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Almost periodicity of functions on universal algebras
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Abstract. The Bohr compactification is well known for groups and semigroups
[1,4,7,11,13]. In the present paper the analogue of Bohr compactification is considered
for universal algebras. Some questions posed by J. E. Hart and K. Kunen [9] are
answered.
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1 Introduction

The aim of the present article is to study the compactifications of topological
universal algebras generated by special functions. Any space is considered to be
Tychonoff and non-empty. We use the terminology from [8].

The discrete sum Ω = ⊕{Ωn : n ∈ N = {0, 1, 2, ...}} of the pairwise disjoint
discrete spaces {Ωn : n ∈ N} is called a signature. A topological Ω-algebra or a
topological universal algebra of the signature Ω is a family {G, enG : n ∈ N}, where
G is a non-empty topological space and enG : Ωn×G

n → G is a continuous mapping
for each n ∈ N .

Subalgebras, homomorphisms, isomorphisms and Cartesian products of topolo-
gical Ω-algebras are defined in traditional way [4,5, 7, 9].

Let G be a topological space and n ∈ N. A continuous mapping λ : Gn → G is
called an n-ary operation on G.

If G is a topological Ω-algebra and ω ∈ Ωn, then ω : Gn → G, where ω(x) =
enG(ω, x) for every x ∈ Gn, is an n-ary operation on G.

A pair (Y,ϕ) is a generalized compactification or a g-compactification of a topo-
logical space X if Y is a compact space, ϕ : X → Y is a continuous mapping and
the set ϕ(X) is dense in Y . If (Z,ϕ) and (Y, ψ) are g-compactifications of X, then
(Z,ϕ) ≤ (Y, ψ) if and only if there exists a continuous mapping g : Y → Z such
that ϕ = g ◦ ψ. If ϕ : X → Y is an embedding, then a pair (Y,ϕ) is called a
compactification and we consider that X ⊆ Y and ϕ(x) = x for each x ∈ X.

If (Y,ϕ) and (Z,ψ) are g-compactifications of X, (Y,ϕ) ≤ (Z,ψ) and (Z,ψ) ≤
(Y,ϕ), then the g-compactifications (Y,ϕ), (Z,ψ) are called equivalent and there
exists a unique homeomorphism g : Y → Z such that ψ = g ◦ ϕ. We identify the
equivalent g-compactifications. In this case the class of all g-compactifications of
the space X is a set.

c© Mitrofan M. Choban, Dorin I. Pavel, 2016

45



46 MITROFAN M. CHOBAN, DORIN I. PAVEL

A pair (E,ϕ) is an algebraical g-compactification or an ag-compactification of
a topological Ω-algebra G if E is a compact topological Ω-algebra, ϕ : G → E is a
continuous homomorphism and the set ϕ(G) is dense in E. If (Z,ϕ) and (Y, ψ) are
ag-compactifications of G and (Y,ϕ) ≤ (Z,ψ), then the unique continuous mapping
g : Y → Z, for which ψ = g ◦ ϕ, is a continuous homomorphism of Y onto Z. If
(Y,ϕ) ≤ (Z,ψ) and (Z,ψ) ≤ (Y,ϕ), then the ag-compactifications (Y,ϕ), (Z,ψ) are
called equivalent and there exists a unique topological isomorphism g : Y → Z such
that ψ = g ◦ ϕ.

If a pair (E,ϕ) is an ag-compactification and a compactification of a topological
Ω-algebra G, then (E,ϕ) is called an a-compactification of G. If Ω = Ω0, then any
g-compactification of a topological Ω-algebra G is an ag-compactification.

If G is a topological Ω-algebra, then ComΩ(G) is the set of all ag-compactificati-
ons of the topological Ω-algebra G.

The following properties are obvious.

Property 1. The set ComΩ(G) is a complete lattice for every topological Ω-algebra
G and for every non-empty subset L ⊆ ComΩ(X) there exist the maximal element
∨L and the minimal element ∧L.

Property 2. In the lattice of all ag-compactifications of a topological Ω-algebra
G there exists the maximal a-compactification (βΩG,βG), which is called the Bohr
compactification of the topological Ω-algebra G.

Property 3. In the lattice of all ag-compactifications of a topological Ω-algebra
G there exists the minimal ag-compactification (µaG,µG), which is the singleton
Ω-algebra.

As a rule, the Bohr compactification of a topological Ω-algebra G is an ag-
compactification of G.

Fix a topological space G. Let C(G) be the space of real-valued continuous
functions on the space G in the topology of uniform convergence. The topology on
C(G) is generated by the metric d(f, g) = sup{|f(x) − g(x)| : x ∈ X}. Let C◦(G)
be the subspace of bounded functions. Then C◦(G) is a Banach algebra (ring) with
the norm ||f || = sup{|f(x)| : x ∈ G}. For some f, g ∈ C(G) it is possible that
d(f, g) = ∞. We have C(G) = C◦(G) if and only if the space G is pseudocompact.
If C(G) 6= C◦(G), then C(G) is a linear space, but is not a topological linear space.
The space C(G) is a topological ring relative to the operations f + g and f · g. For
any number λ ∈ R the correspondence tλ(f) = λf is a continuous mapping of C(G)
into C(G). For λ 6= 0, the correspondence tλ : C(G) → C(G) is a homeomorphism.

Compactifications of the spaces can be produced in a variety of ways. One way
is by use of subspaces of the space C◦(G).

Let F ⊆ C◦(G) be a non-empty subspace. Consider the mapping eF : G→ R
F ,

where eF (x) = (f(x) : f ∈ F ). Denote by bFG the closure of the set eF (G) in R
F .

Then (bFG, eF ) is a g-compactification of G and βG = βC◦(G)G is the Stone-C̆ech
maximal compactification of G [8]. Moreover, the family of functions F̄ = {g ∈
C(bFG) : g ◦ eF ∈ F} separates points of the space bFG. Hence, if F is a ring which
contains all constant functions and is closed in C◦(G), then, by Stone-Weierstrass
theorem ([8], Theorem 3.2.21), we have C(bFG) = F̄ and F = {g ◦eF : g ∈ C(bFG}.
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Let (E,ϕ) be a g-compactification of a topological Ω-algebra G. If CE(G) =
{f ◦ ϕ : f ∈ C(E)}, then CE(G) is the maximal subalgebra of the Banach algebra
C◦(G) such that (E,ϕ) = (bCE(G)G, eCE(G)). Denote CΩ(G) = CβΩG(G).

Question A. Let G be a topological Ω-algebra and F ⊆ C◦(G). Under which
conditions (bFG, eF ) is an Ω-algebra ag-compactification of G and eF : G→ bFG is
a homomorphism?

Question B. Let G be a topological Ω-algebra and f ∈ C(G). Under which condi-
tions f ∈ CΩ(G)?

In [9] J. E. Hart and K. Kunen had formulated the next problems for the class
E of all compact Ω-algebras:

Problem 1. To define the compactification βΩG as for groups directly with some
notion of almost periodicity for functions ([9], Remark 2.4.1).

Problem 2. To give a method of construction of the Bohr compactification of an
arbitrary algebra ([9], Remarks 2.4.1 and 3.1.6).

In this paper these problems are considered for arbitrary algebras.

We need the following elementary assertion.

Lemma 1. Let (X, d) be a complete metric space. For a non-empty subset L of the
space X the following assertions are equivalent:

1. The closure H = clXL of the set L in X is a compact subset of X.

2. For every ǫ > 0 there exists a finite subset S(ǫ) of X such that d(x, S(ǫ)) =
inf{d((x, y) : y ∈ S(ǫ)} ≤ ǫ for each x ∈ L.

Proof. Follows immediately from Theorem 4.3.29 from [8], which affirms that a
metrizable space Y is compact if and only if on Y there exists a metric ρ which is
both totally bounded and complete.

2 Almost periodicity on topological spaces

Fix a topological space G. Denote by Π(G) the set of all continuous mappings
ϕ : G → G. Relative to the operation of composition ϕ ◦ ψ, where (ϕ ◦ ψ)(x) =
ϕ(ψ(x)) for ψ,ψ ∈ Π(G) and x ∈ G, the set Π(G) is a semigroup with identity eG,
where eG(x) = x for each x ∈ G. A semigroup with identity is called a monoid. We
say that Π(G) is the monoid of all continuous translations of G. If f ∈ C(G) and
ϕ ∈ Π(G), then fϕ = f ◦ϕ (fϕ(x) = f(ϕ(x)) for any x ∈ G). Evidently, fϕ ∈ C(G).

Fix a non-empty subset P ⊆ Π(G). We say that P is a set of continuous
translations of G. The set P is called a transitive set of translations of G if for any
two points x, y ∈ G there exists ϕ ∈ P such that ϕ(x) = y. Obviously, the monoid
Π(G) is transitive.

For any function f ∈ C(G) we put P (f) = {fϕ : ϕ ∈ P}. If f ∈ C◦(G), then
P (f) ⊆ C◦(G).

Definition 1. A function f ∈ C(G) is called a P -periodic function on a space G if
the closure P̄ (f) of the set P (f) in the space C(G) is a compact set.
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Denote by P -ap(G) the subspace of all P -periodic functions of a space G and
P ◦-ap(G) = P -ap(G) ∩ C◦(G).

If the set P is finite, then P -ap(G) = C(G).

Theorem 1. Let P be a set of continuous translations of G. Then P -ap(G) has the
following properties:

1. P -ap(G) is a linear subspace of the linear space C(G).
2. P -ap(G) is a topological subring of the topological ring C(G).
3. P -ap(G) is a closed subspace of the complete metric space C(G). In particular,

P -ap(G) is a complete metric space.
4. If f ∈ C(G) is a constant function, then f ∈ P -ap(G).
5. If f ∈ P -ap(G), then for any x ∈ G there exists a number c(f, x) > 0 such

that |f(ϕ(x))| ≤ c(f, x) for any ϕ ∈ P .
6. If f ∈ P -ap(G), ψ ∈ Π(G) and g(x) = f(ψ(x)) for each x ∈ G, then g ∈ P -

ap(G). In particular, P (f) ⊆ P -ap(G) and fψ ∈ P -ap(G) for all f ∈ P -ap(G) and
ψ ∈ Π(G).

7. P ◦-ap(G) is a Banach algebra of continuous functions.

Proof. Fix f, g ∈ P -ap(G). Since P̄ (f), P̄ (g), −P̄ (f), P̄ (f) + P̄ (g) and P̄ (f) · P̄ (g)
are compact subsets of P -ap(G) and −P̄ (f) = P̄ (−f), P̄ (f + g) ⊆ P̄ (f) + P̄ (g),
P̄ (f ·g) ⊆ P̄ (f)·P̄ (g), then −f, f+g, f ·g ∈ P -ap(G). Hence P -ap(G) is a topological
subring of the topological ring C(G).

If f ∈ P -ap(G) and λ ∈ R, then the correspondence tλ(f) = λf is a continuous
mapping of C(G) into C(G) and P̄ (λf) = tλ(P̄ (f)). Hence λf ∈ P -ap(G) and
P -ap(G) is a linear subspace of the linear space C(G).

Let {fn ∈ P -ap(G) : n ∈ N} and f = limn→∞fn. It is well known that f ∈ C(G).
Fix ǫ > 0. There exist n ∈ N and a finite subset S of C(G) such that:

– |fn(x) − f(x)| ≤ ǫ/3 for each x ∈ G;
– d(g, S) ≤ ǫ/3 for each g ∈ P (fn).
Fix ϕ ∈ P . For a given ǫ > 0 there exists g ∈ S such that |g(x)−fn(ϕ(x)) ≤ ǫ/3+

ǫ/3 for each x ∈ G. Then |g(x)−f(ϕ(x))| ≤ |g(x)−fn(ϕ(x))| + |fn(ϕ(x))−f(ϕ(x))|
< ǫ/3 + ǫ/3 + ǫ/3 = ǫ. Hence d(h, S) ≤ ǫ for each h ∈ P (f). By virtue of Lemma
1, f ∈ P -ap(G). Hence, P -ap(G) is a closed subspace of the complete metric space
C(G).

The Assertion 4 is obvious.
Assume that f ∈ C(G), b ∈ G and the set {f(ϕ(x)) : ϕ ∈ P} is unbounded.

Then there exists a sequence {ϕn ∈ P : n ∈ N} such that |f(ϕ1(b))| ≥ 2 + |f(b)|
and |f(ϕn+1(b))| ≥ 2 + |f(ϕn(b))| for each n ∈ N. We put gn(x) = f(ϕn(x)). Then
d(f, gn) ≥ 2n for each n ∈ N. Hence P (f) is an unbounded subset of C(G) and
f 6∈ P -ap(G). The Assertion 5 is proved.

Fix ψ ∈ Π(G). Consider the mapping Φ : C(G) −→ C(G), where Φ(h)(x) =
h(ψ(x)) for all h ∈ C(G) and x ∈ G. We have d(Φ(f),Φ(g)) ≤ d(f, g) for all
f, g ∈ C(G). Fix now f ∈ P -ap(G) and put g(x) = f(ψ(x)) for each x ∈ G. Let
ǫ > 0. Then there exists a finite subset S of C(G) such that d(h, S) ≤ ǫ for each
h ∈ P (f). We have gϕ(x) = g(ϕ(x)) = f(ϕ(ψ(x))) for each x ∈ G and each ϕ ∈ P .
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Assume that ϕ ∈ P , δ > 0, h ∈ C(G) and d(fϕ, h) ≤ δ. Since |f(ϕ(x)−h(x)| ≤ δ for
any x ∈ G, we have |f(ϕ(ψ(x)) − h(ψ(x))| ≤ δ for any x ∈ G. Hence, the set Φ(S)
is finite and d(h,Φ(S)) ≤ ǫ for each h ∈ P (g). By virtue of Lemma 1, the Assertion
6 is proved. The Assertion 7 is obvious.

Corollary 1. If P is a transitive set of translations of G, then any function f ∈ P -
ap(G) is bounded and P -ap(G) is a Banach algebra of continuous functions.

Theorem 2. Let P be a set of continuous translations of G and F be a compact
subset of the complete metric space P -ap(G). Then the closure H of the set P (F )
= ∪{P (f) : f ∈ F} is a compact subset of the space P -ap(G).

Proof. Fix ǫ > 0. There exists a finite subset S1 of F such that d(h, S1) ≤ ǫ/2
for each h ∈ F . For each f ∈ F there exists a finite subset Sf of P (f) such that
d(h, Sf ) ≤ ǫ/2 for each h ∈ P (f). We put S = ∪{Sf : f ∈ S1}. Fix h ∈ F and
ϕ ∈ P . There exists f ∈ S1 such that d(f, h) ≤ ǫ/2. In continuation, there exists
g ∈ Sf such that d(fϕ, g) ≤ ǫ/2. Since d(hϕ, fϕ) ≤ d(h, f), we have d(hϕ, g) ≤
d(hϕ, fϕ) + d(fϕ, g) ≤ ǫ. Hence d(h, S) ≤ ǫ for each h ∈ P (F ). Lemma 1 completes
the proof.

Definition 2. Let G be a space and Γ = {Pα : α ∈ A} be a non-empty family
of non-empty subsets of the semigroup Π(G). A function f ∈ C(G) is called a
Γ-periodic function of a space G if the function f ∈ C(G) is Pα-periodic for any
α ∈ A.

Let G be a space and Γ = {Pα : α ∈ A} be a non-empty family of non-empty
subsets of the semigroup Π(G). Denote by Γ-ap(G) the subspace of all Γ-periodic
functions of a space G. By definition, we have Γ-ap(G) = ∩{Pα-ap(G) : α ∈ A}.

From Theorem 1 follows

Corollary 2. Let G be a space and Γ = {Pα : α ∈ A} be a non-empty family of non-
empty subsets of the semigroup Π(G). Then Γ-ap(G) has the following properties:

1. Γ-ap(G) is a linear subspace of the linear space C(G).

2. Γ-ap(G) is a topological subring of the topological ring C(G).

3. Γ-ap(G) is a closed subspace of the complete metric space C(G). In particular,
Γ-ap(G) is a complete metric space.

4. If f ∈ C(G) is a constant function, then f ∈ Γ-ap(G).

5. If f ∈ Γ-ap(G), ψ ∈ Π(G) and g(x) = f(ψ(x)) for each x ∈ G, then g ∈ Γ-
ap(G). In particular, fψ ∈ Γ-ap(G) for all f ∈ Γ-ap(G) and ψ ∈ Π(G).

6. Γ◦-ap(G) is a Banach algebra of continuous functions.

Let G be a space and Γ = {Pα : α ∈ A} be a non-empty family of non-
empty subsets of the semigroup Π(G). A finite oriented set (α1, α2, ..., αn), where
α1, α2, ..., αn ∈ A and n ≥ 1, is called an A-cortege of the length n. For any A-
cortege β = (α1, α2, ..., αn) we put Bβ = {ϕα1 ◦ ϕα2 ◦ ... ◦ ϕαn : (ϕα1 , ϕα2 , ...ϕαn) ∈
Pα1 × Pα2 × ... × Pαn}. Denote by A∞ the set of all A-corteges and Γ∞ =
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{Bβ : β ∈ A∞}. Then Γ∞ is a non-empty family of non-empty subsets of the
monoid Π(G), A ⊆ A∞ and ∪{Bβ : β ∈ A∞} is a semigroup of the monoid Π(G).

From Theorem 2 follows

Corollary 3. Let G be a space and Γ = {Pα : α ∈ A} be a non-empty family of
non-empty subsets of the semigroup Π(G). Then Γ∞-ap(G) = Γ-ap(G).

3 Almost periodicity on dynamical systems

A topological monoid is a topological space A with a continuous mapping
· : A × A → A for which there exists a point 1 ∈ A such that 1 · x = x · 1 = x
and x · (y · z) = (x · y) · z for each x, y, z ∈ X. The element 1 is the unity of monoid
A and we say that xy = x · y is the product of x, y.

A dynamical system is a triple (G,S,m), where S is a topological monoid, G is a
Tychonoff space andm : S×G→ G is a continuous action onG, i. e. m(s,m(t, x)) =
m(st, x) and m(1, x) = x for all s, t ∈ S and x ∈ G. In theory of finite state machines
and in automata theory the dynamical system (G,S,m) is called a semiautomaton,
where S is called the input alphabet, G is called the set of states and m is the
transition function.

Remark 1. Let G be a non-empty space. Then the semigroup Π(G) is a monoid.
Consider the evaluation action eG : Π(G) × G −→ G, where eG(ϕ) = ϕ(x) for all
x ∈ G and ϕ ∈ Π(G). If S is a submonoid of the monoid Π(G) and m = eG|S ×G,
then (G,S,m) is a dynamical system. In particular, (G,Π(G), eG) is a dynamical
system.

Fix a discrete monoid S and a dynamical system (G,S,m). Then G is a topo-
logical universal algebra of the signature S. All operations from S are unary.

For any continuous real-valued function f : G → R and any s ∈ S we consider
the function fs : G→ R, where fs(x) = f(m(s, x)) for each x ∈ G, and put S(f) =
{fs : s ∈ S}.

A continuous function f : X → R is called an almost periodic function of the
dynamical system (G,S,m) if the closure clC(G)S(f) is a compact subset of C(G).
Denote by S(m)-ap(G) the class of all almost periodic functions on G and S(m)◦-
ap(G) = S(m)-ap(G) ∩ C◦(G).

Remark 2. Any element s ∈ S generates the continuous mapping ms : G −→ G,
where ms(x) = m(s, x) for any point x ∈ G. We put SG = {ms : s ∈ G}. Then
SG is a submonoid of the monoid Π(G). By construction, fs = fms for all s ∈ S
and f ∈ C(G). Hence S(f) = SG(f) for any function f ∈ C(G). In particular,
S(m)-ap(G) = SG-ap(G).

The continuous action m : S × G −→ G generates the continuous action mC :
S × C(G) −→ C(G), where mC(s, f) = fs for all s ∈ S and f ∈ C(G). Hence
(S,C(G),mC) is a dynamical system generated by the continuous action m : S ×
G −→ G. From Theorem 2 it follows that mC(S-ap(G) = S(m)-ap(G). Therefore
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(S-ap(G), S,mC ) is a dynamical system too, generated by the continuous action
m : S ×G −→ G.

From Theorem 1 follows

Corollary 4. Let G be a space, S be a discrete monoid and (G,S,m) be a dynamical
system. Then the space S-ap(G) has the following properties:

1. S(m)-ap(G) is a linear subspace of the linear space C(G).
2. S(m)-ap(G) is a topological subring of the topological ring C(G).
3. S(m)-ap(G) is a closed subspace of the complete metric space C(G). In

particular, S-ap(G) is a complete metric space.
4. If f ∈ C(G) is a constant function, then f ∈ S-ap(G).
5. If f ∈ S(m)-ap(G), ψ ∈ Π(G) and g(x) = f(ψ(x)) for each x ∈ G, then

g ∈ S(m)-ap(G). In particular, S(f) ⊆ S(m)-ap(G) for any f ∈ S(m)-ap(G).
6. S(m)◦-ap(G) is a Banach algebra of continuous functions.

If ρ is a pseudometric on G, x ∈ G and r > 0, then B(x, ρ, r) = {y ∈ G :
ρ(x, y) < r} is the r-ball with the center x. The pseudometric ρ is continuous if the
sets B(x, ρ, r) are open in G.

A pseudometric ρ on G is totally bounded if for any real number r > 0 there
exists a finite subset F of G such that ρ(x, F ) = min{ρ(x, y) : y ∈ F} < r for each
x ∈ G.

A pseudometric ρ on (G,S,m) is totally S-bounded if it is totally bounded and
for any real number r > 0 there exists a finite subset L of S such that: for each
s ∈ S there exists sr ∈ L such that ρ(m(s, x),m(sr, x)) < r for each x ∈ G.

A pseudometric ρ : G × G → R is S-invariant on (G,S,m) if ρ is continuous,
ρ(x, y) <∞ and ρ(m(s, x),m(s, y)) ≤ ρ(x, y) for all x, y ∈ G and s ∈ S.

If f : G → R is a function, then we put ρf (x, y) = sup{|fs(x) − fs(y)| : s ∈ S}
for all x, y ∈ G.

Theorem 3. Fix a dynamical system (G,S,m) and f ∈ S-ap(G). Then:
1. ρf is an S-invariant pseudometric.
2. ρf is a continuous pseudometric on G.
3. ρf is a totally bounded pseudometric if and only if the function f is bounded.
4. ρf is a totally S-bounded pseudometric provided the function f is bounded

and for any real number r > 0 there exists a finite subset L of S such that: for each
s ∈ S there exists sr ∈ L such that |f(m(ts, x) − f(m(tsr, x))| < r for each x ∈ G
and every t ∈ S.

Proof. 1. Fix two points x, y ∈ G. By virtue of the Assertion 5 from Theorem 1,
there exists a number c > 0 such that |fs(x))| ≤ c and |fs(y))| ≤ c for any s ∈
S. Hence ρf (x, y) ≤ 2c < ∞. Let µ ∈ S and g = fµ. Then g ∈ S-ap(G),
gs = fsµ for any s ∈ G and ρf (m(s, x),m(s, y)) = sup{|gs(x) − gs(y)| : s ∈ S} =
sup{|fsµ(x) − fsµ(y)| : s ∈ S} ≤ sup{|fs(x) − fs(y)| : s ∈ S} = ρf (x, y). Hence the
pseudometric ρf is S-invariant.

2. Now fix a number r > 0 and a point b ∈ G. Then there exists a finite
subset L of S such that 1 ∈ L and for each s ∈ S there exists l(s) ∈ L such
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that d(fs, fl(s)) < r/3. Since the set L is finite, the set U(b, L, r) = {x ∈ G :
|fs(x) − fs(b)| < r/3, s ∈ L} is open in G. Hence |fs(x) − fs(b)| ≤ |fs(x) − fs(l)(x)|
+ |fs(l)(x) − fs(l)(b)| + |fs(l)(b) − fs(b)| < r for all s ∈ L and x ∈ U(b, L, r).
Therefore U(b, L, r) ⊆ B(b, ρf , r) and B(b, ρf , r) is an open subset of G. Thus
ρf is a continuous pseudometric on G. By construction, ρf (m(s, x),m(l(s), x)) =
sup{|ft(m(s, x))− ftm(l(s), x)| : t ∈ S} = sup{ρf ((m(t · s, x),m(t · l(s), x)) : t ∈ S}.

3. Assume that the function f is bounded and r > 0. There exists a finite
subset L of S such that 1 ∈ L and for each s ∈ S there exists l(s) ∈ L such that
d(fs, fl(s)) < r/3. Since the functions fs are bounded and the set L is finite, there
exists a finite subset F of G such that for each x ∈ G there exists x(f) ∈ F such
that |fs(x)− fs(x(f))| < r/3 for each s ∈ L. Hence ρf (x, F ) < r for each x ∈ G and
ρf is a totally bounded pseudometric.

4. Fix b ∈ G. Since |f(x) − f(b)| ≤ ρf (b, x) the function f is bounded if and
only if the pseudometric ρf is bounded (i.e. sup{ρf (x, y) : x, y ∈ G} <∞).

5. Assume that the function f is bounded and for any real number r > 0 there
exists a finite subset Lr of S such that: for each s ∈ S there exists sr ∈ Lr such that
|f(m(ts, x) − f(m(tsr, x))| < r for each x ∈ G and every t ∈ S.

Fix r > 0 and s ∈ S. Then ρf (m(s, x),m(sr, x)) = sup{|f(m(ts, x) −
f(m(tsr, x))| : t ∈ S} ≤ r. The proof is complete.

If ρ is a bounded pseudometric on G and a ∈ G, then we put f(ρ,a)(x) = ρ(a, x)
for any x ∈ G.

Theorem 4. If ρ is a totally S-bounded S-invariant pseudometric on a dynamical
system (G,S,m) and a ∈ G, then f(ρ,a) ∈ S(m)-ap(G) and the function f(ρ,a) is
bounded for each a ∈ G.

Proof. Fix a ∈ G and r > 0. Let g = f(ρ,a). We have gs(x) = ρ(a,m(s, x)) for
all x ∈ G and s ∈ S. Obviously, the function g is bounded. By assumption,
there exists a finite subset L of S such that: for each s ∈ S there exists sr ∈ L
such that ρ(m(s, x),m(sr, x)) < r for each x ∈ G. We have |gs(x) − gsr(x)| =
|ρ(a,m(s, x)) − ρ(a,m(sr, x))| ≤ ρ(m(s, x),m(sr, x)) < r. By virtue of Lemma 1,
the assertion is proved.

Theorem 5. Fix a dynamical system (G,S,m). Then there exist a dynamical system
(βap(S,m)G,S,mG) and a continuous mapping ϕ : G −→ ap(S,m)G such that:

1. βap(S,m)G is a compact space and the set ϕ(G) is dense in bap(S,m)G.
2. ϕ is a homomorphism, i.e. ϕ(m(s, x) = m(s, ϕ(x)) for all s ∈ S and x ∈ G.
3. S(m)◦-ap(G) = {g ◦ ϕ : g ∈ C(βap(S,m)G)}.
4. C(βap(S,m)G)} = S(m)-ap(βap(S,m)G)}.
5. The topology of the space βap(S,m)G is induced by the family of all S-invariant

pseudometrics on the dynamical system (βap(S,m)G,S,mG).

Proof. Let F = S(m)◦-ap(G). Consider the mapping eF : G → RF , where eF (x) =
(f(x) : f ∈ F ). Denote by bFG = βap(S,m)G the closure of the set eF (G) in R

F . We
put ϕ = eF . Then (bFG, eF ) is a compactification of G. For any f ∈ F consider
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the pseudometric ρf (x, y) = sup{|fs(x) − fs(y)| : s ∈ S} for all x, y ∈ G. By virtue
of Theorem 3, the pseudometric ρf is continuous, stable and totally bounded on
(G,S,m). Since |f(y) − f(x)| ≤ ρf (x, y) for all x, y ∈ G, there exists a continuous
pseudometric ρ̄f on bFG such that ρf (x, y) = ρ̄f (ϕ(x), ϕ(y)) for all x, y ∈ G. We
say that ρ̄f is the continuous extension of ρf on bFG. The topology of the compact
space is induced by the pseudometrics {ρ̄f : f ∈ F}.

For every f ∈ F there exists a unique function f̄ ∈ C(bFG) such that f = f̄ ◦ϕ.
Hence F̄ = {f̄ : f ∈ F} is a closed subalgebra of the Banach algebra C(bFG).

Fix s ∈ S. The mapping ms : G→ G, where ms(x) = m(s, x) for every x ∈ G is
continuous. If x ∈ G, then we put µs(ϕ(x)) = ϕ(ms(x)). For x, y ∈ G with ϕ(x) =
ϕ(y) we have 0 ≤ ρf (ms(x),ms(y)) ≤ ρf (x, y) = 0 for any f ∈ F and ϕ(ms(x)) =
ϕ(ms(y)). Therefore µs is a single-valued continuous mapping of ϕ(G) into ϕ(G).

We have ρf (ms(x),ms(y)) ≤ ρf (x, y) for all x, y ∈ G. Hence the mapping ms

is uniformly continuous for every pseudometric ρ̄f , f ∈ F . Therefore there exists
a continuous extension νs : bFG −→ bFG of µs. By construction, νs ◦ νt = νs·t.
We prove that (βap(S,m)G,S,mG), where mG(s, x) = νs(x) for each x ∈ bFG =
βap(S,m)G, is a dynamical system.

By construction, ϕ is a homomorphism.

The mapping ψ : F −→ C(bFG), where ψ(f) = f̄ for each f ∈ F is an isometrical
embedding. Hence ψ(F ) ⊆ S(m)-ap(βap(S,m)G)}. It is obvious that g ◦ ϕ ∈ F for
any g ∈ S(m)-ap(βap(S,m)G)}. Therefore S(m)◦-ap(G) = {g ◦ ϕ : g ∈ S(m) −
ap(βap(S,m)G)}.

Since {f̄ : f ∈ F} = {g|ϕ(G) : g ∈ S(m)-ap(βap(S,m)G)}, by Stone-Weierstrass
theorem ([8], Theorem 3.2.21), we have S(m)-ap(βap(S,m)G) = C(βap(S,m)G). The
topology of the space βap(S,m)G is induced by the family of S-invariant pseudometrics
{ρg : g ∈ C(βap(S,m)G)} on the dynamical system (βap(S,m)G,S,mG). The proof is
complete.

Remark 3. We say that the dynamical system (βap(S,m)G,S,mG) is the maximal
a-compactification of the dynamical system (G,S,m).

4 Almost periodicity on universal algebras

Fix a discrete signature Ω = ⊕{Ωn : n ∈ N = {0, 1, 2, ...}}, where {Ωn : n ∈ N}
is a non-empty family of pairwise disjoint discrete spaces.

Let P (Ω) be a minimal set of operations on Ω-algebras for which:

P1. Ω ⊆ P (Ω).

P2. If n ≥ 1, ω ∈ Ωn, p1, ..., pn ∈ P (E), pi is an mi-ary operation and m
= m1 + ... + mn, then p = ω(p1, ..., pn) is an m-ary operation, p(x1, ..., xm) =
ω(p1(x1, ..., xm), ..., pn(xm−mn+1, ..., xm)).

P3. If u0(x) = x for any Ω-algebra G and every x ∈ G, then u0 ∈ P (Ω).

The set P (Ω) is called the set of Ω-polynomials. If G is a topological Ω-algebra
and p ∈ P (Ω) is an n-ary polynomial, then p : Gn → G is a continuous operation.
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Let λ : Gn → G be an n-ary operation. If n = 0, then we put λ(x) = λ(G0) for
each x ∈ G and Tλ(G) = {λ}. If n = 1, then Tλ(G) = {λ}. Let n ≥ 2 and 1 ≤ i ≤ n.
For every a = (a1, ..., an) ∈ Gn we put tiaλ(x) = λ(a1, ..., ai−1, x, ai+1, ..., an) for
each x ∈ G. We put Tiλ(G) = {tiaλ : a ∈ Gn} and Tλ(G) = ∪{Tiλ(G) : i ≤ n}.
Therefore Tλ(G) is a set of translations on a space G. If λ is a continuous operation,
then Tλ(G) ⊆ Π(G).

Now we put TΩ(G) = ∪{Tω(G) : ω ∈ P (Ω)} for any topological Ω-algebra G.
By construction, TΩ(G) is a monoid of continuous translations of the space G and
TΩ(G) ⊆ Π(G).

If G is a topological Ω-algebra and mΩ = eG|TΩ(G)×G, then (G,TΩ(G),mΩ) is
a dynamical system, generated by the structure of Ω-algebra on G.

Definition 3. Let G be a topological Ω-algebra. The set Ω-AP (G) = TΩ(G)(mΩ)-
ap(G) is called the algebra of almost periodic continuous functions on the topological
Ω-algebra G.

All statements proved in the above two Sections are true for almost periodic
continuous functions on the topological Ω-algebras. The set Ω◦-AP (G) = C◦(G)∩(Ω-
AP (G)) is a Banach algebra of continuous functions on G.

Definition 4. An Ω-algebra G is called Ω-finite if there exists a finite subset F ⊆
P (Ω) such that TΩ(G) = ∪{Tω(G) : ω ∈ F}.

Any finite Ω-algebra is Ω-finite. If Ω is a structure of a semigrup, or of a monoid,
or a group on G, then G is is Ω-finite.

Definition 5. An Ω-algebra G is called a right (left) Mal’cev algebra if there exists
a ternary operation p ∈ P (Ω) such that p(x, x, y) = y (respectively p(y, x, x) = y) for
all x, y ∈ G. If p(x, x, y) = p(y, x, x) = y, then G is called a Mal’cev algebra [4, 10].

Proposition 1. Let G be a right (left) Mal’cev topological Ω-algebra. Then the
monoid TΩ(G) is transitive on G. Moreover, any almost periodic function f ∈
Ω-AP (G) is bounded and Ω-AP (G) is a Banach algebra of continuous functions
on G.

Proof. Assume that p ∈ P (Ω) is a ternary operation and p(x, x, y) = y for all
x, y ∈ G. Fix a, b ∈ G. If ϕ(x) = p(x, a, b), then ϕ ∈ TΩ(G) and ϕ(a) = b. Hence
the monoid TΩ(G) is transitive on G. Corollary 1 completes the proof.

A pseudometric ρ : G × G → R is stable on a topological Ω-algebra G if ρ is
continuous, ρ(x, y) < ∞ and ρ(ω(x1, ..., xn), ω(y1, ..., yn)) ≤ Σ{ρ(xi, yi) : i ≤ n} for
all x1, y1, ..., xn, yn ∈ G, n ≥ 1 and ω ∈ Ω.

If ρ is a stable pseudometric on a topological Ω-algebra G, n ≤ 1 and p ∈ P (Ω)
is an n-ary polynomial, then ρ(p(x1, ..., xn), p(y1, ..., yn)) ≤ Σ{ρ(xi, yi) : i ≤ n} for
all x1, y1, ..., xn, yn ∈ G.

In [5] the following theorem was proved:
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Theorem 6. Let ρ be a continuous pseudometric on a topological Ω-algebra G. The
pseudometric ρ is stable if and only if it is TΩ(G)-invariant.

From Theorems 6 and 5 follows

Corollary 5. Fix a topological Ω-algebra G. Then there exist an Ω-algebra βap(Ω)G
and a continuous homomorphism αG : G −→ βap(Ω)G such that:

1. βap(Ω)G is a compact Ω-algebra and the set αG(G) is dense in βap(Ω)G.

2. Ω◦-AP (G) = {g ◦ ϕ : g ∈ C(βap(Ω)G)}.
3. C(βap(Ω)G)} = Ω-AP (βap(S,m)G).

4. The topology of the space βap(Ω)G) is induced by the family of all stable
pseudometrics on the topological Ω-algebra βap(Ω)G).

5. The a-compactification (βap(Ω)G,αG) = (bFG, eF ), where F = Ω◦-AP (G).

Remark 4. We say that the topological Ω-algebra βap(Ω)G is the maximal almost
periodic a-compactification of the topological Ω-algebra G.

Lemma 2. Let G be a topological Ω-algebra and ρ be a stable totally bounded pseu-
dometric on G. If ω ∈ P (Ω), c ∈ G and h(x) = ρ(c, x) for any x ∈ G, then the
function h is bounded and the closure of the set {hϕ : ϕ ∈ Tω(G)} in C◦(G) is a
compact set.

Proof. Since ρ is totally bounded, by construction, h ∈ C◦(G). Fix ǫ > 0. If ω
is n-ary polynomial and n ≤ 1, then the assertion of Lemma is obvious. Assume
that n ≥ 2 and ω is an n-ary polynomial. There exists a finite subset L ⊆ G
such that ρ(x,L) < ǫ/2 for any x ∈ G. For every i ≤ n we put T(i,ω,L) = {tiaλ :
a = (a1, ..., an) ∈ Ln} and T(ω,L)(G) = ∪{T(i,ω,L)(G) : i ≤ n}. Obviously, the set
T(ω,L)(G) is finite. Fix ϕ ∈ Tω(G). Then ϕ(x) = ω(x1, ..., xi−1, x, xi+1, ..., xn) for
some i ≤ n and x = (x1, ..., xn) ∈ Gn. There exists a = (a1, ..., an) ∈ Ln such that
ρ(xj , aj) < ǫ/n for each j ≤ n. Let ψ = tiaω. Then ψ ∈ T(ω,L)(G) and hϕ(x)−hψ(x)
< Σ{ρ(xj , aj) : j ≤ n, j 6= i} < ǫ. Lemma 1 completes the proof.

Lemma 3. Let G be a a compact topological Ω-algebra, n ∈ N and ω ∈ P (Ω) be
an n-ary polynomial. If h ∈ C(G), then the set {hϕ : ϕ ∈ Tω(G)} in C◦(G) is a
compact set.

Proof. If n ≤ 1, then the assertion of Lemma is obvious. Assume that n ≥ 2. Let h ∈
C(G). Fix i ≤ n. Let Gk = G for any k and Zi = Π{Gj : j ≤ n, j 6= i}. For any z =
(z1, ..., zi−1, ..., zi+1, ..., zn) ∈ Zi we put Ψi(z)(x) = h(ω(z1, ..., zi−1, x, zi+1, ..., zn))
for each x ∈ G. Then Ψi : Zi −→ C(G) is a continuous mapping. Since Ψi(Zi) =
{hψ : ψ ∈ Tiω}, the set {hψ : ψ ∈ Tiω} is compact. Hence the set {hϕ : ϕ ∈ Tω(G)}
is compact too.

Corollary 6. Let G be an Ω-finite topological Ω-algebra and ρ be a stable totally
bounded pseudometric on G. If c ∈ G and h(x) = ρ(c, x) for any x ∈ G, then
h ∈ Ω◦-AP (G).
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Corollary 7. Let G be a compact Ω-finite topological Ω-algebra. Then:
1. The topology of G is induced by a family of stable pseudometrics.
2. Ω◦-AP (G) = C(G).

Corollary 8. Let G be an Ω-finite topological Ω-algebra. For any bounded continu-
ous pseudometric ρ on G we put C(G, ρ) = {a+ b · ρ(z, x) : z ∈ G, a, d ∈ R}. Then
the set ∪{C(G, ρ) : ρ is a totally bounded stable pseudometric on G} is a dense
subset of the Banach algebra Ω◦-AP (G).

5 Weakly almost periodic functions on algebras

Fix a discrete signature Ω = ⊕{Ωn : n ∈ N = {0, 1, 2, ...}}.

Definition 6. Let G be a topological Ω-algebra. A function f ∈ C(G) is called a
weakly almost periodic function on G if the closure of the set {ft = f ◦t : t ∈ Tω(G)}
in C(G) is compact for every ω ∈ P (Ω).

If Γ(Ω) = {Tω(G) : ω ∈ P (Ω)}, then Ω-wAP (G) = Γ(Ω)-ap(G) is the algebra of
weakly almost periodic continuous functions on the topological Ω-algebra G. Hence
Corollary 2 is true for the algebra of weakly almost periodic continuous functions
on the topological Ω-algebra G. Moreover, if Γ0(Ω) = {Tω(G) : ω ∈ Ω}, then from
Corollary 3 it follows that Ω-wAP (G) = Γ0(Ω)-ap(G). Obviously, Ω-AP (G) ⊆ Ω-
wAP (G). Let Ω◦-wAP (G) = Ω-wAP (G) ∩ C◦(G).

Theorem 7. Let G be a a compact topological Ω-algebra. Then Ω-wAP (G) = C(G).

Proof. Follows from Lemma 3.

Example 1. Let G be the compact space of all complex numbers z with |z| =
1. Relatively to the multiplicative operation {·} and inverse operation {−1} the
space G is a compact commutative group with the unite 1. Let g : G −→ G be a
homeomorphism and ωg(x, y) = x · y for all x, y ∈ G. Then (G,ωg) is a topological
quasigroup. Denote by P (g) the translations of the topological quasigroup (G,ωg).
Obviously, g ∈ P (g).

In [6] such homeomorphism g0 was constructed for which only constant func-
tions are continuous almost periodic on (G,ωg0) and every stable pseudometric ρ on
(G,ωg0) is trivial (ρ(x, y) = 0 for all x, y ∈ G). Let Ω1 = {−1, g0, g

−1
0 }, Ω2 = {·} and

Ω = Ω1 ∪ Ω2. Then ωg0,
−1 , g0, g

−1
0 ∈ P (Ω) and only constant functions are contin-

uous almost periodic on the Ω-algebra G. In particular, every stable pseudometric
ρ on the Ω-algebra G is trivial. Therefore the Ω-algebra G is not Ω-finite. Since G
is a compact space, then, by virtue of Theorem 7, we have Ω-wAP (G) = C(G).

Definition 7. Let {ρµ : µ ∈ M} be a family of pseudometrics on an Ω-algebra G.
The family {ρµ : µ ∈ M} is called a stable set of pseudometrics if the set M is
non-empty and for every α ∈ M , every n ≥ 1 and every λ ∈ Ωn there exists β =
β(λ, α) ∈ M such that ρα(x1, y1) ≤ ρβ(x1, y1) and ρα(λ(x1, ...xn), λ(y1, ..., yn)) ≤∑

{ρβ(xi, yi) : i ≤ n} for all x1, y1, ..., xn, yn ∈ G.
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Remark 5. Let T (R) be the topology induced by a stable set of pseudometrics R =
{ρµ : µ ∈M} on an Ω-algebra G. Then for each n ≥ 1 and ω ∈ Ωn the operation ω
is continuous relative to the topology T (R).

Lemma 4. Let {ρµ : µ ∈ M} be a stable net of pseudometrics on an Ω-
algebra G. Then for every α ∈ M , every n ≥ 1 and every n-ary polynomial
λ ∈ P (Ω) there exists β = β(λ, α) ∈ M such that ρα(x1, y1) ≤ ρβ(x1, y1) and
ρα(λ(x1, ...xn), λ(y1, ..., yn)) ≤

∑
{ρβ(xi, yi) : i ≤ n} for all x1, y1, ..., xn, yn ∈ G.

Proof. Assume that n,m1,m2, ...,mn ≥ 1, λ ∈ Ωn, p1, p2, ..., pn ∈ P (Ω) and for each
i ≤ n the polynomial pi is mi-ary and for every α ∈M there exists βi = β(pi, α) ∈M
such that ρα(x1, y1) ≤ ρβi

(x1, y1) and ρα(pi(x1, ...xmi
), pi(y1, ..., ymi

)) ≤∑
{ρβi

(xi, yi) : i ≤ mi} for all x1, y1, ..., xmi
, ymi

∈ G. Put p = λ(p1, ..., pn) and
m = m1 + ...+mn. Then p is m-ary polynomial.

Fix α ∈ M . We put α1 = β(p1, α), α2 = β(p2, α1),..., αn = β(pn, αn−1) and
β = β(λ, αn). Then ρα(x1, y1) ≤ ρβ(x1, y1) and ρα(p(x1, ...xm), p(y1, ..., ym)) ≤∑

{ρβ(xi, yi) : i ≤ m} for all x1, y1, ..., xm, ym ∈ G. The proof is complete.

Lemma 5. Let A be a non-empty set and {ρµ : µ ∈ Mα} be a stable set of pseudo-
metrics on an Ω-algebra G for each α ∈ A. If M = ∪{Mα : α ∈ A}, then the family
{ρµ : µ ∈M} is a stable set of pseudometrics on the Ω-algebra G.

Proof. It is obvious.

Proposition 2. Let R = {ρµ : µ ∈M} be a stable set of continuous totally bounded
pseudometrics on a topological Ω-algebra G. Then there exist a compact topological
Ω-algebra G/R, a continuous homomorphism pR : G −→ G/R and a stable set
of continuous totally bounded pseudometrics R̄ = {ρ̄µ : µ ∈ M} on a topological
Ω-algebra G/R such that:

1. The topology of the space G/R is induced by the family of pseudometrics R̄.
2. ρ̄µ(pR(x), pR(y)) = ρµ(x, y) for all x, y ∈ G and µ ∈M .

3. (G/R, pR) is an a-compactification of the topological Ω-algebra G.

Proof. Fix µ ∈ M . Then there exists a metric space (Yµ, dµ) and a mapping pµ :
G→ Yµ of G onto Yµ such that dµ(pµ(x), pµ(y)) = ρµ(x, y) for all x, y ∈ G. Denote
by (Gµ, d̄µ) the completion of the metric space (Yµ, dµ). Since the metric dµ is totally
bounded, Gµ is a compact space.

Consider the continuous mapping pR : G −→ Π{Gµ : µ ∈ M}, where pR(x) =
(pµ(x) : µ ∈ M} for each point x ∈ G. We put Y = pR(G) and by G/R denote
the closure of Y in the compact space Π{Gµ : µ ∈ M}. For each µ ∈ M on G/R
there exists a continuous pseudometric ρ̄µ such that ρ̄µ(pR(x), pR(y)) = ρµ(x, y) for
all x, y ∈ G.

Fix n ≥ 1 and ω ∈ Ωn. Let a = (a1, ..., an) ∈ Y n. Fix b = (b1, ..., bn) ∈ Gn

such that pR(bi) = ai for any i ≤ n. We put ω(a) = p(ω(b)). We affirm that the
mapping ω : Y n −→ Y is single-valued. Let c = (c1, ..., cn) ∈ Gn and pR(ci) = ai
for any i ≤ n. Suppose that pR(ω(c) 6= pR(ω(b)). Then there exists α ∈ M such
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that ρα(ω(c), ω(b)) > 0. Since R is a stable set of pseudometrics, there exists β =
β(ω,α) ∈ M such that ρα(x1, y1) ≤ ρβ(x1, y1) and ρα(ω(x1, ...xn), ω(y1, ..., yn)) ≤∑

{ρβ(xi, yi) : i ≤ n} for all x1, y1, ..., xn, yn ∈ G. In particular, 0 < ρα(ω(c), ω(b)) ≤∑
{ρβ(ci, bi) : i ≤ n}. Thus ρβ(ci, bi) > 0 for some i ≤ n. Since pR(ci) = pR(ai),

we have ρµ(ci, bi) = 0, a contradiction. Thus ω : Y n → Y is an n-ary operation
on Y and on Y there exists the structure of Ω-algebra relative to which pR is a
homomorphism.

By construction, the pseudometrics R̄ forms a stable set of pseudometrics on
Y . Hence Y is a topological algebra and pR is a continuous homomorphism of G
onto Y .

Let U(R̄) be the uniformity generated by the pseudometrics R̄ on G/R and
(Y,U(R̄)Y ) be the uniform subspace of the uniform space (G/R,U(R̄)). By the def-
inition of a stable set of pseudometrics, the operation ω : Y n −→ G/R is a uniformly
continuous mapping for each n ≥ 1 and every ω ∈ Ωn. Hence the operation ω is
continuous extendable on G/Rn and on G/R there exists a structure of topological
Ω-algebra such that Y is a subalgebra of the compact Ω-algebra G/R. The proof is
complete.

Assume that v is a unary operation and v(x) = x for each Ω-algebra G and any
point x ∈ G. Let MΩ be the family of all finite ordered subsets of Ω∪{v} such that
v is the first element in each α ∈ MΩ. If α = (α1, ..., αn), β = (β1, ..., βm) ∈ MΩ,
then:

– α ≤ β if and only if n ≤ m and αiβi for any i ≤ n;

– c(α) = n and c(β) = m.

The set {v} is the minimal element of the set MΩ and c({v}) = 1. If λ ∈ Ω, then
(λ), (λ, λ),..., (λ, λ, ..., λ) are distinct elements.

Let α ∈MΩ and c(α) = 1. Then {v} ⊆ α ⊆ {v}∪Ω0. We put P (α) = α∪{v(ω) :
ω ∈ α}.

Assume that α, β ∈ MΩ, α ≤ β, c(β) = c(α) + 1 and the polynomials P (α) are
constructed. Then P (β) = β∪P (α)∪{ω(p1, p2, ..., pn) : p1, p2, ..., pn ∈ P (α)∪β, ω ∈
β ∩Ωn, n ≥ 1}. By induction, the set P (α) is constructed for each α ∈MΩ. Any set
P (α) is finite, P (α) ⊆ P (β) for α ≤ β and P (Ω) = ∪{P (β) : β ∈MΩ}. Let T (α) =
∪{T (λ) : λ ∈ α} for each α ∈MΩ.

Assume that f is a function on an Ω-algebra G. For each α ∈ MΩ we put
ρ(f,α)(x, y) = sup{|ft(y) − ft(x)| : t ∈ T (α)} for all x, y ∈ G.

Proposition 3. Let G be a topological Ω-algebra and f ∈ Ω-wAP (G). Then:

1. R(f) = {ρ(f,α) : α ∈MΩ} is a stable set of continuous pseudometrics on G.

2. If the function f is bounded, then the pseudometrics {ρ(f,α)} are totally
bounded.

3. ρ(f,α)(x, y) ≥ |f(x) − f(y) for all x, y ∈ G.

Proof. 1. Since v ∈ α, we have ρ(f,α)(x, y) ≥ |f(x) − f(y)| for all x, y ∈ G.
2. Since f is a weakly almost periodic continuous function and the set of poly-

nomials P (α) is finite for any α ∈ MΩ, the closure of the set α(f) = {tf : t ∈ T (α}
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in C(G) is a compact set. From this fact it follows that the pseudometric ρ(f,α) is
continuous and ρ(f,α)(x, y) <∞ for all α ∈MΩ and x, y ∈ G.

3. Fix α ∈ MΩ, n ≥ 1 and ω ∈ Ωn. Assume that α = (α1, ..., αm) for some
m ≥ 1. We put β = (α1, ..., αn, ω). Then α < β and c(β) = c(α) + 1.

Since T (α) ⊆ T (β), we have ρ(f,α)(x, y) ≤ ρ(f,β)(x, y) for all x, y ∈ G.
Fix x1, y1, ..., xn, yn ∈ G. Since ϕ ◦ ψ ∈ T (β) for any ϕ ∈ T (α) and each

αψ ∈ T (ω), we have ρ(f,α)(ω(x1, ...xm), ω(y1, ..., ym)) ≤
∑

{ρ(f,β)(xi, yi) : i ≤ m}.
Hence R(f) is a stable set of continuous pseudometrics on G.

4. Assume now that the function f is bounded. Fix ǫ > 0 and α ∈MΩ.

Since the closure of the set α(f) = {ft : t ∈ T (α} in C(G) is a compact set, there
exists a finite set L = {t1, t2, ..., tk} ⊆ T (α) such that for each t ∈ T (α) there exists
i ≤ k such that d(ft, fti) < ǫ/3. Assume that v ∈ L.

We put g(x) = Σ{|ft(x)| : t ∈ L}. The function g is continuous and bounded.
There exists a finite subset F of G such that min{|g(x) − g(y)| : y ∈ F} < ǫ/6
for any x ∈ G. Hence for each x ∈ G there exists x(f) ∈ F such that |ft(x) −
ft(x(f))| < ǫ/3 for any t ∈ L. We affirm that d(f,α)(x, x(f)) < ǫ. Suppose that
x ∈ G and d(f,α)(x, x(f)) ≥ ǫ > 0. Then there exist ϕ ∈ T (α) and t ∈ L such
that |fϕ(x) − fϕ(x(f))| > ǫ and d(fϕ, ft) < ǫ/3. By construction, we have |fϕ(x) −
fϕ(x(f))| = |fϕ(x)−ft(x)+ft(x)−ft(x(f))+ft(x(f))−fϕ(x(f))| ≤ |fϕ(x)−ft(x)|
+ |ft(x) − ft(x(f))| + |ft(x(f)) − fϕ(x(f))| < ǫ/3 + ǫ/3 + ǫ/3 = ǫ, a contradiction.
Therefore the pseudometrics {ρ(f,α)} are totally bounded. The proof is complete.

Corollary 9. Let G be a topological Ω-algebra. Then the maximal a-compactification
(βΩG,βG) = (bFG, eF ), where F = Ω◦-wAP (G).

Corollary 10. Let G be a compact Ω-finite topological Ω-algebra. Then Ω-wAP (G)
= Ω-AP (G).

Remark 6. Let G be a topological Ω-algebra and F be a closed subalgebra of the
algebra Ω◦-wAP (G) with the following proprieties:

– if f is a constant function, then f ∈ F ;
– if ∈ F and t ∈ T (Ω), then ft ∈ F .
Then (bFG, eF ) is an a-compactification of G. Any a-compactification can be

constructed in this way.

6 Cartesian product of topological algebras

Let Ω = ⊕{Ωn : n ∈ N} be a discrete signature.

For any nulary polynomial ω ∈ P (Ω) and any Ω-algebra G there exists a unique
neutral element ωG ∈ G such that e0G(ω,G0) = ωG.

Fix a class K of topological Ω-algebras with the following properties:

1. If A ∈ K, then A is a Tychonoff space.
2. The Cartesian product of algebras from K is an algebra from K.
3. There exists a nulary polynomial 1 ∈ P (Ω) such that for the point 1G =

e0G(1, G0), each n ≥ 1 and every λ ∈ Ωn we have λ(1G, ...1G) = 1G for every G ∈ K.



60 MITROFAN M. CHOBAN, DORIN I. PAVEL

4. There exists a ternary polynomial p ∈ P (Ω) such that p(x, x, y) = p(y, x, x) =
y for all G ∈ K and x, y ∈ G.

5. There exists a binary polynomial v ∈ P (Ω) such that v(1G, x) = v(x, 1G) = x
for all G ∈ K and x ∈ G.

6. If G is a Tychonoff topological Ω-algebra with the properties 3-5, then G ∈ K.
We may assume that 1 ∈ Ω0, p ∈ Ω3 and v ∈ Ω2.

A mapping ϕ : X → Y is injective if f(x) 6= f(y) for every two distinct points
x, y ∈ X.

Lemma 6. Let ϕ : A → B be a homomorphism of a topological Ω-algebra A ∈ K
into an Ω-algebra B, A1 be a dense subset of A and ϕ1 = ϕ|A1 : A1 → B be an
injective mapping. Then ϕ is injective too.

Proof. We may consider that B = ϕ(A). On B we consider the quotient topology
{U ⊆ B : ϕ−1(U) is open in A}. Since A ∈ K, B is a topological Ω-algebra and
ϕ : A → B is an open continuous mapping (see [4]). Suppose that a, b ∈ A, a 6= b
and ϕ(a) = ϕ(b). We fix two open subsets U , V of A for which a ∈ U , b ∈ V
and U ∩ V = ∅. Then the set W = ϕ(U) ∩ ϕ(V ) is open in B, ϕ(A1) is a dense
subset of B, ϕ(a) = ϕ(b) ∈ W and W ∩ ϕ(A1) = ∅, a contradiction. The proof is
complete.

Lemma 7. Let A ∈ K and A be a dense subalgebra of the topological Ω-algebra B.
Then B ∈ K.

Proof. Is obvious.

Theorem 8. Let {Gµ ∈ K : µ ∈M} be a non-empty family of topological Ω-algebras
and G = Π{Gµ ∈ K : µ ∈M}. Then:

1. βap(Ω)G = Π{βap(Ω)Gµ : µ ∈ M} and αG(x) = (αGµ(xµ) : µ ∈ M) for each
point x = (xµ) : µ ∈M) ∈ G.

2. (βΩG,βG) = Π{βΩGµ : µ ∈ M} and βG(x) = (βGµ(xµ) : µ ∈ M) for each
point x = (xµ) : µ ∈M) ∈ G.

Proof. From Lemma 7 it follows that βap(Ω)A ∈ K for any A ∈ K.

Let M = {1, 2}. Then G = G1 ×G2. There exists a continuous homomorphism
ψ : βap(Ω)G −→ βap(Ω)G1 × βap(Ω)G2 such that ψ(αG(x, y) = (αG1(x), αG2(y)) for
every point (x, y) ∈ G.

We can identify x ∈ G1 with (x, 1G2) ∈ G and y ∈ G2 with (1G1 , y) ∈ G. In this
case 1G = (1G1 , 1G2) and G1, G2 are subalgebras of the algebra G. If h ∈ Ω-AP (G),
then:

– for each y ∈ G2 there exists hy ∈ Ω-AP (G1) such that hy(x) = h(x, y) for each
x ∈ G1;

– for each x ∈ G1 there exists hx ∈ Ω-AP (G2) such that hx(y) = h(x, y) for each
y ∈ G2.

Hence ψ|αG(G) is an injective mapping. From Lemma 6 it follows that ψ is an
isomorphism. Hence the assertions 1 of theorem are true for any finite set M .



ALMOST PERIODICITY OF FUNCTIONS ON UNIVERSAL ALGEBRAS 61

Suppose that the set M is infinite. If B ⊆M , then we put GB = Π{Gµ : µ ∈ B}.
Let G = GM and πB : G→ GB be the natural projection. We identify GB with the
subalgebra {x = (xµ : µ ∈ M) ∈ G : xµ = 0Gµ for any µ ∈ M \ B}. In this case
πB : G→ GB is the retraction.

Let rEGB = Π{rEGµ : µ ∈ M} and identity rEGB with the subalgebra {x =
(xµ : µ ∈ M) : xµ = 0rEGµ for every µ ∈ M\B} of the algebra rEG = rEGM . Let
πB : rEG → rEGB be the natural projection. We put G′ = ∪{GB ⊆ G : B is a
finite subset of M}. Then G′ is a dense subalgebra of the topological Ω-algebra G. If
B ⊆ M, then G′′

B = rB(GB) and G′′ = ∪{G′′

B : B is a finite subset of M} = rµ(G
′).

For every finite subset B ⊆ M the mapping νM |G′′

B : G′′

B → rEGB is a topological
isomorphism. Hence νM : G′′ → rEGM is an injection. Lemma 6 completes the proof
of Assertions 1. The proof of Assertions 2 is similar. The proof is complete.

Theorem 9. Let G ∈ K be a pseudocompact topological Ω-algebra B. Then:

1. On βG there exists a structure of topological Ω-algebra such that βG ∈ K and
G is a dense subalgebra of the Ω-algebra βG.

2. Ω-wAP (G) = C(G) = C◦(G).

Proof. In [12] it was proved that for any pseudocompact topological Mal’cev E-
algebra G and each n ∈ N the space Gn is pseudocompact. From the I. Glicksberg’s
theorem ([8], Problem 3.12.20 (d), p. 299) it follows that β(Gn) = (βG)n for each
n ∈ N. Thus for each n ∈ N and every ω ∈ Ωn there exists a continuous extension
ω : β(Gn) −→ βG of the mapping ω : Gn −→ G. Therefore on βG there exists a
structure of topological Ω-algebra such that G is a dense subalgebra of the Ω-algebra
βG. From Lemma 7 it follows that βG ∈ K. Theorem 7 completes the proof.
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