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Lattice of all topologies of countable module

over countable rings

V. I.Arnautov, G.N.Ermakova

Abstract. For any countable ring R with discrete topology τ0 and any countable
R-module M the lattice of all (R, τ0)-module topologies contains:
– A sublattice which is isomorphic to the lattice of all real numbers with the usual
order;
– Two to the power of continuum (R, τ0)-module topologies each of which is a coatom.
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1 Introduction

For any ring R with discrete topology τ0 and any R-moduleM the question of the
existence of non-discrete Hausdorff (R, τ0)-module topologies was considered in [1]
and [2]. In particular, it was proved that any infinite module over any discrete ring
R admits non-discrete Hausdorff module topology and an example of a topological
ring (R, τ0) and an R-module M was constructed for which the lattice of all (R, τ0)-
module topologies does not contain Hausdorff topologies.

In fact (see below Remark 3.1) for this topological ring (R, τ0), the lattice of all
(R, τ0)-module topologies on this R-module M contains only anti-discrete topology.

The present paper is a continuation of these works and is devoted to the study
of properties of the lattice of all topologies on countable modules over discrete ring.

The main result of this article is Theorem 3.2, in which it is proved that for
any countable ring R with discrete topology τ0 and any countable R-module M , the
lattice of all (R, τ0)-module topologies contains a sublattice which is isomorphic to
the lattice of real numbers with the usual order and contains two to the power of
continuum coatoms.

Similar results for countable groups and countable rings were obtained in [3, 4]
and [5], respectively.

Furthermore, it was shown that the condition that the ring should be countable
is essential in Theorem 3.2, namely, we constructed an example of an infinite discrete
ring (R, τ0) and a countable R-module M such that every (R, τ0)-module topology
on M which has a countable or finite basis of the filter of neighbourhoods of zero is
anti-discrete.
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2 Preliminary results

To present the main results we recall the following two well known theorems (see,
for example, [1]).

Theorem 2.1. A set Ω = {Vγ |γ ∈ Γ} of subsets of a ring R is a basis of the filter
of neighbourhoods of zero for some ring topology τ on the ring R if and only if the
following conditions are satisfied:

1. 0 ∈
⋂

γ∈Γ

Vγ ;

2. For any subsets V1 and V2 ∈ Ω there exists a subset V3 ∈ Ω such that
V3 ⊆ V1 ∩ V2;

3. For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that V2 + V2 ⊆ V1;

4. For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that −V2 ⊆ V1;

5. For any subset V1 ∈ Ω and any element r ∈ R there exists a subset V2 ∈ Ω
such that r · V2 ⊆ V1 and V2 · r ⊆ V1;

6. For any subset V1 ∈ Ω there exists a subset V2 ∈ Ω such that V2 · V2 ⊆ V1.

Theorem 2.2. If (R, τ) is a topological ring and M is an R-module, then a set
Λ = {Uδ |δ ∈ ∆} of subsets of the module M is a basis of the filter of neighborhoods of
zero for some (R, τ)-module topology τ1 of the module M if and only if the following
conditions are satisfied:

1. 0 ∈
⋂

δ∈∆

Uδ;

2. For any subsets U1 and U2 ∈ Λ there exists a subset U3 ∈ Λ such that
U3 ⊆ U1 ∩ U2;

3. For any subset U1 ∈ Λ there exists a subset U2 ∈ Λ such that U2 +U2 ⊆ U1;

4. For any subset U1 ∈ Λ there exists a subset U2 ∈ Λ such that −U2 ⊆ U1;

5. For any subset U1 ∈ Λ and any element r ∈ R there exists a subset U2 ∈ Λ
such that r · U2 ⊆ U1;

6. For any subset U1 ∈ Λ and any element m ∈ M there exists a neighborhood
V2 of zero of the topological ring (R, τ) such that V2 ·m ⊆ U1;

7. For any subset U1 ∈ Λ there exists a neighborhood V2 of zero of the topological
ring (R, τ) and a subset U2 ∈ Λ such that V2 · U2 ⊆ U1.

Theorem 2.3. (see the proof in [5], Theorem 3.1) If R is a countable ring and τ0
is a non-discrete, Hausdorff ring topology such that the topological ring (R, τ0) has
a countable basis of the filter of neighborhoods of zero, then the following statements
are true:

1. For any infinite set A of natural numbers there exists a ring topology τ(A)
such that the topological ring (R, τ(A)) has a countable basis of the filter of neigh-
borhoods of zero and such that τ0 ≤ τ(A);

2. sup{τ(A), τ(B)} is the discrete topology for any infinite sets A and B of
natural numbers such that A ∩B is a finite set;
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3. There exist the continuum of Hausdorff ring topologies each having a countable
basis of the filter of neighbourhoods of zero and stronger than τ0 and such that any
two of them are comparable;

4. There are two to the power of continuum topologies such that sup{τ1, τ2} is
the discrete topology for any two different topologies;

5. There are two to the power of continuum coatoms in the lattice of all ring
topologies.

Remark 2.4. From the proof of Theorem 3.1 in [5] it is easy to see that all topologies
which are indicated in this theorem are stronger than the topology τ0.

Remark 2.5. As in the proof of the Statement 3.1.3 of Theorem 3.1 in [5] ring
topology τr is defined for every real number r and τt ≤ τs if and only if s ≤ t, then
the lattice of all ring topologies contains a sublattice which is anti-isomorphic to the
lattice of all real numbers with the usual order for any countable ring.

In addition, since the mapping σ such that σ(r) = −r is an anti-isomorphism
of the lattice of all real numbers on itself, then the lattice of all ring topologies
contains a sublattice which is isomorphic to the lattice of all real numbers with the
usual order for any countable ring.

3 Basic results

Remark 3.1. We will show that for the topological ring (R, τ0) and for the R-
module M , which are constructed in [3] and [4], any (R, τ0)-module topology of the
module M is anti-discrete.

Thus, let:

– R be the ring of polynomials of an argument x over the field of rational
numbers Q;

– M = {r · z|r ∈ Q} be a one-dimensional vector space over the field of rational
numbers Q;

–

(
n∑

i=0

ri · x
i

)
· (r · z) =

(
n∑

i=0

ri · r

)
· z for any element

n∑
i=0

ri · x
i ∈ R and any

element r · z ∈M ;

– The set Ω = {R · xn|n = 1, 2, . . .} is a basis of the filter of neighbourhoods of
zero in the topological ring (R, τ0).

Now let τ be an (R, τ0)-module topology of the module M and let U be an
arbitrary neighbourhood of zero in the topological module (M, τ).

If r · z ∈ M , then according to the condition 6 of Theorem 2.2, there exists a
neighbourhood V of zero in the topological ring (R, τ0) such that V · (r ·z) ⊆ U , and
hence (R · xn) · (r · z) ⊆ V · (r · z) ⊆ U for some natural number n.
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Then (r ·z) = xn · (r ·z) ∈ (R ·xn) · (r ·z) ⊆ V · (r ·z) ⊆ U . From the arbitrariness
of the element r · z it follows that U = M , and hence the topology τ is anti-discrete.

Theorem 3.2. If (R, τ0) is a countable ring with the discrete topology τ0 and M is
a countable R-module then the following statements are true:

1. For any infinite set A of natural numbers there exists an (R, τ0)-module
topology τ(A) which has a countable basis of the filter of neighborhoods of zero and
such that sup{τ(A), τ(B)} is the discrete topology for any infinite sets A and B of
natural numbers such that A ∩B is a finite set;

2. There exist continuum of (R, τ0)-module topologies which have a countable
basis of the filter of neighbourhoods of zero and such that any two of them are com-
parable;

3. There exist two to the power of continuum coatoms in the lattice of all (R, τ0)-
module topologies on the module M ;

4. The lattice of all (R, τ0)-module topologies on the module M contains a sub-
lattice which is anti-isomorphic to the lattice of all real numbers with the usual order,
and contains a sublattice which is isomorphic to the lattice of all real numbers with
the usual order.

Proof. We define the operation of multiplication on the group R̂(+) = {(r,m)|r ∈
R,m ∈ M}, which is the direct sum of the groups R(+) and M(+), as follows:
(r1,m1) · (r2,m2) = (r1 · r2, r1 ·m2) for any elements r1, r2 ∈ R and any elements
m1,m2 ∈M .

It is easy to see that R̂(+, ·) is a ring, and the set Î = {(0,m)|m ∈ M} is an
ideal of the ring R̂.

If ψ(0,m) = m, then ψ : Î → M is a bijective mapping. Then putting ψ̂(Û) =
{ψ(0,m)|(0,m) ∈ Û} for each subset Û ⊆ Î, we define a bijective mapping ψ̂ of the
set of all subsets of the set Î on the set of all subsets of the set M .

Let ∆̂ be the lattice of all ring topologies on the ring R̂ such that the ideal Î
is open, and let ∆ be the lattice of all (R, τ0)-module topologies on the module M .
We show that the lattices ∆̂ and ∆ are isomorphic.

Let τ̂ ∈ ∆̂. As Î is an open ideal in the topological ring (R̂, τ̂ ) then the topological
ring (R̂, τ̂) has a basis Ω̂ of the filter of neighborhoods of zero such that V̂ ⊆ Î for
any V̂ ∈ Ω̂.

Since τ0 is the discrete topology, then from Theorems 2.1 and 2.2 it follows that
the set {ψ̂(V̂ )|V̂ ∈ Ω̂} is a basis of the filter of neighborhoods of zero for some
(R, τ0)−module topology on the module M , and any (R, τ0)-module topology on
the module M can be obtained in this way.

Since any module topology is given in a unique way by any basis of the filter of
neighborhoods of zero, we have identified mapping ψ̃ : Ω̂ → Ω. It is easy to see that
this map is bijective, and τ̂1 ≤ τ̂2 if and only if ψ̃(τ̂1) ≤ ψ̃(τ̂2), i.e. ψ̃ : (Ω̂,≤) →
(Ω,≤) is a lattice isomorphism.

As noted above (see Introduction), there exists a non-discrete Hausdorff (R, τ0)-
module topology τ̄0 on the module M . If τ̂0 = Ψ̂−1(τ̄0), then Î is an open ideal in
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the topological ring (R̂, τ̂0). Then the topological ring (R̂, τ̂0) has a basis B̂ of the
filter of neighborhoods of zero such that Û ⊆ Î for every Û ∈ B̂ and

⋂

Û∈B̂

Û = {0}.

From countability of the ring R̂, it follows that there exists a countable subset
B̂0 ⊆ B̂ such that

⋂

Û∈B̂0

Û = {0} and the conditions of Theorem 2.1 are satisfied.

Hence, there is a Hausdorff topology τ̃0 ∈ Ω̂ such that topological ring (R̂, τ̃0) has a
countable basis of the filter of neighborhoods of zero and Î is an open ideal.

Then Statements 1 – 5 of Theorem 2.3 are true for the topological ring (R̂, τ̃0),
and from Remark 2.4 it follows that Î is an open ideal for any topology, which is
obtained according of Statements 1 – 5 of Theorem 2.3, i.e. all these topologies
belong to Ω̂. As the lattice Ω̂ is isomorphic to the lattice Ω, then Statements 1 – 3
of Theorem 3.2 are true.

In addition, the Statement 4 of Theorem 3.2 follows from Remark 2.5.
The theorem is proved.

Remark 3.3. We will construct an example of a ring (R, τ0) with discrete ring
topology τ0 and countable R-module M such that every non-discrete (R, τ0)-module
topology which has a finite or countable basis of the filter of neighborhoods of zero,
is anti-discrete.

This example shows that the requirement that the ring R should be countable
is essential in Statements 1 and 2 of Theorem 3.2.

As for any ring R with the discrete topology τ0 any infinite module allows a non-
discrete Hausdorff (R, τ0)-module topology, then the lattice of all (R, τ0)-module
topologies contains coatoms.

However, the following questions remain unresolved:
– How many coatoms are in the lattice of all module topologies on any infinite

module over any ring with discrete topology?
– Do there exist a ring with discrete topology and an infinite module for which

the lattice of all module topologies has only one coatom?
– Do there exist a ring with discrete topology and an infinite module for which

the lattice of all module topologies is a chain?

Example 3.4. Let X be a set with the cardinality of continuum and let Y =
{y1, y2, . . .} be a countable set. We consider the free associative algebra R over the
two-element field Z2 which is generated by the set X and the linear space M over
Z2 for which the set Y is a basis.

We consider the set Ñ of all countable strictly increasing sequences of natural
numbers.

If ω0 is the smallest countable transfinite number and ωc is the smallest transfinite
number with the cardinality of continuum, then:

Ñ = {m̃α|ω0 ≤ α < ωc} and X = {xα|1 ≤ α < ωc}.
We define the multiplication of elements of the set Y ∪ {0} by elements of the

set X as follows:
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– If α < ωc, then we let xα · 0 = 0;
– If α < ω0, i.e. α is a natural number, then we let xα · yk = yα+k−1 for any

natural number k;
– If ω0 ≤ α < ωc, then m̃α is an increasing sequence of natural numbers, i.e.

m̃α = (m1,m2, . . .), and then we let xα · yk = y1 if k ∈ {m1,m2, . . .} and xα · yk = 0
if k /∈ {m1,m2, . . .}.

Then, using the associative and distributive laws, we can extend the operation
of the multiplication of elements of the ring R on the elements of the group M so
that the group M will be a R-module.

We show now that every non-discrete module topology on theR-moduleM which
has a finite or countable basis of the filter of neighbourhoods of zero is anti-discrete.

Assume the contrary, i.e. that on the R-module M there exists a non-discrete
module topology τ which has a finite or countable basis Ω of the filter of neighbour-
hoods of zero and which is not anti-discrete.

If {0} 6=
⋂

V ∈Ω

V and 0 6= g ∈
⋂

V ∈Ω

V }, then there exists a natural number n such

that g = k1 · y1 + k2 · y2 + . . .+ kn · yn and kn 6= 0, i.e. kn = 1.
Since the sequence (n, n+ 1, n + 2, . . .) ∈ Ñ , then (n, n+ 1, n+ 2, . . .) = m̃α for

some transfinite number ω0 ≤ α < ωc.
Now if V ∈ Ω, then (see Theorem 2.2, the property 5) for the element xα ∈ R,

there exists a neighbourhood V1 ∈ Ω such that xα · V1 ⊆ V . Then (see above, the
definition of multiplication of elements from M by elements from R) y1 = xα · yn =
xα · g = xα · V1 ⊆ V .

So, we have proved that y1 ∈ V for every neighbourhood V ∈ Ω.
If V ∈ Ω and h = yk1 + yk2 + . . . + yks

∈ M , then there exists a neighbour-
hood V ′

1 ∈ Ω such that V ′

1 + V ′

1 + . . . V ′

1︸ ︷︷ ︸
s items

⊆ V and there exist neighbourhoods of

Vk1, Vk2 , . . . , Vks
∈ Ω such that xki

· Vki
⊆ V ′

1 for every natural number 1 ≤ i ≤ s.
Then

h = yk1 + yk2 + . . .+ yks
= xk1 · y1 +xk2 · y1 + . . .+xks

· y1 ⊆ V ′

1 + V ′

1 + . . .+ V ′

1︸ ︷︷ ︸
s items

⊆ V.

The arbitrariness of the element h ∈ M implies that V = M , and from the arbi-
trariness of the neighbourhood V we have that the topology τ is anti-discrete for
the case when {0} 6=

⋂
V ∈Ω

V .

Now let {0} =
⋂

V ∈Ω

V . The further proof will be realized in several steps.

Step I. We show that for any natural number n and any neighborhood V0 ∈ Ω there
exists an element h ∈ V0 such that

h = kn+1 · yn+1 + kn+2 · yn+2 + . . . + kn+t · yn+t

and ki ∈ {0, 1} for n+ 1 ≤ i ≤ n+ t.
Let V1 be a neighbourhood of zero in (M, τ) such that V1 − V1 ⊆ V0.
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As for the natural number n the set

Mn = {l1 · y1 + l2 · y2 + . . .+ ln−1 · yn−1|li ∈ {0, 1}, 1 ≤ i ≤ n− 1}

is finite, then there exist elements g = k1 · y1 + k2 · y2 + . . . + km · ym ∈ V1 and
g′ = k′1 · y1 + k′2 · y2 + . . .+ k′m · ym ∈ V1 such that ki = k′i for 1 ≤ i ≤ n. Then

h = g−g′ = (kn+1−k
′

n+1)·yn+1+(kn+2−k
′

n+2)·yn+2+. . .+(km−k′m)·ym ∈ V1−V1 ⊆ V0.

By this the statement indicated in Step I is proved.

Step II. By induction we construct an increasing sequence n1, n2, . . . of natural
numbers and a sequence g1, g2, . . . of elements of the module M .

If Ω = {V1, V2, . . .}, then we take an element

g1 = k1 · y1 + k2 · y2 + . . .+ kn1 · yn1 ∈ V1.

According to the statement indicated in Step I, for the natural number n1 and the
neighbourhood V2 there exists an element

g2 = kn1+1 · yn1+1 + kn1+2 · yn1+2 + . . .+ kn2 · yn2 ∈ V2.

Assume that for any number 2 ≤ i ≤ k we have constructed a natural number
ni and an element

gi = kni−1+1 · yni−1+1 + kni−12 · yni−1+2 + . . . + kni
· yni

∈ Vi.

Then according to the statement indicated in Step I, for the natural number nk

and the neighbourhood Vk+1 there exists an element

gk+1 = knk+1 · ynk+1 + knk+2 · ynk+2 + . . .+ knk+1
· ynk+

∈ Vk+1.

So, we have identified an increasing sequence n1, n2, . . . of natural numbers and the
sequence g1, g2, . . . of elements of the module M such that

gi = kni−11 · yni−1+1 + kni−1+2 · yni−1+2 + . . .+ kni
· yni

∈ Vi

for any natural number i.

Step III. We verify that y1 ∈
∞⋂
i=1

Vi.

If n1, n2, . . . is the sequence of natural numbers which was built in the second
Step, then it belongs to Ñ , and hence, (n1, n2, . . .) = m̃α for some transfinite number
ω0 ≤ α < ωc.

If i is any natural number, then for the element xα and the neighbourhood
of zero Vi there exists a natural number j such that xα · Vj ⊆ Vi. Then, the
definition of multiplication of elements from M by elements from R implies that
y1 = xα · gj ∈ xα · Vj ⊆ Vi.

The arbitrariness of the natural number i implies that y1 ∈
∞⋂
i=1

Vi. This contra-

dicts the assumption that {0} =
∞⋂
i=1

Vi, and hence the case {0} =
∞⋂
i=1

Vi is impossible.

Thus, any non-discrete module topology on R-module M which has a finite or
countable basis of the filter of neighbourhoods of zero is anti-discrete.
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groups. Bul. Acad. Ştiinţe Repub. Moldova, Mat., 2013, No. 2(72)–3(73), 17–26.

[4] Arnautov V. I., Ermakova G.N. On the number of group topologies on countable groups.
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