml−1
∑

t=0

blt(x − αl)
ml+t

s22aimi
− s11bimi

− s12ai0bi0 = 0,

be decompositions for entries a(x), b(x) of matrices (1), (3) into degrees of binomials
x − αi, x − αl. From (9) it may be written

s22aimi
− s11bimi

− s12ai0bi0 = 0,

s22alml
− s11blml

− s12al0bl0 = 0.

From these equalities exclude s12. Considering that ai0 = kbi0, al0 = kbl0, we have
(13). The necessity of the conditions 1) – 3) of theorem is proved.

Sufficiency. For each characteristic root x = αj of matrix (1) such that mj < nj

and 2mj ≥ nj, from condition 1) of theorem it follows that

s22a(x) − s11b(x) − s12a(x)b(x) ≡ 0 (mod (x − αj)
nj), (26)

where s22 = 1, s11 = k = aj0b
−1
j0 , s12 ∈ C.

Let now x = αj be an arbitrary characteristic root of matrices (1), (3) such
that 2mj < nj. Consider equalities (14) and (15) as one system of equations with
coefficients aju, bju, u = 0, 1, . . . , nj −mj − 1, aj0 6= 0, bj0 6= 0, in three unknowns
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s22, s11, s12. We shall show that conditions of theorem imply that there is nonzero
solution of this system such that s22 = 1, s11 = k = aj0b

−1
j0 the same for every

characteristic root αj of matrices (1), (3) such that 2mj < nj. We shall prove this
fact by induction. The condition 1) implies that system (14) has nonzero solution
such that it does not dependent on the choice of the characteristic root αj . After
annihilation of equal summands on the both sides of equality (12) for sj = mj + 1
and after division by a

mj

j0 = kmj b
mj

j0 with the help of simple transformations we can
obtain the following relation

aj, mj+1 − kbj, mj+1 − (aj0bj0)
−1(ajmj

− kbjmj
)(aj0bj1 + aj1bj0) = 0.

This means that

s22 = 1, s11 = k, s12 = (aj0bj0)
−1(ajmj

− kbjmj
). (27)

is a common solution of first two equations of system (15). From (13) it follows that
(ai0bi0)

−1(aimi
− kbimi

) = (al0bl0)
−1(alml

− kblml
). This result suggests that this

solution (27) of first two equations of system (15) does not depend on the choice of
the root αj such that 2mj < nj.

Assume by induction that (27) satisfies first r−mj +1 equations of system (15),
i.e.,















ajmj
− kbjmj

− (aj0bj0)
−1(ajmj

− kbjmj
)aj0bj0 = 0,

aj, mj+1 − kbj, mj+1 − (aj0bj0)
−1(ajmj

− kbjmj
)
∑1

u=0 ajubj, 1−u = 0,
.................................................................................................

ajr − kbjr − (aj0bj0)
−1(ajmj

− kbjmj
)
∑r−mj

u=0 ajubj, r−mj−u = 0.

(28)

In so doing, we may think for the sake of determinacy r > 2mj . In opposite case
proof is completely analogous. Taking into account the conditions 1), 2) and induc-
tive assumption we can write equalities (23), (24) and (25). From these equalities
we obtain equality (22). This relation implies the equality (21). It is evident that
from the second and all following equalities of (28) we find that first r−mj equalities
of (20) are valid. The first r − mj equalities of (20) along with relation (21) yield
the last equality of (20). This equality after shortening in (−aj0)

r = kr(−bj0)
r and

after some simplifications can be written in the form

aj, r+1 − kbj, r+1 − (aj0bj0)
−1(ajmj

− kbjmj
)

r−mj+1
∑

u=0

ajubj, r−mj−u+1 = 0.

This means that (27) is the solution of (r−mj +1)-th equation of system (15). This
solution does not dependent on the choice of the root αj.

Thus, congruence (26) holds true for each characteristic root αj of matrices (1),
(3) and for the same set of numbers (27), where s22 6= 0, s11 6= 0. It enables us to
write the congruence
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s22a(x) − s11b(x) − s12a(x)b(x) ≡ 0 (mod ∆(x)). (29)

We introduce the following notation:

r11(x) = s11 − s12b(x), r12(x) = s12∆(x),

r22(x) = s22 − s12b(x), r21(x) =
s22a(x) − s11b(x) − s12a(x)b(x)

∆(x)
.

It is clear that r21(x) ∈ C. With this notations check that equality (4) is true. From
this it follows that matrices (1) and (3) are semiscalarly equivalent. The theorem is
proved.

Theorem 3. In the partition (2) for matrix A(x) of the form (1) let us have w = 1;
ni and mi be the multiplicities of some root αi ∈ M in the characteristic polynomial
∆(x) and in polynomial a(x) of matrix, A(x) respectively, moreover 2mi < ni. Then
in the class of semiscalarly equivalent matrices {CA(x)Q(x)} there exists a matrix
B(x) of the form (3), where entry b(x) satisfies the following conditions: b(αi) = 0,
b(mi)(αi) = mi!, b(2mi)(αi) = 0. For a fixed root αi the matrix B(x) is defined
uniquely.

Proof. Existence. We may take, that already the entry a(x) of the matrix A(x)
satisfies the condition a(mi)(αi) = mi!. In the opposite case, for this purpose we

divide the first column of matrix A(x) and multiply its first row by a(mi)(αi)
mi!

. Let αj

denote an arbitrary characteristic root of matrix A(x) of multiplicity nj such that
in the decomposition

a(x) =

s−mj−1
∑

t=0

ajt(x − αj)
mj+t, (30)

where s = deg ∆(x), the index mj is less than nj. We set

∥

∥ bj0 bj1 . . . bj, lj−mj−1

∥

∥ =
∥

∥ aj0 aj1 . . . aj, lj−mj−1

∥

∥ ,

where lj = min(2mj , nj). Let αl ∈ M , αl 6= αi, be an arbitrary characteristic root
such that 2ml < nl. We write the formal equality bimi

b−2
i0 − blml

b−2
l0 = aimi

a−2
i0 −

alml
a−2

l0 , where al0, ai0, aimi
, alml

are coefficients of the decomposition (30) for
j = i and j = l. Setting bi0 = ai0, bl0 = al0 and bimi

= 0 in this relation, we
calculate blml

. Using this value blml
and determined above bl0 = al0, bl1 = al1, . . . ,

bl, ml−1 = al, ml−1, from formal equalities
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

bl1 bl2 . . . bl, sl−1 blsl

bl0 bl1
. . . bl, sl−2 bl, sl−1

. . .
. . .

. . .
...

. . . bl1 bl2

0 bl0 bl1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

al1 al2 . . . al, sl−1 alsl

al0 al1
. . . al, sl−2 al, sl−1

. . .
. . .

. . .
...

. . . al1 al2

0 al0 al1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (31)

sl = ml + 1, . . . , nl − ml − 1, we find recurrently bl, ml+1, . . . , bl, nl−ml−1. Setting
l = i, bimi

= 0 and using determined above bi0 = ai0, bi1 = ai1, . . . , bi, mi−1 =
ai, mi−1, similarly from (31) we find recurrently bi, mi+1, . . . , bi, ni−mi−1. Thus, for
every root αj ∈ M such that in the decomposition (30) mj < nj, some numbers
bi0, bi1, . . . , bj, nj−mj−1 ∈ C are defined. We construct the matrix B(x) of the
form (3) whose entry b(x), where deg b(x) < s, satisfies such conditions: b(αj) = 0,
b(1)(αj) = 0, . . . , b(mj−1)(αj) = 0, b(mj)(αj) = mj !bj0, . . . , b(nj−1)(αj) = (nj −
1)!bj, nj−mj−1, and b(α) = 0, b(1)(α) = 0, . . . , b(n−1)(αj) = 0 for each root α ∈ M of
multiplicity n which is different from αj . Since matrix (1) and constructed matrix of
the form (3) satisfy the conditions of Theorem 2, they are semiscalarly equivalent.
The first part of theorem is proved.

The uniqueness of the matrix B(x) of the form (3) whose entry b(x) satisfies
the conditions described in theorem follows from the uniqueness of construction of
the polynomial b(x), deg b(x) < s = deg ∆(x), by known its values and values of
its derivatives of respective orders at roots of the polynomial ∆(x). The theorem is
completely proved.

Definition 1. The matrix B(x) of the form (3) whose existence and uniqueness
in the class {CA(x)Q(x)} are established in theorem 3 is called αi-canonical. The
matrix A(x) of the form (1) is called also αi-canonical if for each root αj ∈ M of
multiplicity nj in the decomposition (30) of its entry a(x) index mj satisfies the
condition 2mj ≥ nj and for some root αi ∈ M we have mi < ni, a(mi)(αi) = (mi)!.
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