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General form transversals in groups

Eugene Kuznetsov

Abstract. The classical notion of transversal in group to its subgroup is generalised.
It is made with the help of reducing any conditions on the choice of representatives
of the left (right) cosets in group to its subgroup. Obtained general form transversals
are investigated and some its properties are studied.
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1 Introduction

In the theory of quasigroups and loops the following notion of left (right)
transversal in group to its subgroup is well-known [1–4].

Definition 1. Let G be a group and H be its subgroup. Let {Hi}i∈E be the set
of all left (right) cosets in G to H (E is a set of indexes with distinguished element
1), and we assume H1 = H. A set T = {ti}i∈E of representativities of the left
(right) cosets (by one from each coset Hi and t1 = e ∈ H) is called a left (right)
transversal in G to H.

As is easy to see, in this definition the choice of representatives of left (right)
cosets in G to H is not free – there exist two conditions: H1 = H and t1 = e ∈ H.
Let us reduce these two conditions and investigate obtained below general form
transversals in group to its subgroup.

2 General form transversals in group to its subgroup

2.1 Definitions and elementary properties

Let G be a group and H be its subgroup. Below we shall use the following
notations:

E is an index set (E contains a distinguished element 1);
left (right) cosets in the group G to its subgroup H are numbered by the indexes

from E;
{Hi}i∈E is the set of all left (right) cosets in G to H;

e is the unit of group G;
Below all definitions and propositions will be formulated for the left cosets in G

to H; for the right cosets in G to H it may be done analogously.
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Definition 2. Let G be a group and H be its subgroup. Let {Hi}i∈E be the set of
all left cosets in G to H. A set T = {ti}i∈E of representativities of the left (right)
cosets (by one from each coset Hi, i.e. ti ∈ Hi) is called a left general form
transversal in G to H (see also [6, 7]).

Remark 1. Generally speaking the numbering of left cosets {Hi}i∈E in G to H may
be such that the subgroup H obtain an index a ∈ E which is different from 1, i.e.
H = Ha 6= H1.

Remark 2. Generally speaking the unit e of the group G (and subgroup H) may not
belong to the left general form transversal T in G to H, i.e. e /∈ T .

Definition 3. If for left general form transversal T = {ti}i∈E in G to H the following
condition holds: ti0 = e for some i0 ∈ E, then such transversal T is called a left
reduced transversal in G to H. In opposite case T is called a left non-reduced
transversal in G to H.

Definition 4. If for left general form transversal T = {ti}i∈E in G to H the following
condition holds: H = H1 (i.e. the index of the subgroup H in the set of left cosets in
G to H is equal to 1), then such transversal T is called a left ordered transversal
in G to H. In opposite case T is called a left non-ordered transversal in G to
H.

Definition 5. A left general form transversal T = {ti}i∈E in G to H which is a left
reduced and ordered transversal in G to H is usually called a left transversal in
G to H.

Example 1. Let us have:

G = S3 = {id, (12), (13), (23), (123), (132)},

H = St1(S3) = {id, (23)}.

Left cosets in G to H:

Hi1 = H = {id, (23)},

Hi2 = {(12), (123)},

Hi3 = {(13), (132)},

E = {i1, i2, i3} ≡ {1, 2, 3}.

1. i1 6= 1 and T = {(23), (12), (132)}. Then T is a left non-reduced non-ordered
general form transversal in G to H.

2. i1 = 1 and T = {(23), (12), (132)}. Then T is a left non-reduced ordered
general form transversal in G to H.

3. i1 6= 1 and T = {id, (123), (132)}. Then T is a left reduced non-ordered general
form transversal in G to H.
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4. i1 = 1 and T = {id, (12), (13)}. Then T is a left (reduced and ordered)
transversal in G to H.

Theorem 1. For an arbitrary left general form transversal T = {ti}i∈E in G to H
the folloving statements are true:

1. For every h ∈ H the set Th = Th = {tih}i∈E is a left general form transversal
in G to H too.

2. There exists an element h0 ∈ H such that the set Th0 = Th0 is a left reduced
(maybe non-ordered) general form transversal in G to H.

3. For every π ∈ G the set πT = πT = {πti}i∈E is a left general form transversal
in G to H too.

4. There exists an element π0 ∈ G such that the set π0T = π0T = {π0ti}i∈E is a
left (reduced and ordered) transversal in G to H.

Proof. 1. For every i ∈ E and h ∈ H we have

ti ∈ Hi =⇒ tih ∈ Hi,

and so
(Th) ∩ Hi = {tih},

i.e. Th is a left general form transversal in G to H.
2. Let

T ∩ H = h∗,

i.e. h∗ is a representative of general form transversal T in the subgroup H. Then
we put

h0 = (h∗)−1.

We obtain
h∗ ∈ T =⇒ e = h∗ · (h∗)−1 ∈ (Th0),

i.e. due to item 1 general form transversal T1 = Th0 is a left reduced (maybe
non-ordered) general form transversal in G to H

3. Let us take an arbitrary element π ∈ G and consider the set

πT = πT = {πti}i∈E .

Because T is a left general form transversal in G to H then

G =
⋃

i∈E

(tiH).

So we obtain

G = πG = π ·

(
⋃

i∈E

(tiH)

)
=
⋃

i∈E

((πti)H),
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i.e. every element g ∈ G may be presented in the form g = t∗h, where h ∈ H and
t∗ ∈ πT .

Now let us show that for every i, j ∈ E, i 6= j, the following equality is true

((πti)H) ∩ ((πtj)H) = ∅.

Let us assume that it is not true, and so

πtih1 = πtjh2 = g0

for some h1, h2 ∈ H. Then we obtain

tih1 = tjh2 =⇒ ti = tjh2h
−1
1 ∈ tjH =⇒ (tiH) ∩ (tjH) 6= ∅,

that is in contradiction to the fact that T is a left general form transversal in G to
H.

4. Let us consider the left coset H1 and take the element

π∗ = t1 = H1 ∩ T.

Then we may take π0 = (π∗)−1. Really we have

e = (π∗)−1 · π∗ = π0t1 ∈ π0T,

i.e. with the help of item 3 the left general form transversal π0T is a left (reduced
and ordered) transversal in G to H.

2.2 A transversal operation

Definition 6. Let T = {ti}i∈E be a left general form transversal in G to H. Define
the following operation on the set E:

x
(T )
· y = z ⇔ txty = tzh, h ∈ H.

Theorem 2. For an arbitrary left general form transversal T = {ti}i∈E in G to H
the following statements are true:

1. There exists an element a0 ∈ E such that the system

〈
E,

(T )
· , a0

〉
is a left

quasigroup with right unit a0.

2. If a left general form transversal T = {ti}i∈E is a reduced (but non-ordered)
transversal in G to H, then there exists an element a0 ∈ E such that the system〈

E,
(T )
· , a0

〉
is a left loop with unit a0.

3. If a left general form transversal T = {ti}i∈E is an ordered (but non-reduced)

transversal in G to H, then the system

〈
E,

(T )
· , 1

〉
is a left quasigroup with

right unit 1.
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4. If a left general form transversal T = {ti}i∈E is an ordered and reduced

transversal in G to H, then the system

〈
E,

(T )
· , 1

〉
is a left loop with

unit 1.

Proof. 1. For any arbitrary a, b ∈ E consider the following equivalent equations on
the set E:

a
(T )
· x = b,

tatx = tbh, h ∈ H,

tx = t−1
a tbh = tch

∗, h∗ ∈ H,

x = c,

for some c ∈ E; moreover, the element c = c(a, b) is uniquely determined by the

elements a, b ∈ E. So the system

〈
E,

(T )
·

〉
is a left quasigroup. If a0 is the index of

subgroup H as a left coset in G to H, i.e. H ≡ Ha0 , then ta0 = h0 ∈ H for some
element h0. For every x ∈ E we have the following equivalent equations on the set
E:

x
(T )
· a0 = u,

txta0 = tuh, h ∈ H,

txh0 = tuh, h ∈ H,

tx = tuhh−1
0 = tuh∗, h∗ ∈ H,

u = x,

i.e. for every x ∈ E: x
(T )
· a0 = x. It means that the system

〈
E,

(T )
· , a0

〉
is a left

quasigroup with right unit a0.
2. If a left general form transversal T = {ti}i∈E is a reduced (but non-ordered)

transversal in G to H, then ta0 = e ∈ H. For every x ∈ E we have the following
equivalent equations on the set E:

a0
(T )
· x = u,

ta0tx = tuh, h ∈ H,

etx = tuh, h ∈ H,

tx = tuh, h ∈ H,

u = x,

i.e. for every x ∈ E: a0
(T )
· x = x. It means that the system

〈
E,

(T )
· , a0

〉
is a left

loop with two-sided unit a0.
3. If a left general form transversal T = {ti}i∈E is an ordered (but non-reduced)

transversal in G to H, then the proof is analogous to the proof of the item 1, but we
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have a0 = 1 too (because H1 ≡ Ha0 ≡ H). So we obtain that the system

〈
E,

(T )
· , 1

〉

is a left loop with unit 1.
4. It is an evident corollary of the items 2 and 3

2.3 Permutation representation

Definition 7. Let G be a group and H be its subgroup. A permutation repre-
sentation Ĝ of the group G by left cosets to its subgroup H is the following map
ϕ:

ϕ : G → SE,

ϕ : g → ĝ,

ĝ (x) = y
def
⇔ g · (Hx) = Hy, x, y ∈ E.

If some left general form transversal T = {ti}i∈E in G to H is chosen, then the
last formula may be rewritten in the following form:

ĝ (x) = y
def
⇔ g · (tx · H) = ty · H.

The map ϕ is a homomorphism from the group G to the symmetric group SE. The
kernel of this homomorphism is called a core of G to H:

CoreGH =
⋂

π∈G

(πHπ−1).

If CoreGH = {e}, then the above-mentioned representation is a strict representation
and ϕ is an isomorphism.

It is easy to show that with the help of factorisation on the core it is always
possible to take into consideration the strict permutation representation Ĝ of the
group G by left cosets to its subgroup H. So below we assume that the above-
mentioned representation is a strict representation.

Theorem 3. For an arbitrary left general form transversal T = {ti}i∈E in G to H
the following statements are true:

1. There exists an element a0 ∈ E such that for every h ∈ H: ĥ (a0) = a0.

2. The following identities are fulfilled:

(a) For all x, y ∈ E: t̂x(y) = x
(T )
· y;

(b) For all x, y ∈ E: t̂−1
x (y) = x

(T )

�y, where ”
(T )

�” is a left division for

the operation

〈
E,

(T )
· , a0

〉
(i.e. x

(T )

�y = z ⇐⇒ x
(T )
· z = y);

(c) For every x ∈ E: t̂x(a0) = x.
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3. If a left general form transversal T = {ti}i∈E is a reduced (but non-ordered)
transversal in G to H, then the following identities are fulfilled:

(a) For all x, y ∈ E: t̂x(y) = x
(T )
· y;

(b) For all x, y ∈ E: t̂−1
x (y) = x

(T )

�y;

(c) For every x ∈ E: t̂x(a0) = t̂a0(x) = x.

4. If a left general form transversal T = {ti}i∈E is an ordered (but non-reduced)
transversal in G to H, then the following identities are fulfilled:

(a) For all x, y ∈ E: t̂x(y) = x
(T )
· y;

(b) For all x, y ∈ E: t̂−1
x (y) = x

(T )

�y;

(c) For every x ∈ E: t̂x(1) = x.

5. If a left general form transversal T = {ti}i∈E is an ordered and reduced
transversal in G to H, then the following identities are fulfilled:

(a) For all x, y ∈ E: t̂x(y) = x
(T )
· y;

(b) For all x, y ∈ E: t̂−1
x (y) = x

(T )

�y;

(c) For every x ∈ E: t̂x(1) = t̂1(x) = x.

Proof. 1. According to item 1 of Theorem 2 there exists an element a0 ∈ E such
that H ≡ Ha0 (i.e. ta0 = h0 ∈ H). Then for every h ∈ H we have the following
equivalent equalities:

ĥ (a0) = a1,

hta0 = ta1h
∗, h∗ ∈ H,

hh0 = ta1h
∗, h∗ ∈ H,

ta1 = hh0(h
∗)−1 ∈ H,

ta1 = ta0 ,

a1 = a0.

So we obtain that ĥ (a0) = a0.
2. a. For all x, y ∈ E we have the following equivalent equalities:

x
(T )
· y = u,

txty = tuh, h ∈ H,

txtyH = tuH,

t̂x(y) = u.
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So we obtain that t̂x(y) = x
(T )
· y.

b. For all x, y ∈ E we have the following equivalent equalities:

t̂−1
x (y) = u,

t̂x(u) = y,

x
(T )
· u = y,

u = x
(T )

�y,

where ”
(T )

�” is a left division for the operation

〈
E,

(T )
· , a0

〉
(i.e. x

(T )

�y = z ⇐⇒

x
(T )
· z = y). So we obtain that t̂−1

x (y) = x
(T )

�y.
c. According to item 1 of Theorem 2 there exists an element a0 ∈ E such that

for every x ∈ E x
(T )
· a0 = x. Then due to item 2a we have for every x ∈ E

t̂x(a0) = x
(T )
· a0 = x.

3. Let the left general form transversal T = {ti}i∈E be a reduced (but non-
ordered) transversal in G to H. Then ta0 = e. So all identities from the item 2 of
present Theorem are true; moreover, we have for every x ∈ E

t̂a0(x) = ê(x) = id(x) = x.

4. Let the left general form transversal T = {ti}i∈E be an ordered (but non-
reduced) transversal in G to H. Then a0 = 1. So all identities from the item 2 of
present Theorem are true; moreover, we have for every x ∈ E

t̂x(1) = x.

5. It is an evident corollary of the items 3 and 4.

Theorem 4. For an arbitrary left general form transversal T = {ti}i∈E in G to H
the folloving statements are true:

1. If P = {pi}i∈E is a left general form transversal in G to H such that for every
x ∈ E:

P = Th0,

px′ = txh0,

where h0 ∈ H is an arbitrary fixed element (see item 1 from Theorem 1),

then the transversal operation

〈
E,

(P )
·

〉
is isotopic to the transversal operation

〈
E,

(T )
·

〉
, and this isotopy has the form (id, ĥ0, id).
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2. If S = {si}i∈E is a left general form transversal in G to H such that for every
x ∈ E:

S = πT,

sx′ = πtx,

where π ∈ G is an arbitrary fixed element (see item 3 from Theorem 1),

then the transversal operation

〈
E,

(S)
·

〉
is isotopic to the transversal operation

〈
E,

(T )
·

〉
, and this isotopy has the form (π−1, id, π).

Proof. 1. Let P = {pi}i∈E be a left general form transversal in G to H such that
for every x ∈ E:

P = Th0,

px′ = txh0,

where h0 ∈ H is an arbitrary fixed element. According to items 1 and 2 from
Theorem 3 there exists an element a0 ∈ E such that for every h ∈ H

ĥ (a0) = a0,

t̂x(a0) = x,

p̂x′(a0) = x′,

for all x, x′ ∈ E. Then we have for all x ∈ E

x′ = p̂x′(a0) = t̂xĥ0(a0) = t̂x(a0) = x,

i.e. for all x ∈ E

px = txh0.

According to item 2 from Theorem 3 we obtain for all x, y ∈ E:

x
(P )
· y = p̂x(y) = t̂xĥ0(y) = x

(T )
· ĥ0(y),

i.e. the transversal operation

〈
E,

(P )
·

〉
is isotopic to the transversal operation

〈
E,

(T )
·

〉
, and this isotopy has the form (id, ĥ0, id).

2. Let S = {si}i∈E be a left general form transversal in G to H such that for
every x ∈ E:

S = πT,

sx′ = πtx,
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where π ∈ G is an arbitrary fixed element. Analogously to the item 1 of this
Theorem we have

x′ = ŝx′(a0) = π̂ t̂x(a0) = π̂(x),

i.e. for every x ∈ E

sπ(x) = πtx,

sx = πtπ−1(x).

Then according to item 2 from Theorem 3 we obtain for all x, y ∈ E:

x
(S)
· y = ŝx(y) = π̂ t̂π̂−1(x)(y) = π̂(π̂−1(x)

(T )
· y),

i.e. the transversal operation

〈
E,

(S)
·

〉
is isotopic to the transversal operation

〈
E,

(T )
·

〉
, and this isotopy has the form (π−1, id, π).

Remark 3. The last statement allows us to see a new sense of Theorem 2. Now
it is evident that the transition from a general form transversal to the reduced (or
ordered) transversal is just a transition from a left quasigroup transversal operation
to a left loop transversal operation (which is its isotope).

3 Quasigroup and loop general form transversals

Definition 8. Let T = {ti}i∈E be a left general form transversal in G to H. If its

transversal operation

〈
E,

(T )
·

〉
is a quasigroup, then the transversal T is called a

left quasigroup general form transversal in G to H (in [5] such transversal is called
a stable transversal in G to H).

Remark 4. According to item 1 from Theorem 2 there exists an element a0 ∈ E

such that a0 is a right unit in the operation

〈
E,

(T )
·

〉
; so if T is a left quasigroup

general form transversal in G to H, then the system

〈
E,

(T )
· , a0

〉
is a quasigroup

with the right unit a0.

Theorem 5. If T = {ti}i∈E is a left quasigroup general form transversal in G to

H, then there exists an element a0 ∈ E such that the system

〈
E,

(T )
· , a0

〉
is a loop.

Proof. It is an evident corollary from the item 2 of Theorem 2.

Definition 9. A left reduced quasigroup general form transversal in G to H is
usually called a left loop general form transversal in G to H.
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Theorem 6. The following statements are equivalent:

1. A set T = {tx}x∈E is a left quasigroup general form transversal in G to H;

2. For every π ∈ G the set Tπ = {txπ}x∈E is a left general form transversal in
G to H;

3. For all π1, π2 ∈ G the set π1Tπ2 = {π1txπ2}x∈E is a left general form transver-
sal in G to H;

4. For every π ∈ G the set T = {tx}x∈E is a left general form transversal in G
to Hπ = πHπ−1.

Proof. 1⇒2. Let a set T = {tx}x∈E be a left quasigroup general form transversal

in G to H. Then the system

〈
E,

(T )
·

〉
is a quasigroup. Let an element π ∈ G be

an arbitrary fixed element from G. We shall consider the set Tπ = {txπ}x∈E and
prove that this set is a left general form transversal in G to H.

Because T = {tx}x∈E is a left quasigroup general form transversal in G to H,
then

π = tc0h0

for some tc0 ∈ T and h0 ∈ H. Because the operation

〈
E,

(T )
·

〉
is a quasigroup, then

for every x ∈ E we have

txπ = txtc0h0 = t
x
(T )
· c0

h1 = tRc0(x)h1

for some h1 ∈ H. Then every element g ∈ G may be represented in the following
form:

g = tc1h
∗ = tRc0 (c1/c0)h1h

−1
1 h∗ = tc1/c0πh−1

1 h∗ = (tc1/c0π)h∗∗, h∗∗ ∈ H.

Let us assume that this representation is not unique, i.e. there exist a, b ∈ E,
a 6= b and h1, h2 ∈ H such that

taπh1 = g = tbπh2.

According to item 1 of Theorem 3 there exists an element a0 ∈ E such that we have
the following equivalent equalities

t̂aπ̂ ĥ1(a0) = t̂bπ̂ ĥ2(a0)

t̂aπ̂ (a0) = t̂bπ̂ (a0)

t̂at̂c0 ĥ0(a0) = t̂bt̂c0ĥ0(a0)

t̂at̂c0(a0) = t̂bt̂c0(a0)

t̂a(c0) = t̂b(c0)
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a
(T )
· c0 = b

(T )
· c0

a = b

because the operation

〈
E,

(T )
·

〉
is a quasigroup. We obtain a contradiction and so

the above mentioned representation is unique. Then the set Tπ = {txπ}x∈E is a left
general form transversal in G to H.

2⇒3. It is evident due to item 3 of Theorem 1.
3⇒4. If the condition of item 3 holds then a fortiori is true that for every π ∈ G

the set πTπ−1 = {πtxπ−1}x∈E is a left general form transversal in G to H. So for
all a, b ∈ E, a 6= b we have the following equivalent statements:

{
G =

⋃
x∈E

(πtxπ−1)H,

∅ = (πtaπ
−1H) ∩ (πtbπ

−1H),





G = π−1Gπ = π−1

( ⋃
x∈E

(πtxπ−1)H

)
π =

⋃
x∈E

tx(π−1Hπ),

∅ = π−1 · ∅ · π = π−1((πtaπ
−1H) ∩ (πtbπ

−1H))π = (ta(π
−1Hπ)) ∩ (tb(π

−1Hπ)).

Because the element π ∈ G is an arbitrary element from G then the element π−1

will be an arbitrary element from G too. So the set T = {tx}x∈E is a left general
form transversal in G to Hπ′

= π′Hπ′−1 for every π′ ∈ G (where π′ = π−1).
4⇒1. Let for every π ∈ G a set T be a left general form transversal in G to

Hπ = πHπ−1. In order to prove that the set T is a left quasigroup general form
transversal in G to H, it is sufficient to prove that for all arbitrary fixed elements
a, b ∈ E the equation

x
(T )
· a = b

has unique solution in the set E.
We have the following equivalent equalities:

x
(T )
· a = b

txta = tbh, h ∈ H

tx = tbht−1
a = (tbt

−1
a ) · (taht−1

a ) (1)

Because the set T is a left general form transversal in G to Hta = taHt−1
a (when

π = ta), then there exists the unique element c = c(a, b) ∈ E such that

tbt
−1
a ∈ tc · (taHt−1

a ).

Substituting this product in (1) we obtain:

tx = tc · (tah
′t−1

a ) · (taht−1
a ) = tc · (tah

∗t−1
a ), h∗ ∈ H.

Because the set T is a left general form transversal in G to Hta = taHt−1
a , then

x = c. The proof is finished.
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Corollary 1. The following statements are equivalent:

1. A set T = {tx}x∈E is a left quasigroup general form transversal in G to H;

2. For every π ∈ G the set Tπ = {txπ}x∈E is a left quasigroup general form
transversal in G to H;

3. For all π1, π2 ∈ G the set π1Tπ2 = {π1txπ2}x∈E is a left quasigroup general
form transversal in G to H.

Theorem 7. The following statements are equivalent:

1. A set T = {tx}x∈E is a left loop general form transversal in G to H;

2. For every π ∈ G the set Tπ = {txπ}x∈E is a left general form transversal in
G to H;

3. For all π ∈ G the set πTπ−1 = {πtxπ−1}x∈E is a left reduced general form
transversal in G to H;

4. For every π ∈ G the set T = {tx}x∈E is a left reduced general form transversal
in G to Hπ = πHπ−1.

Proof. It is an evident corollary from Theorems 1 and 6.

Corollary 2. The following statements are equivalent:

1. A set T = {tx}x∈E is a left loop general form transversal in G to H;

2. For every π ∈ G the set Tπ = {txπ}x∈E is a left quasigroup general form
transversal in G to H;

3. For all π ∈ G the set πTπ−1 = {πtxπ−1}x∈E is a left loop general form
transversal in G to H.

Theorem 8. Let T = {tx}x∈E be a left loop general form transversal in G to H.
According to Definition 9 and Theorem 3 there exists an element a0 ∈ E such that
t̂a0 = id. Then for every x ∈ E, x 6= a0, the permutation t̂x is a fixed-point-free
permutation on the set E.

Proof. Let the conditions of Theorem hold and assume that it is not true, i.e. there
exist c0 ∈ E and a1 ∈ E, a1 6= a0, such that

{
t̂a1(c0) = c0,
a1 6= a0.

Then according to Theorem 2 we have the following equivalent equalities

t̂a1(c0) = c0,
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a1
(T )
· c0 = c0 = a1

(T )
· c0,

a1
(T )
· c0 = a1

(T )
· c0,

a1 = a0,

since the system

〈
E,

(T )
· , a0

〉
is a loop. But the last equality contradicts to the

assumption that a1 6= a0. The proof is finished.
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