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Stationary Nash Equilibria for Average Stochastic

Games with Finite State and Action Spaces
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Abstract. We study the problem of the existence of stationary Nash equilibria in
infinite n-person stochastic games with limiting average payoff criteria for the players.
The state and action spaces in the games are assumed to be finite. We present some
results for the existence of stationary Nash equilibria in a multichain average stochastic
game with n players. Based on constructive proof of these results we propose an
approach for determining the optimal stationary strategies of the players in the case
when stationary Nash equilibria in the game exist.
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1 Introduction

In this paper we investigate n-person average stochastic games with finite state
and action spaces. The problem we are interested in is the existence of Nash equi-
libria in stationary strategies. This problem has been studied by many authors
(see [4–6, 8, 9, 12, 13, 19–21]) however the existence of stationary Nash equilibria or
ε-Nash equilibrium have been proved only for some classes of average stochastic
games. Rogers [16] and Sobel [19] showed that stationary Nash equilibria exist for
nonzero-sum stochastic games with average payoffs when the transition probability
matrices induced by any stationary strategies of the players are unichain. Mertens
and Neyman [12] proved the existence of uniform ε-optimal strategies in two-player
zero-sum games, i.e. they showed that for every ε > 0 each of the two players has
a strategy that guarantees the discounted value up to ε for every discount factor
sufficiently close to 0. Important results for two-person non-zero sum games with
average payoffs have been obtained by Vieille [20] where he shows the existence
of ε-Nash equilibria. Flesch et al.[7] constructed a three-player average stochastic
game with given starting state for which stationary Nash equilibria does not exist,
however a cyclic Markov equilibrium for such a game exists. In general case the
existence of Nash equilibria for an arbitrary stochastic game with average payoffs is
an open problem. Here we formulate a condition for the existence of stationary Nash
equilibria in n-person average stochastic games and based on constructive proof of
this condition we propose a continuous model for the considered games that allows
determining stationary Nash equilibria if such equilibria exist.
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2 Formulation of average stochastic game

We present the general formulation of n-person average stochastic game and
specify some basic notions that we shall use in the paper.

2.1 The framework of n-person stochastic game

A stochastic game with n players consists of the following elements:

– a state space X (which we assume to be finite);

– a finite set Ai(x) of actions with respect to each player i ∈ {1, 2, . . . , n}

for an arbitrary state x ∈ X;

– a payoff f i(x, a) with respect to each player i ∈ {1, 2, . . . , n} for each

state x ∈ X and for an arbitrary action vector a ∈
∏

i

Ai(x);

– a transition probability function p : X ×
∏

x∈X

n
∏

i=1
Ai(x) ×X → [0, 1]

that gives the probability transitions pa
x,y from an arbitrary x ∈ X

to an arbitrary y ∈ Y for a fixed action vector a ∈
∏

i

Ai(x), where

∑

y∈X

pa
x,y = 1, ∀x ∈ X, a ∈

∏

i

Ai(x);

– a starting state x0 ∈ X.

The game starts in the state x0 and the play proceeds in a sequence of stages. At
stage t players observe state xt and simultaneously and independently choose actions
ai

t ∈ Ai(xt), i = 1, 2, . . . , n. Then nature selects state y = xt+1 according to proba-
bility transitions pat

xt,y
for the given action vector at = (a1

t , a
2
t , . . . , a

n
t ). Such a play

of the game produces a sequence of states and actions x0, a0, x1, a1, . . . , xt, at, . . .

that defines the corresponding stream of stage payoffs f1
t = f1(xt, at), f2

t =
f2(xt, at), . . . , f

n
t = fn(xt, at), t = 0, 1, 2, . . . . The infinite average stochastic

game is the game with payoffs of players

ωi
x0

= lim
t→∞

inf E

(

1

t

t−1
∑

τ=0

f i
τ

)

, i = 1, 2, . . . , n,

where ωi
xo

expresses the average payoff per transition of player i in infinite game.
In the case n = 1 this game becomes the average Markov decision problem with
a transition probability function p : X ×

∏

x∈X

A(x) × X → [0, 1] and immediate

rewards f(x, a) = f1(x, a) in the states x ∈ X for given actions a ∈ A(x) = A1(x).

In the paper we will study the stochastic games when players use pure and mixed
stationary strategies of selection of the actions in the states.
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2.2 Pure and mixed stationary strategies of the players

A strategy of player i ∈ {1, 2, . . . , n} in a stochastic game is a mapping si that
for every state xt ∈ X provides a probability distribution over the set of actions
Ai(xt). If these probabilities take only values 0 and 1, then si is called a pure
strategy, otherwise si is called a mixed strategy. If these probabilities depend only
on the state xt = x ∈ X (i. e. si do not depend on t), then si is called a stationary
strategy. This means that a pure stationary strategy of player i ∈ {1, 2, . . . , n} can
be regarded as a map

si : x→ ai ∈ Ai(x) for x ∈ X

that determines for each state x an action ai ∈ Ai(x), i.e. si(x) = ai. Obviously,
the corresponding sets of pure stationary strategies S1, S2, . . . , Sn of the players in
the game with finite state and action spaces are finite sets.

In the following we will identify a pure stationary strategy si(x) of player i with
the set of boolean variables si

x,ai ∈ {0, 1}, where for a given x ∈ X si
x,ai = 1 if and

only if player i fixes the action ai ∈ Ai(x). So, we can represent the set of pure
stationary strategies Si of player i as the set of solutions of the following system:







∑

ai∈Ai(x)

si
x,ai = 1, ∀x ∈ X;

si
x,ai ∈ {0, 1}, ∀x ∈ X, ∀ai ∈ Ai(x).

If in this system we change the restriction si
x,ai ∈ {0, 1} for x ∈ X, ai ∈ Ai(x) by

the condition 0 ≤ si
x,ai ≤ 1 then we obtain the set of stationary strategies in the

sense of Shapley [17], where si
x,ai is treated as the probability of choices of the

action ai by player i every time when the state x is reached by any route
in the dynamic stochastic game. Thus, we can identify the set of mixed stationary
strategies of the players with the set of solutions of the system







∑

ai∈Ai(x)

si
x,ai = 1, ∀x ∈ X;

si
x,ai ≥ 0, ∀x ∈ X, ∀ai ∈ Ai(x)

(1)

and for a given profile s = (s1, s2, . . . , sn) of mixed strategies s1, s2, . . . , sn of the
players the probability transition ps

x,y from a state x to a state y can be calculated
as follows

ps
x,y =

∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

sk
x,akp

(a1,a2,...,an)
x,y . (2)

In the sequel we will distinguish stochastic games in pure and mixed stationary
strategies.

2.3 Average stochastic games in pure stationary strategies

Let s = (s1, s2, . . . , sn) be a profile of pure stationary strategies of the players

and denote by a(s) = (a1(s), a2(s), . . . , an(s)) ∈
∏

x∈X

n
∏

i=1
Ai(x) the action vector that
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corresponds to s and determines the probability distributions ps
x,y = p

a(s)
x,y in the

states x ∈ X. Then the average payoffs per transition ω1
x0

(s), ω2
x0

(s), . . . , ωn
x0

(s)
for the players are determined as follows

ωi
x0

(s) =
∑

y∈X

qs
x0,yf

i(y, a(s)), i = 1, 2, . . . , n,

where qs
xo,y represent the limiting probabilities in the states y ∈ X for the Markov

process with probability transition matrix P s = (ps
x,y) when the transitions start

in x0. So, if for the Markov process with probability matrix P s the correspond-
ing limiting probability matrix Qs = (qs

x,y) is known then ω1
x, ω

2
x, . . . , ω

n
x can be

determined for an arbitrary starting state x ∈ X of the game. The functions
ω1

x0
(s), ω2

x0
(s), . . . , ωn

x0
(s) on S = S1 × S2 × · · · × Sn define a game in nor-

mal form that corresponds to an infinite average stochastic game in pure stationary
strategies. This game is determined by the set of states X, the sets of actions
of the players {Ai(x)}i=1,n, the probability function p, the set of stage payoffs

{f i(x, a}i=1,n and the starting position of the game x0. Therefore we denote this

game by (X, {Ai(x)}i=1,n, {f
i(x, a}i=1,n, p, x0). If the starting position of the game

is chosen randomly according to distribution probabilities {θx} in X then such a
game we denote (X, {Ai(x)}i=1,n, {f

i(x, a}i=1,n, p, {θx}).

If an arbitrary profile s = (s1, s2, . . . , sn) of pure stationary strategies in a
stochastic game induces a probability matrix P s that corresponds to a Markov
unichain then we say that the game possesses the unichain property and shortly
we call it unichain stochastic game; otherwise we call it multichain stochastic game.

For an average stochastic game in pure strategies a Nash equilibrium may not
exist. Therefore in this paper we study stochastic games in the case when players
use mixed stationary strategies.

2.4 Stochastic games in mixed stationary strategies

Let s = (s1, s2, . . . , sn) be a profile of mixed stationary strategies of the play-
ers. Then elements of probability transition matrix P s = (ps

x,y) in the Markov
process induced by s can be calculated according to (2). Therefore if Qs = (qs

x,y)
is the limiting probability matrix of P s then the average payoffs per transition
ω1

x0
(s), ω2

x0
(s), . . . , ωn

x0
(s) for the players are determined as follows

ωi
x0

(s) =
∑

y∈X

qs
x0,yf

i(y, s), i = 1, 2, . . . , n,

where

f i(y, s) =
∑

(a1,a2,...,an)∈A(y)

n
∏

k=1

sk
y,akf

i(y, a1, a2, . . . , an)

expresses the average payoff (immediate reward) in the state y ∈ X of player
i when the corresponding stationary strategies s1, s2, . . . , sn have been applied by
players 1, 2, . . . , n in y.
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Let S
1
, S

2
, . . . , S

n
be the corresponding sets of mixed stationary strategies for

the players 1, 2, . . . , n, i.e. each S
i

for i ∈ {1, 2, . . . , n} represents the set of
solutions of system (1). Then the functions ω1

x0
(s), ω2

x0
(s), . . . , ωn

x0
(s) on S =

S
1
× S

2
× · · · × S

n
, define a game in normal form. This game corresponds to an

infinite average stochastic game in mixed stationary strategies.

3 Preliminaries

We present some results for the average Markov decision problem and for the
average stochastic game with unichain property that we shall use for the multichain
average stochastic games.

3.1 A continuous model for the average Markov decision problem

with unichain property

In [9] it has been shown that an average Markov decision problem with unichain
property can be formulated as the following optimization problem:
Maximize

ψ(s, q) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,a qx (3)

subject to














































qy −
∑

x∈X

∑

a∈A(x)

pa
x,ysx,aqx = 0, ∀y ∈ X;

∑

x∈X

qx = 1;

∑

a∈A(x)

sx,a = 1, ∀x ∈ X;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(4)

Here f(x, a) represents the immediate reward in the state x ∈ X for a given action
a ∈ A(x) in the unichain problem and pa

x,y expresses the probability transition from
x ∈ X to y ∈ X for a ∈ A(x). The variables sx,a correspond to strategies of
selection of the actions a ∈ A(x) in the states x ∈ X and qx for x ∈ X represent
the corresponding limiting probabilities in the states x ∈ X for the probability
transition matrix P s = (ps

x,y) induced by stationary strategy s.
In this problem the average reward ψ(s, q) is maximized under the conditions

(4) that determines the set of feasible stationary strategies in the unichain problem.
An optimal solution (s∗, q∗) of problem (3), (4) with s∗x,a ∈ {0, 1} corresponds to an
optimal stationary strategy s∗ : X → A where a∗ = s∗(x) for x ∈ X if s∗x,a = 1.
Using the notations αx,a = sx,aqx, for x ∈ X,a ∈ A(x), problem (3), (4) can be
easily transformed into the following linear programming problem:
Maximize

ψ(α) =
∑

x∈X

∑

a∈A(x)

f(x, a)αx,a (5)
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subject to














































qy −
∑

x∈X

∑

a∈A(x)

pa
x,yαx,a = 0, ∀y ∈ X;

∑

x∈X

qx = 1;

∑

a∈A(x)

αx,a − qx = 0, ∀x ∈ X;

αx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(6)

This problem can be simplified by eliminating qx from (6) and finally we obtain the
problem in which it is necessary to maximize the objective function (5) on the set
of solutions of the following system:



























∑

a∈A(y)

αy,a −
∑

x∈X

∑

a∈A(x)

pa
x,y αx,a = 0, ∀y ∈ X;

∑

x∈X

∑

a∈A(x)

αx,a = 1;

αx,a ≥ 0, ∀x ∈ X, a ∈ A(x).

(7)

Based on the mentioned above relationship between problem (3), (4) and problem
(5), (7) in [9] the following lemma is proven.

Lemma 1. Let an average Markov decision problem be given, where an arbitrary
stationary strategy s generates a Markov unichain, and consider the function

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,a qx

where qx for x ∈ X satisfy the condition






















qy −
∑

x∈X

∑

a∈A(x)

pa
x,ysx,aqx = 0, ∀y ∈ X;

∑

x∈X

qx = 1.

Then the function ψ(s) on the set S of solutions of the system










∑

a∈A(x)

sx,a = 1, ∀x ∈ X;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)

depends only on sx,a for x ∈ X,a ∈ A(x), and ψ(s) is quasi-monotone on S.

Thus, the average unichain decision problem can be represented as the problem
of the maximization of a quasi-monotone function ψ(s) on a compact set S. Using
this result in [10] it has been shown that an average stochastic game with unichain
property can be formulated as a continuous game with quasi-monotone payoffs.
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3.2 Determining stationary Nash equilibria for average stochastic

games with unichain property

An average stochastic game with unichain property can be formulated in the
terms of stationary strategies as follows.

Let S = S
1
×S

2
×· · ·×S

n
, where each S

i
for i ∈ {1, 2, . . . , n} represents the set

of solutions of system (1), i.e. S
i

represents the set of mixed stationary strategies
for player i. On S we define the average payoffs for the players as follows:

ψi(s1, s2, . . . , sn) =
∑

x∈X

∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

sk
x,akf

i(x, a1, a2, . . . , an)qx,

i = 1, 2, . . . , n,

where qx for x ∈ X are determined uniquely from the following system of linear
equations



























∑

x∈X

∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

sk
x,akp

(a1,a2,...,an)
x,y qx = qy, ∀y ∈ X;

∑

x∈X

qx = 1,

where si ∈ S
i
, i = 1, 2, . . . , n.

The functions ψi(s1, s2, . . . , sn), i = 1, 2, . . . , n on S define a game in
normal form that corresponds to a stationary average stochastic game with unichain
property. For this game in [11] the following results are proven.

Lemma 2. For an arbitrary unichain stochastic game each payoff func-
tion ψi(s1, s2, . . . , sn), i ∈ {1, 2, . . . , n} possesses the property that

ψi(s1, s2, . . . , si−1, si, si+1, . . . , sn) is quasi-monotone with respect to si ∈ S
i
for

arbitrary fixed sk ∈ S
k
, k = 1, 2, . . . , i− 1, i + 1, . . . , n.

Based on this lemma in [11] the following theorem is proven.

Theorem 1. Let (X, A, {Xi}i=1,n, {f i(x, a)}i=1,n, p, x) be a stochastic game
with a given starting position x ∈ X and average payoff functions

ψ1(s1, s2, . . . , sm), ψ2(s1, s2, . . . , sn), . . . , ψm(s1, s2, . . . , sm)

of players 1, 2, . . . , n, respectively. If for an arbitrary s = (s1, s2, . . . , sn) ∈ S of
the game the transition probability matrix P s = (ps

x,y) corresponds to a Markov

unichain then for the continuous game on S there exists a Nash equilibrium s∗ =
(s1

∗
, s2

∗
, . . . , sn∗) which is a Nash equilibrium for an arbitrary starting state x ∈ X of

the game and ψi(s1
∗
, s2

∗
, . . . , sm∗) = ωi

x(s
1∗, s2

∗
, . . . , sm∗), ∀x ∈ X, i = 1, 2, . . . , n.
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4 Some auxiliary results for multichain average decision problem

In this section we propose a continuous model for the multichain average decision
problem and extend the results from Section 3.1 for the general case of decision
problem. We shall use these results in the next section for the multichain average
stochastic games.

4.1 Linear programming approach for multichain decision problem

It is well-known that the optimal stationary strategies for a multichain average
Markov decision problem can be found using the following linear programming prob-
lem (see [11,14]):
Maximize

ψ(α, β) =
∑

x∈X

∑

a∈A(x)

f(x, a)αx,a (8)

subject to






























∑

a∈A(y)

αy,a −
∑

x∈X

∑

a∈A(x)

pa
x,y αx,a = 0, ∀y ∈ X;

∑

a∈A(y)

αy,a +
∑

a∈A(y)

βy,a −
∑

x∈X

∑

a∈A(x)

pa
x,yβx,a = θy, ∀y ∈ X;

αx,a ≥ 0, βy,a ≥ 0, ∀x ∈ X, a ∈ A(x),

(9)

where θy for y ∈ X represent arbitrary positive values that satisfy the condition
∑

y∈X

θy = 1. Recall that f(x, a) denotes the immediate cost in a state x ∈ X for a

given action a ∈ A(x) in the decision problem and pa
x,y represent the corresponding

probability transitions from a state x ∈ X to the states y ∈ X for a ∈ A(x), where
∑

y∈X

pa
x,y = 1.

This problem generalizes the unichain linear programming model (5), (7) from
Section 3.1. In (9) the restrictions

∑

a∈A(y)

αy,a +
∑

a∈A(y)

βy,a −
∑

x∈X

∑

a∈A(x)

pa
x,yβx,a = θy, ∀y ∈ X (10)

with the condition
∑

y∈X

θy = 1 generalize the constraint

∑

x∈X

∑

a∈A(y)

αy,a = 1 (11)

in the unichain model. Condition (11) is obtained if we sum (10) over y.

The relationship between feasible solutions of problem (8),(9) and stationary
strategies in the average Markov decision problem can be established on the basis
of the following randomized stationary decision rule (see [14]):
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Let (α, β) be a feasible solution of the linear programming problem (8), (9)
and denote Xα = {x ∈ X|

∑

a∈X

αx,a > 0}. Then (α, β) possesses the properties that
∑

a∈A(x)

βx,a > 0 for x ∈ X \Xα and a stationary randomized decision rule dα,β(x)

for a feasible solution (α, β) is defined by

sdα,β(x)(a) =



































αx,a
∑

a∈A(x)

αx,a

if x ∈ Xα;

βx,a
∑

a∈A(x)

βx,a

if x ∈ X \Xα,
(12)

where sdx,y(x)(a) expresses the probability of choosing the actions a ∈ A(x) in the
states x ∈ X for the average decision problem under decision rule d. This means
that for a given feasible solution (α, β) the decision rule d determines a stationary
strategy sx,a = sdα,β(x)(a) of choosing the actions a ∈ A(x) in the states x ∈ X. If
for each x ∈ Xα it holds αx,a > 0 for a single a ∈ A(x) and for each x ∈ X \Xα

it holds βx,a > 0 for a single a ∈ A(x) then (12) generates a deterministic
decision rule

dα,β(x) =

{

a if αx,a > 0 and x ∈ Xα;

a′ if βx,a′> 0 and x ∈ X \Xα

that corresponds to a pure stationary strategy s, where sx,a = sdα,β(x)(a) for x ∈ X
and a ∈ A(x).

Remark 1. In [14] problem (8), (9) is regarded as the dual model of the following
linear programming problem:
Minimize

φ(ε, ω) =
∑

x∈X

θxωx (13)

subject to











εx + ωx ≥ f(x, a) +
∑

y∈X

pa
x,yεy, ∀x ∈ X, ∀a ∈ A(x);

ωx ≥
∑

y∈X

pa
x,yωy, ∀x ∈ X, ∀a ∈ A(x).

(14)

The optimal value of objective function in this problem as well as the optimal value
of objective function in problem (8), (9) express the optimal average reward when
the initial state is chosen according to distribution {θx}. Solving problem (13), (14)
we obtain the value ω∗

x for each x ∈ X that represents the optimal average reward
when transition starts in x with probability equal to 1. This means that if (α∗, β∗) is
the optimal solution of problem (8), (9) then we can determine the optimal strategy
s∗ and the optimal values of object functions of problems (13), (14) and (8), (9),
where φ(ε∗, ω∗) = ψ(α∗, β∗).
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4.2 Multichain decision model in the terms of stationary strategies

The continuous model we propose for the multichain average decision problem
that generalizes the unichain continuous model (3), (4) is the following:
Maximize

ψ(s, q, w) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx (15)

subject to


















































qy −
∑

x∈X

∑

a∈A(x)

pa
x,y sx,aqx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

∑

a∈A(x)

pa
x,ysx,awx = θy, ∀y ∈ X;

∑

a∈A(y)

sy,a = 1, ∀y ∈ X;

sx,a ≥ 0, ∀x ∈ X, ∀a ∈ A(x); wx ≥ 0, ∀x ∈ X,

(16)

where θy are the same values as in problem (8), (9) and sx,a, qx, wx for x ∈ X,
a ∈ A(x) represent the variables that must be found.

Theorem 2. Optimization problem (15), (16) determines the optimal stationary
strategies of the multichain average Markov decision problem.

Proof. Indeed, if we assume that each action set A(x), x ∈ X contains a single action
a′ then system (9) is transformed into the following system of equations











qy −
∑

x∈X

px,yqx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

px,ywx = θy, ∀y ∈ X

with conditions qy, wy ≥ 0 for y ∈ X, where qy = αy,a′ , wy = βy,a′ , ∀y ∈ X

and px,y = pa′

x,y, ∀x, y ∈ X. This system uniquely determines qx for x ∈ X and
determines wx for x ∈ X up to an additive constant in each recurrent class of
P = (px,y) (see [14]). Here qx represents the limiting probability in the state x

when transitions start in the states y ∈ X with probabilities θy and therefore the
condition qx ≥ 0 for x ∈ X can be released. Note that wx for some states may
be negative, however always the additive constants in the corresponding recurrent
classes can be chosen so that wx became nonnegative. In general, we can observe that
in (16) the condition wx ≥ 0 for x ∈ X can be released and this does not influence
the value of objective function of the problem. In the case |A(x)| = 1, ∀x ∈ X the
average cost is determined as ψ =

∑

x∈X

f(x)qx, where f(x) = f(x, a),∀x ∈ X.

If the action sets A(x), x ∈ X may contain more than one action then for a given
stationary strategy s ∈ S of selection of the actions in the states we can find the
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average cost ψ(s) in a similar way as above by considering the probability matrix
P s = (ps

x,y), where

ps
x,y =

∑

a∈A(x)

pa
x,ysx,a (17)

expresses the probability transition from a state x ∈ X to a state y ∈ X when the
strategy s of selections of the actions in the states is applied. This means that we
have to solve the following system of equations











qy −
∑

x∈X

ps
x,yqx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

ps
x,ywx = θy, ∀y ∈ X.

If in this system we take into account (17) then this system can be written as follows















qy −
∑

x∈X

∑

a∈A(x)

pa
x,y sx,aqx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

∑

a∈A(x)

pa
x,ysx,awx = θy, ∀y ∈ X.

(18)

An arbitrary solution (q, w) of the system of equations (18) uniquely determines qy
for y ∈ X that allows us to determine the average cost per transition

ψ(s) =
∑

x∈X

∑

a∈X

f(x, a)sx,aqx (19)

when the stationary strategy s is applied. If we are seeking for an optimal stationary
strategy then we should add to (18) the conditions

∑

a∈A(x)

sx,a = 1, ∀x ∈ X; sx,a ≥ 0, ∀x ∈ X,a ∈ A(x) (20)

and to maximize (19) under the constraints (18), (20). In such a way we obtain
problem (15), (16) without conditions wx ≥ 0 for x ∈ X. As we have noted the
conditions wx ≥ 0 for x ∈ X do not influence the values of the objective function
(15) and therefore we can preserve such conditions that show the relationship of the
problem (15), (16) with problem (8), (9).

The relationship between feasible solutions of problem (8), (9) and feasible solu-
tions of problem (15), (16) can be established on the basis of the following lemma.

Lemma 3. Let (s, q, w) be a feasible solution of problem (15), (16). Then

αx,a = sx,aqx, βx,a = sx,awx, ∀x ∈ X,a ∈ A(x) (21)

represent a feasible solution (α, β) of problem (8), (9) and ϕ(s, q, w) = ψ(α, β). If
(α, β) is a feasible solution of problem (8), (9) then a feasible solution (s, q, w) of
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problem (15), (16) can be determined as follows:

sx,a =



































αx,a
∑

a∈A(x)

αx,a

for x ∈ Xα, a ∈ A(x);

βx,a
∑

a∈A(x)

βx,a

for x ∈ X \Xα, a ∈ A(x);
(22)

qx =
∑

a∈A(x)

αx,a, wx =
∑

a∈A(x)

βx,a for x ∈ X.

Proof. Assume that (s, q, w) is a feasible solution of problem (15), (16) and (α, β)
is determined according to (21). Then by introducing (21) in (8),(9) we can observe
that (9) is transformed in (16) and ψ(s, q, w) = ψ(α, β), i.e. (α, β) is a feasible
solution of problem (8), (9). The second part of lemma follows directly from the
properties of feasible solutions of problems (8),(9) and (15),(16).

Note that an arbitrary pure stationary strategy s of problem (15), (16) corre-
sponds to a basic solution (α, β) of problem (8), (9) for which (22) holds, however
system (9) may contain basic solutions for which stationary strategies determined
through (22) do not correspond to pure stationary strategies. Moreover two different
feasible solutions of problem (8), (9) may generate through (22) the same stationary
strategy. Such solutions of system (9) are considered equivalent solutions for the
decision problem.

Corollary 1. If (αi, βi), i = 1, k, represent the basic solutions of system (9) then
the set of solutions

M =
{

(α, β)| (α, β) =

k
∑

i=1

λi(αi, βi),

k
∑

i=1

λi = 1, λi > 0, i = 1, k
}

determines all feasible stationary strategies of problem (15), (16) through (22).

An arbitrary solution (α, β) of system (9) can be represented as follows: α =
∑k

i=1 λ
iαi, where

∑k
i=1 λ

i = 1; λi ≥ 0, i = 1, k, and β represents a solution of the
system











∑

a∈A(y)

βx,a −
∑

z∈X

∑

a∈A(z)

pa
z,xβz,a = θx −

∑

a∈A(x)

αx,a, ∀x ∈ X;

βy,a ≥ 0, ∀x ∈ X, a ∈ A(x).

If (α, β) is a feasible solution of problem (8), (9) and (α, β) 6∈M then there exists a
solution (α′, β′) ∈M that is equivalent to (α, β) and ψ(α, β) = ψ(α′, β′).
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4.3 The main property of the object function

Using problem (15), (16) we can now extend the results from Section 3.1 for the
general case of average decision problem.

Theorem 3. Let an average Markov decision problem be given and consider the
function

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x,a)sx,a qx, (23)

where qx for x ∈ X satisfy the condition















qy −
∑

x∈X

∑

a∈A(x)

pa
x,y sx,aqx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

∑

a∈A(x)

pa
x,ysx,awx = θy, ∀y ∈ X.

(24)

Then on the set S of solutions of the system







∑

a∈A(x)

sx,a = 1, ∀x ∈ X;

sx,a ≥ 0, ∀x ∈ X, a ∈ A(x)

(25)

the function ψ(s) depends only on sx,a for x ∈ X,a ∈ A(x) and ψ(s) is
quasi-monotone on S .

Proof. For an arbitrary s ∈ S system (24) uniquely determines qx for x ∈ X and
determines wx for x ∈ X up to a constant in each recurrent class of P s = (ps

x,y),
where ps

x,y =
∑

a∈A(x)

pa
x,ysx,a, ∀x, y ∈ X. This means that ψ(s) is determined

uniquely for an arbitrary s ∈ S, i.e. the first part of the theorem holds.

Now let us prove the second part of the theorem.

Consider arbitrary two strategies s′, s′′ ∈ S and assume that s′ 6= s′′. Then
according to Lemma 3 there exist feasible solutions (α′, β′) and (α′′, β′′) of linear
programming problem (8), (9) for which

ψ(s′) = ψ(α′, β′), ψ(s′′) = ψ(α′′, β′′′), (26)

where

α′

x,a = s′x,aq
′

x, α′′

x,y = s′′x,aq
′′

x, ∀x ∈ X, a ∈ A(x);

β′x,a = s′x,aw
′

x, β′′x,y = s′′x,aq
′′

x, ∀x ∈ X, a ∈ A(x);

q′x =
∑

a∈A(x)

α′

x,a w′

x,a =
∑

a∈A(x)

β′x,a, ∀x ∈ X;

q′′x =
∑

a∈A(x)

α′′

x,a w′′

x,a =
∑

a∈A(x)

β′′x,a, ∀x ∈ X.
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The function ψ(α, β)) is linear and therefore for an arbitrary feasible solution
(α, β) of problem (8), (9) holds

ψ(α, β) = tψ(α′, β′) + (1 − t)ψ(α′′, β′′) (27)

if 0 ≤ t ≤ 1 and

(α, β) = t(α′, β′) + (1 − t)(α′′, β′′).

Note that (α, β) corresponds to a stationary strategy s for which

ψ(s) = ψ(α, β), (28)

where

sx,a =















αx,a

qx

if x ∈ Xα;

βx,a

wx
if x ∈ X \Xα.

(29)

Here Xα = {x ∈ X|
∑

a∈A(x)

αx,a > 0} is the set of recurrent states induced by

P s = (ps
x,y), where ps

x,y are calculated according to (17) for s = s and

qx = tq′x + (1 − t)q′′, wx = tw′

x + (1 − t)w′′

x, ∀x ∈ X.

We can see that Xα = Xα′ ∪ Xα′′ , where Xα′ = {x ∈ X|
∑

a∈A(x)

α′

x,a > 0} and

Xα′′ = {x ∈ X|
∑

a∈A(x)

α′′

x,a > 0}.

The value

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx

is determined by f(x, a), sx,a and qx in recurrent states x ∈ Xα and it is equal to
ψ(α, β). If we use (29) then for x ∈ Xα and a ∈ A(x) we have

sx,a =
tα′

x,a + (1 − t)α′′

x,a

tq′x + (1 − t)q′′x
=
ts′x,aq

′

x + (1 − t)s′′x,aq
′′

x

tq′x + (1 − t)q′′x
=

=
tq′x

tq′x + (1 − t)q′′x
s′x,a +

(1 − t)q′′x
tq′x + (1 − t)q′′x

s′′x,a

and for x ∈ X \Xα and a ∈ A(x) we have

sx,a =
tβ′x,a + (1 − t)β′′x,a

tw′
x + (1 − t)w′′

x

=
ts′x,aw

′

x + (1 − t)s′′x,aw
′′

x

tw′
x + (1 − t)w′′

x

=

=
tw′

x

tw′
x + (1 − t)w′′

x

s′x,a +
(1 − t)w′′

x

tw′
x + (1 − t)w′′

x

s′′x,a.
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So, we obtain

sx,a = txs
′

x,a + (1 − tx)s′′x,a, ∀a ∈ A(x), (30)

where

tx =















tq′x
tq′x + (1 − t)q′′x

if x ∈ Xα;

tw′

x

tw′
x + (1 − t)w′′

x

if x ∈ X \Xα.

(31)

and from (26)–(28) we have

ψ(s) = tψ(s′) + (1 − t)ψ(s′′). (32)

This means that if we consider the set of strategies

S(s′, s′′) = {s| sx,a = txs
′

x,a + (1 − tx)s
′′

x,a, ∀x ∈ X,a ∈ A(x)}

then for an arbitrary s ∈ S(s′, s′′) holds

min{ψ(s′), ψ(s′′)} ≤ ψ(s) ≤ max{ψ(s′), ψ(s′′)}, (33)

i.e ψ(s) is monotone on S(s′, s′′). Moreover, using (30)–(33) we obtain that s pos-
sesses the properties

lim
t→1

sx,a = s′x,a,∀x ∈ X,a ∈ A(x); lim
t→0

sx,a = s′′x,a,∀x ∈ X,a ∈ A(x). (34)

and respectively

lim
t→1

ψ(s) = ψ(s′); lim
t→0

ψ(s) = ψ(s′′).

In the following we show that the function ψ(s) is quasi-monotone on S. To
prove this it is sufficient to show that for an arbitrary c ∈ R the sublevel set

L−

c (ψ) = {s ∈ S| ψ(s) ≤ c}

and the superlevel set

L+
c (ψ) = {s ∈ S| ψ(s) ≥ c}

of function ψ(s) are convex. These sets can be obtained respectively from the sublevel
set

L−

c (ψ) = {(α, β)| ψ(α, β)) ≤ c}

and the superlevel set

L+
c (ψ) = {(α, β)| ψ(α, β)) ≥ c}

of function ψ(α, β) for linear programming problem (8), (9) using (22).

Denote by (αi, βi), i = 1, k the basic solutions of system (9). According to
Corollary 1 all feasible strategies of problem (8), (9) can be obtained trough (22)
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using the basic solutions (αi, βi), i = 1, k. Each (αi, βi), i = 1, k, determines a
stationary strategy

si
x,a =



















αi
x,a

qi
x

, for x ∈ Xαi , a ∈ A(x);

βi
x,a

wi
x

, for x ∈ X \Xαi , a ∈ A(x)

(35)

for which ψ(si) = ψ(αi, βi) where

Xαi ={x ∈ X|
∑

a∈A(x)

αi
x,a > 0}, qi

x =
∑

a∈A(x)

αi
x,a, wi

x =
∑

a∈A(x)

βi
x,a, ∀x ∈ X. (36)

An arbitrary feasible solution (α, β) of system (9) determines a stationary strategy

sx,a =







αx,a
qx

, for x ∈ Xα, a ∈ A(x);

βx,a
wx

, for x ∈ X \Xα, a ∈ A(x),
(37)

for which ψ(s) = ψ(α, β) where

Xα = {x ∈ X|
∑

a∈A(x)

αx,a > 0}, qx =
∑

a∈A(x)

αx,a, wx =
∑

a∈A(x)

βx,a, ∀x ∈ X.

Taking into account that (α, β) can be represented as

(α, β) =

k
∑

i=1

λi(αi, βi), where

k
∑

i=1

λi = 1, λi ≥ 0, i = 1, k (38)

we have ψ(α, β) =
k
∑

i=1
ψ(αi, βi)λi and we can consider

Xα =

k
⋃

i=1

Xαi ; α =

k
∑

i=1

λiαi; q =

k
∑

i=1

λiqi; w =

k
∑

i=1

λiwi. (39)

Using (35)–(39) we obtain:

sx,a =
αx,a

qx
=

∑k
i=1 λ

iαk
x,a

qx
=

∑k
i=1 λ

isi
x,aq

i
x

qx
=

k
∑

i=1

λiqi
x

qx
si
x,a, ∀x ∈ Xα, a ∈ A(x);

sx,a =
βx,a

wx

=

∑k
i=1 λ

iβk
x,a

wx

=

∑k
i=1 λ

isi
x,aw

i
x

wx

=
k
∑

i=1

λiwi
x

wx

si
x,a, ∀x ∈ X\Xα, a ∈ A(x)

and

qx =

k
∑

i=1

λiqi
x, wx =

k
∑

i=1

λiwi
x for x ∈ X. (40)
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So,

sx,a =



























k
∑

i=1

λiqi
x

qx
si
x,a if qx > 0;

k
∑

i=1

λiwi
x

wx

si
x,a if qx = 0,

(41)

where qx and wx are determined according to (40).

We can see that if λi, si, qi, i = 1, k are given then the strategy s defined by (41) is
a feasible strategy because sx,a ≥ 0,∀x ∈ X,a ∈ A(x) and

∑

a∈A(x) sx,a = 1, ∀x ∈ X.

Moreover, we can observe that qx =
k
∑

i=1
λiqi

x, wx =
k
∑

i=1
λiwi

x for x ∈ X represent

a solution of system (24) for the strategy s defined by (41). This can be verified by
introducing (40) and (41) in (24); after such a substitution all equations from (24)
are transformed into identities. For ψ(s) we have

ψ(s) =
∑

x∈X

∑

a∈A(x)

f(x, a)sx,aqx =
∑

x∈Xα

∑

a∈A(x)

f(x, a)

k
∑

i=1

(

λiqi
x

qx
si
x,a

)

qx =

k
∑

i=1

(

∑

x∈X
αi

∑

a∈A(x)

f(x, a)si
x,aq

i
x

)

λi =

k
∑

i=1

ψ(si)λi,

i.e.

ψ(s) =

k
∑

i=1

ψ(si)λi, (42)

where s is the strategy that corresponds to (α, β).

Thus, assuming that the strategies s1, s2, . . . , sk correspond to basic solutions
(α1, β1), (α2, β2), . . . , (αk, βk) of problem (8), (9) and s ∈ S corresponds to an arbi-
trary solution (α, β) of this problem that can be expressed as convex combination of
basic solutions of problem (8), (9) with the corresponding coefficients λ1, λ2, . . . , λk,
we can express the strategy s and the corresponding value ψ(s) by (40)–(42). In
general the representation (40)–(42) of strategy s and of the value ψ(s) is valid for
an arbitrary finite set of strategies from S if (α, β) can be represented as convex
combination of the finite number of feasible solutions (α1, β1), (α2, β2), . . . , (αk, βk)
that correspond to s1, s2, . . . , sk; in the case k = 2 from (40)–(42) we obtain (30)–
(32). It is evident that for a feasible strategy s ∈ S the representation (40), (41) may

be not unique, i.e. two differen vectors Λ = (λ
1
, λ

2
, . . . , λ

k
) and Λ = λ

1
, λ

2
, . . . , λ

k

may be that determine the same strategy s via (40), (41). In the following we will
assume that s1, s2, . . . , sk represent the system of linear independent basic solutions
of system (25), i.e. each si ∈ S corresponds to a pure stationary strategy.
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Thus, an arbitrary strategy s ∈ S is determined according to (40), (41) where
λ1, λ2, . . . , λk correspond to a solution of the following system

k
∑

i=1

λi = 1; λi ≥ 0, i = 1, k.

Consequently, the sublevel set L−

c (ψ) of function ψ(s) represents the set of strategies
s determined by (40), (41), where λ1, λ2, . . . , λk satisfy the condition



















k
∑

i=1
ψ(si)λi ≤ c;

k
∑

i=1
λi = 1; λi ≥ 0, i = 1, k

(43)

and the superlevel set L+
c (ψ) of ψ(s) represents the set of strategies s determined

by (40),(41), where λ1, λ2, . . . , λk satisfy the condition



















k
∑

i=1
ψ(si)λi ≥ c;

k
∑

i=1
λi = 1; λi ≥ 0, i = 1, k.

(44)

Respectively the level set Lc(ψ) = {s ∈ S| ψ(s) = c} of function ψ(s) represents the
set of strategies s determined by (40), (41), where λ1, λ2, . . . , λk satisfy the condition



















k
∑

i=1
ψ(si)λi = c;

k
∑

i=1
λi = 1; λi ≥ 0, i = 1, k.

(45)

Let us show that L−

c (ψ), L+
c (ψ), Lc(ψ) are convex sets. We present the proof

of convexity of sublevel set L−

c (ψ). The proof of convexity of L+
c (ψ) and Lc(ψ) is

similar to the proof of convexity of L−

c (ψ).
Denote by Λ the set of solutions (λ1, λ2, . . . , λk) of system (43). Then from (40),

(41), (43) we have

L−

c (ψ) =
∏

x∈X

Ŝx

where Ŝx represents the set of strategies

sx,a =



























∑k
i=1 λ

iqi
xs

i
x,a

∑k
i=1 λ

iqi
x

if
∑k

i=1 λ
iqi

x > 0,

∑k
i=1 λ

iwi
xs

i
x,a

∑k
i=1 λ

iwi
x

if
∑k

i=1 λ
iqi

x = 0,

a ∈ A(x)
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in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ.
For an arbitrary x ∈ X the set Λ can be represented as follows Λ = Λ+

x ∪Λ0
x,

where

Λ+
x = {(λ1, λ2, . . . , λk) ∈ Λ|

k
∑

i=1

λiqi
x > 0},

Λ0
x = {(λ1, λ2, . . . , λk) ∈ Λ|

k
∑

i=1

λiqi
x = 0}

and
∑k

i=1 λ
iwi

x > 0 if
∑k

i=1 λ
iqi

x = 0.

Therefore Ŝx can be expressed as follows Ŝx = Ŝ+
x ∪ Ŝ0

x, where Ŝ+
x represents

the set of strategies

sx,a =

∑k
i=1 λ

iqi
xs

i
x,a

∑k
i=1 λ

iqi
x

, for a ∈ A(x) (46)

in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ+
x and Ŝ0

x represents the set of
strategies

sx,a =

∑k
i=1 λ

iwi
xs

i
x,a

∑k
i=1 λ

iwi
x

, for a ∈ A(x) (47)

in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ0
x.

Therefore Ŝx can be expressed as follows Ŝx = Ŝ+
x ∪ Ŝ0

x, where Ŝ+
x represents

the set of strategies

sx,a =

∑k
i=1 λ

iqi
xs

i
x,a

∑k
i=1 λ

iqi
x

, for a ∈ A(x) (48)

in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ+
x and Ŝ0

x represents the set of
strategies

sx,a =

∑k
i=1 λ

iwi
xs

i
x,a

∑k
i=1 λ

iwi
x

, for a ∈ A(x) (49)

in the state x ∈ X determined by (λ1, λ2, . . . , λk) ∈ Λ0
x.

Thus, if we analyze (48) then observe that sx,a for a given x ∈ X represents
a linear-fractional function with respect to λ1, λ2, . . . , λk defined on convex set Λ+

x

and Ŝ+
x is the image of sx,a on Λ+

x . Therefore Ŝ+
x is a convex set. If we analyze

(49) then observe that sx,a for given x ∈ X represents a linear-fractional function
with respect to λ1, λ2, . . . , λk on convex set Λ0

x and Ŝ0
x is the image of sx,a on Λ0

x.
Therefore Ŝ0

x is a convex set (see [1]). Additionally we can observe that Λ+
x ∩Λ0

x = ∅
and in the case Λ+

x ,Λ
0
x, 6= ∅ the set Λ0

x represents the limit inferior of Λ+
x . Using this

property and taking into account (34) we can conclude that each strategy sx ∈ Ŝ0
x

can be regarded as the limit of a sequence of strategies {st
x} from Ŝ+

x . Therefore we
obtain that Ŝx = Ŝ+

x ∪ Ŝ0
x is a convex set. This involves the convexity of the sublevel

set L−

c (ψ). In analogues way using (44) and (45) we can show that the superlevel
set L+

c (ψ) and the level set Lc(ψ) a convex set. This means that the function ψ(s)
is quasi-monotone on S.
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5 Existence of stationary Nash equilibria for the multichain average

stochastic game

In this section we present an result concerned with the existence of stationary
Nash equilibria in a multichain average stochastic game with n players. We prove
this result using a continuous model for the considered game that generalizes the
continuous model from Section 3.

5.1 A continuous model for the multichain stochastic game

The continuous model for a multichain average stochastic game that generalizes
the continuous model (23)–(25) is the following:

Let S
i
, i ∈ {1, 2, . . . n} be the set of solutions of the system







∑

ai∈Ai(x)

si
x,ai = 1, ∀x ∈ X;

si
x,ai ≥ 0, ∀x ∈ X, ai ∈ Ai(x).

(50)

that determines the set of stationary strategies of player i. Each S
i

is a convex
compact set and an arbitrary its extreme point corresponds to a basic solution si

of system (50), where si
x,ai ∈ {0, 1}, ∀x ∈ X, ai ∈ A(x), i.e each basic solution

of this system corresponds to a pure stationary strategy of player i. On the set

S = S
1
× S

2
× · · · × S

n
we define n payoff functions















ψi(s1, s2, . . . , sn) =
∑

x∈X

∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

sk
x,akf

i(x, a1, a2 . . . an)qx,

i = 1, 2, . . . , n,

(51)

where qx for x ∈ X are determined uniquely from the following system of linear
equations























qy −
∑

x∈X

∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

sk
x,akp

(a1,a2,...,an)
x,y qx = 0, ∀y ∈ X;

qy + wy −
∑

x∈X

∑

(a1,a2,...,an)∈A(x)

n
∏

k=1

sk
x,akp

(a1,a2,...,an)
x,y wx = θx,∀y ∈ X,

(52)

for an arbitrary profile (s1, s2, . . . , sm) ∈ S. Each (s1, s2, . . . , sn) ∈ S in the
considered continuous game corresponds to a profile of mixed stationary strategies
of the players and ψi(s1, s2, . . . , sn), i = 1, 2, . . . , n, defined by (51), (52) represent
the corresponding average payoffs of the players in the case when the staring state
is chosen according to distribution {θx}. If θx = 0, ∀x ∈ X \ {x0} and θx0 = 1 then
we obtain the continuous game model for the average stochastic game with given
starting state x0, i.e. ψi(s1, s2, . . . , sn) = ωi

x0
(s1, s2, . . . , sn), i = 1, 2, . . . , n.
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5.2 The main result

From Theorem 3 as a corollary we can obtain the following lemma.

Lemma 4. For an arbitrary average stochastic game with θx > 0,∀x ∈ X each
payoff function ψi(s1, s2, . . . , sn), i ∈ {1, 2, . . . , n} possesses the property that

ψi(s1, s2, . . . , si−1, si, si+1, . . . , sn) is quasi-monotone with respect to si ∈ S
i

for

arbitrary fixed sk ∈ S
k
, k = 1, 2, . . . , i− 1, i+ 1, . . . , n.

Proof. Indeed, if players 1, 2, . . . , i−1, i+1, . . . , n fix their stationary strategies sk ∈

S
k
, k = 1, 2, . . . , i−1, i+1, . . . , n, then we obtain an average decision problem with

respect to si ∈ S
i

and average cost function ψi(s1, s2, . . . , si−1, si, si+1, . . . , sn).
According to Theorem 3 this function possesses the property that the value of the

function is uniquely determined by si ∈ S
i
and it is quasi-monotone with respect to

si on S
i
.

Theorem 4. Let (X,A, {Xi}i=1,n, {f
i(x, a)}i=1,n, p, {θx}) be an average stochas-

tic game with given distribution {θx} for the initial state and consider the con-
tinuous game with average payoffs ψi(s1, s2, . . . , sn), i = 1, 2, . . . , n for the
players. If for an arbitrary profile s = (s1, s2, . . . , sn) ∈ S each payoff function
ψi(s1, s2, . . . , sn), i ∈ {1, 2, . . . , n} possesses the property that

lim
si→si

ψi(s1, s2, . . . , si−1, si, si+1, . . . , sn) = ψi(s1, s2, . . . , si−1, si, si+1, . . . , sn)

then for the considered continuous game there exists a Nash equilibrium s∗ =
(s1

∗
, s2

∗
, . . . , sn∗) ∈ S that is a stationary Nash equilibrium for the average stochas-

tic game (X, A, {Xi}i=1,n, {f i(x, a)}i=1,n, p, x}) with an arbitrary initial state
x ∈ X.

Proof. According to Lemma 4 each function ψi(s1, s2, . . . , sn), i ∈ {1, 2, . . . , n}
satisfies the condition that ψi(s1, s2, . . . , si−1, si, si+1, . . . , sn) is quasi-monotone

with respect to si ∈ S
i

for an arbitrary fixed sk ∈ S
k
, k = 1, 2, . . . , i− 1,

i + 1, . . . , n. In the considered game each subset S
i

is convex and compact and
according to the conditions of the theorem each payoff function ψi(s1, s2, . . . , sn)

is continue with respect to si in S
i
. Therefore, these conditions (see [2, 3, 15, 18])

provide the existence of a Nash equilibrium s∗ = (s1
∗
, s2

∗
, . . . , sn∗) for the game with

payoff functions ψi(s1, s2, . . . , sn), i ∈ {i, 2, . . . , n} on S
1
× S

2
× · · · × S

n
.

6 Conclusion

The results presented in the paper show that for finite state space stochastic
games with average payoffs stationary Nash equilibria exist if the conditions of The-
orem 4 are satisfied. For determining stationary Nash equilibria in the considered
games the continuous model from Section 5.1 can be used. For average stochastic
games with unichain property the continuous model from Section 3.2 can be used.
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Moldova

E-mail: lozovanu@math.md

Received April 6, 2016


