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Abstract. The aim of this paper is to study the notion of lacunary I-convergence
in probabilistic normed spaces as a variant of the notion of ideal convergence. Also
lacunary I-limit points and lacunary I-cluster points have been defined and the rela-
tion between them has been established. Furthermore, lacunary Cauchy and lacunary
I-Cauchy sequences are introduced and studied. Finally, we provided example which
shows that our method of convergence in probabilistic normed spaces is more general.
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1 Introduction

Steinhaus [45] and Fast [13] independently introduced the notion of statistical
convergence for sequences of real numbers. Over the years and under different names
statistical convergence has been discussed in the theory of Fourier analysis, ergodic
theory and number theory. Later on it was further investigated from various points
of view. For example, statistical convergence has been investigated in summability
theory by (Connor [7], Fridy [15], S̆alát [40]), number theory and mathematical
analysis by (Buck [1], Mitrinović et al. [37]), topological groups (Çakalli [2, 3]),
topological spaces (Di Maio and Koc̆inac [34]), function spaces (Caserta and Koc̆inac
[5]), measure theory (Cheng et al. [6], Connor and Swardson [8], Miller [36]). Fridy
and Orhan [16] introduced the concept of lacunary statistical convergence. Some
work on lacunary statistical convergence can be found in [2,17,20,33].

Kostyrko, et al. [28] introduced the notion of I-convergence as a generalization
of statistical convergence which is based on the structure of an admissible ideal I
of subset of natural numbers N. Kostyrko et al. [29] gave some of basic properties
of I-convergence and dealt with extremal I-limit points. Further details on ideal
convergence can be found in [4, 11, 12, 21–25, 32, 41, 46], and many others. The
notion of lacunary ideal convergence of real sequences was introduced in [47, 48],
and Hazarika [18, 19] introduced the lacunary ideal convergent sequences of fuzzy
real numbers and studied some properties. Debnath [10] introduced the notion of
lacunary ideal convergence in intuitionistic fuzzy normed linear spaces. Recently,
Yamanci and Gürdal [49] introduced the notion of lacunary ideal convergence in
random n-normed space.
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A family I of subsets of N, positive integers, i. e. I ⊂ 2N, is an ideal on N if and
only if

(i) φ ∈ I,

(ii) A ∪ B ∈ I for each A,B ∈ I,

(iii) each subset of an element of I is an element of I.

A non-empty family of sets F ⊂ 2N is a filter on N if and only if

(a) φ /∈ F ,

(b) A ∩ B ∈ F for each A,B ∈ F,

(c) any superset of an element of F is in F .

An ideal I is called non-trivial if I 6= φ and N /∈ I. Clearly I is a non-trivial ideal
if and only if F = F (I) = {N−A : A ∈ I} is a filter in N, called the filter associated
with the ideal I.

A non-trivial ideal I is called admissible if and only if {{n} : n ∈ N} ⊂ I. A non-
trivial ideal I is maximal if there cannot exist any non-trivial ideal J 6= I containing
I as a subset.

Recall that a sequence x = (xk) of points in R is said to be I-convergent to a
real number ℓ if {k ∈ N : |xk − ℓ| ≥ ε} ∈ I for every ε > 0 [28]. In this case we
write I − lim xk = ℓ.

By a lacunary sequence θ = (kr), where k0 = 0, we shall mean an increasing
sequence of non-negative integers with kr − kr−1 → ∞ as r → ∞. The intervals
determined by θ will be denoted by Jr = (kr−1, kr] and we let hr = kr − kr−1. The
space of lacunary strongly convergent sequences Nθ was defined by Freedman et al.
[14] as follows:

Nθ =







x = (xk) : lim
r

1

hr

∑

k∈Jr

|xk − L| = 0, for some L







.

Menger [35] proposed the probabilistic concept of the distance by replacing the
number d(p, q) as the distance between points p, q by a probability distribution
function Fp,q(x). He interpreted Fp,q(x) as the probability that the distance between
p and q is less than x. This led to the development of the area now called probabilistic
metric spaces. This is S̆erstnev [44] who first used this idea of Menger to introduce
the concept of a PN space. For an extensive view on this subject, we refer to
[9, 26, 31, 42, 43]. Subsequently, Mursaleen and Mohiuddine [38] and Rahmat[39]
studied the ideal convergence in probabilistic normed spaces and V.Kumar and
K.Kumar [30] studied I-Cauchy and I∗-Cauchy sequences in probabilistic normed
spaces.
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The notion of statistical convergence depends on the density (asymptotic or
natural) of subsets of N. A subset E of N is said to have natural density δ (E) if

δ (E) = lim
n→∞

1

n
|{k ≤ n : k ∈ E}| exists.

Definition 1. A sequence x = (xk) is said to be statistically convergent to ℓ if for
every ε > 0

δ ({k ∈ N : |xk − ℓ| ≥ ε}) = 0.

In this case, we write S − lim x = ℓ or xk → ℓ(S) and S denotes the set of all
statistically convergent sequences.

Definition 2. ([47,48]) Let I ⊂ 2N be a non-trivial ideal. A real sequence x = (xk)
is said to be lacunary I-convergent or Iθ-convergent to L ∈ R if, for every ε > 0 the
set







r ∈ N :
1

hr

∑

k∈Jr

|xk − L| ≥ ε







∈ I.

L is called the Iθ-limit of the sequence x = (xk) , and we write Iθ − lim x = L.

In this paper we study the concept of lacunary I-convergence in probabilistic
normed spaces. We also define lacunary I-limit points and lacunary I-cluster points
in probabilistic normed space and prove some interesting results.

2 Basic definitions and notations

Now we recall some notations and basic definitions that we are going to use in
this paper.

Definition 3. A distribution function (briefly a d.f.) F is a function from the
extended reals (−∞,+∞) into [0, 1] such that

(a) it is non-decreasing;

(b) it is left-continuous on (−∞,+∞);

(c) F (−∞) = 0 and F (+∞) = 1.

The set of all d.f.’s will be denoted by ∆. The subset of ∆ consisting of
proper d.f’s, namely of those elements F such that ℓ+F (−∞) = F (−∞) = 0 and
ℓ−F (+∞) = F (+∞) = 1 will be denoted by D. A distance distribution function
(briefly, d.d.f.) is a d.f. F such that F (0) = 0. The set of all d.d.f.f’s will be denoted
by ∆+, while D+ := D ∩ ∆+ will denote the set of proper d.d.f.’s.

Definition 4. A triangular norm or, briefly, a t-norm is a binary operation
T : [0, 1] × [0, 1] → [0, 1] that satisfies the following conditions (see [27]):
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(T1) T is commutative, i. e., T (s, t) = T (t, s) for all s and t in [0, 1];

(T2) T is associative, i. e., T (T (s, t), u) = T (s, T (t, u)) for all s, t and u in [0, 1];

(T3) T is nondecreasing, i. e., T (s, t) ≤ T (s′, t) for all t ∈ [0, 1] whenever s ≤ s′;

(T4) T satisfies the boundary condition T (1, t) = t for every t ∈ [0, 1].

T ∗ is a continuous t-conorm, namely, a continuous binary operation on [0, 1] that
is related to a continuous t-norm through T ∗(s, t) = 1− T (1− s, 1− t). Notice that
by virtue of its commutativity, any t-norm T is nondecreasing in each place. Some
examples of t-norms T and its t-conorms T ∗ are: M(x, y) = min{x, y},Π(x, y) = x.y
and M∗(x, y) = max{x, y},Π∗(x, y) = x + y − x.y.

Definition 5. A Menger PN space under T is a PN space (X, ν, τ, τ∗), denoted
by (X, ν, T ), in which τ = τT and τ∗ = τT ∗ , for some continuous t-norm T and its
t-conorm T ∗.

Definition 6. Let (X, ν, T ) be a PN space and x = (xk) be a sequence in X. We
say that (xk) is convergent to ℓ ∈ X with respect to the probabilistic norm ν if for
each ε > 0 and α ∈ (0, 1) there exists a positive integer m such that νxk−ℓ(ε) > 1−α
whenever k ≥ m. The element ℓ is called the limit of the sequence (xk) and we shall
write ν − lim xk = ℓ or xk

ν
→ ℓ as k → ∞.

Definition 7. A sequence (xk) in X is said to be Cauchy with respect to the
probabilistic norm ν if for each ε > 0 and α ∈ (0, 1) there exists a positive integer
M = M(ε, α) such that νxk−xp(ε) > 1 − α whenever k, p ≥ M.

Definition 8. Let (X, ν, T ) be a probabilistic normed space, and let r ∈ (0, 1) and
x ∈ X. The set

B (x, r; t) = {y ∈ X : νy−x(t) > 1 − r}

is called the open ball with center x and radius r with respect to t.

Throughout the paper, we denote I as an admissible ideal of subsets of N and
θ = (kr) as a fixed lacunary sequence, respectively, unless otherwise stated.

3 Main results

We now obtain our main results.

Definition 9. Let I ⊂ 2N and (X, ν, T ) be a PNS. A sequence x = (xk) in X is said
to be Iθ-convergent to L ∈ X with respect to the probabilistic norm ν if, for every
ε > 0 and α ∈ (0, 1) the set







r ∈ N :
1

hr

∑

k∈Jr

νxk−L(ε) ≤ 1 − α







∈ I.

L is called the Iθ−limit of the sequence x = (xk) in X, and we write Iν
θ − lim x = L.
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Example 1. Let (R, |.|) denote the space of all real numbers with the usual norm,
and let T (a, b) = ab for all a, b ∈ [0, 1] . For all x ∈ R and every t > 0, consider
νx(t) = t

t+|x| . Then (Rν, T ) is a PNS. If we take I = {A ⊂ N : δ (A) = 0} , where

δ (A) denotes the natural density of the set A, then I is a non-trivial admissible
ideal. Define a sequence x = (xk) as follows:

xk =

{

1 if k = i2, i ∈ N,
0 otherwise.

Then for every α ∈ (0, 1) and for any ε > 0, the set

K =







r ∈ N :
1

hr

∑

k∈Jr

νxk
(ε) ≤ 1 − α







will be a finite set. Hence, δ (K) = 0 and consequently K ∈ I, i.e., Iν
θ − lim x = 0.

Lemma 1. Let (X, ν, T ) be a PNS and x = (xk) be a sequence in X. Then, for
every ε > 0 and α ∈ (0, 1) the following statements are equivalent:

(i) Iν
θ − lim x = L,

(ii)
{

r ∈ N : 1
hr

∑

k∈Jr
νxk−L(ε) ≤ 1 − α

}

∈ I,

(iii)
{

r ∈ N : 1
hr

∑

k∈Jr
νxk−L(ε) > 1 − α

}

∈ F (I) ,

(iii) Iθ − lim νxk−L(ε) = 1.

Theorem 1. Let (X, ν, T ) be a PNS and if a sequence x = (xk) in X is Iθ-convergent
to L ∈ X with respect to the probabilistic norm ν, then Iν

θ − lim x is unique.

Proof. Suppose that Iν
θ − lim x = L1 and Iν

θ − lim x = L2 (L1 6= L2) . Given α > 0
and choose β ∈ (0, 1) such that

T (1 − β, 1 − β) > 1 − α. (1)

Then for ε > 0, define the following sets:

K1 =







r ∈ N :
1

hr

∑

k∈Jr

νxk−L1

(ε

2

)

≤ 1 − β







,

K2 =







r ∈ N :
1

hr

∑

k∈Jr

νxk−L2

(ε

2

)

≤ 1 − β







.

Since Iν
θ − lim x = L1, using Lemma 1, we have K1 ∈ I. Also, using Iν

θ − lim x = L2,
we get K2 ∈ I. Now let

K = K1 ∪ K2.
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Then K ∈ I. This implies that its complement Kc is a non-empty set in F (I). Now
if r ∈ Kc, let us consider r ∈ Kc

1 ∩ Kc
2. Then we have

1

hr

∑

k∈Jr

νxk−L1

(ε

2

)

> 1 − β and
1

hr

∑

k∈Jr

νxk−L2

(ε

2

)

> 1 − β.

Now, we choose an s ∈ N such that

νxs−L1

(ε

2

)

>
1

hr

∑

k∈Jr

νxk−L1

(ε

2

)

> 1 − β

and

νxs−L2

(ε

2

)

>
1

hr

∑

k∈Jr

νxk−L2

(ε

2

)

> 1 − β

e. g., consider max
{

νxk−L1

(

ε
2

)

, νxk−L2

(

ε
2

)

: k ∈ Jr

}

and choose that k as s for
which the maximum occurs. Then from (1), we have

νL1−L2(ε) ≥ T
(

νxs−L1

(ε

2

)

, νxs−L2

(ε

2

))

> T (1 − β, 1 − β) > 1 − α.

Since α > 0 is arbitrary, we have νL1−L2(ε) = 1 for all ε > 0, which implies that
L1 = L2. Therefore, we conclude that Iν

θ − lim x is unique.

Here, we introduce the notion of θ-convergence in a PNS and discuss some
properties.

Definition 10. Let (X, ν, T ) be a PNS. A sequence x = (xk) in X is θ-convergent
to L ∈ X with respect to the probabilistic norm ν if, for α ∈ (0, 1) and every ε > 0,
there exists ro ∈ N such that

1

hr

∑

k∈Jr

νxk−L(ε) > 1 − α

for all r ≥ ro. In this case, we write νθ − lim x = L.

Theorem 2. Let (X, ν, T ) be a PNS and let x = (xk) in X. If x = (xk) is θ-
convergent with respect to the probabilistic norm ν, then νθ − lim x is unique.

Proof. Suppose that νθ−lim x = L1 and νθ−limx = L2 (L1 6= L2) . Given α ∈ (0, 1)
and choose β ∈ (0, 1) such that T (1 − β, 1 − β) > 1 − α. Then for any ε > 0, there
exists r1 ∈ N such that

1

hr

∑

k∈Jr

νxk−L1 (ε) > 1 − α

for all r ≥ r1. Also, there exists r2 ∈ N such that

1

hr

∑

k∈Jr

νxk−L2 (ε) > 1 − α
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for all r ≥ r2. Now, consider ro = max {r1, r2} . Then for r ≥ ro, we will get an
s ∈ N such that

νxs−L1

(ε

2

)

>
1

hr

∑

k∈Jr

νxk−L1

(ε

2

)

> 1 − β

and

νxs−L2

(ε

2

)

>
1

hr

∑

k∈Jr

νxk−L2

(ε

2

)

> 1 − β.

Then, we have

νL1−L2(ε) ≥ T
(

νxs−L1

(ε

2

)

, νxs−L2

(ε

2

))

> T (1 − β, 1 − β) > 1 − α.

Since α > 0 is arbitrary, we have νL1−L2(ε) = 1 for all ε > 0, which implies that
L1 = L2.

Theorem 3. Let (X, ν, T ) be a PNS and let x = (xk) in X. If νθ − lim x = L, then
Iν
θ − lim x = L.

Proof. Let νθ − lim x = L, then for every ε > 0 and given α ∈ (0, 1), there exists
r0 ∈ N such that

1

hr

∑

k∈Jr

νxk−L(ε) > 1 − α

for all r ≥ r0. Therefore the set

B =







r ∈ N :
1

hr

∑

k∈Jr

νxk−L(ε) ≤ 1 − α







⊆ {1, 2, ..., n0 − 1} .

But, with I being admissible, we have B ∈ I. Hence Iν
θ − lim x = L.

Theorem 4. Let (X, ν, T ) be a PNS and x = (xk) , y = (yk) be two sequence in X.
(i) If Iν

θ − lim xk = L1 and Iν
θ − lim yk = L2, then Iν

θ − lim(xk ± yk) = L1 ± L2;
(ii) If Iν

θ − lim xk = L and a be a non-zero real number, then Iν
θ − lim axk = aL.

If a = 0, then result is true only if I is admissible of N .

Proof. (i) We shall prove, if Iν
θ −lim xk = L1 and Iν

θ −lim yk = L2, then Iν
θ −lim(xk+

yk) = L1 + L2, only. The proof of the other part follows similarly.

Take ε > 0, α ∈ (0, 1) and choose β ∈ (0, 1) such that the condition (1) holds. If
we define

A1 =







r ∈ N :
1

hr

∑

k∈Jr

νxk−L1

(ε

2

)

≤ 1 − β







and

A2 =







r ∈ N :
1

hr

∑

k∈Jr

νyk−L2

(ε

2

)

≤ 1 − β







,
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then Ac
1 ∩ Ac

2 ∈ F (I). We claim that

Ac
1 ∩ Ac

2 ⊂







r ∈ N :
1

hr

∑

k∈Jr

ν(xk−L1)+(yk−L2)(ε) > 1 − α







.

Let n ∈ Ac
1 ∩ Ac

2. Now, using (1), we have

1

hr

∑

n∈Jr

ν(xn−L1)+(yn−L2)(ε) ≥ T

(

1

hr

∑

n∈Jr

νxn−L1

(ε

2

)

,
1

hr

∑

n∈Jr

νyn−L2

(ε

2

)

)

> T (1 − β, 1 − β) > 1 − α.

Hence

Ac
1 ∩ Ac

2 ⊂







r ∈ N :
1

hr

∑

k∈Jr

ν(xk−L1)+(yk−L2)(ε) > 1 − α







.

As Ac
1 ∩ Ac

2 ∈ F (I), so







r ∈ N :
1

hr

∑

k∈Jr

ν(xk−L1)+(yk−L2)(ε) ≤ 1 − α







∈ I.

Therefore Iν
θ − lim(xk + yk) = L1 + L2.

(ii) Suppose a 6= 0. Since Iν
θ − lim xk = L, for each ε > 0 and α ∈ (0, 1), the set

A(ε, α) =







r ∈ N :
1

hr

∑

k∈Jr

νxk−L(ε) < 1 − α







∈ F (I).

If n ∈ A(ε, α), then we have

1

hr

∑

k∈Jr

νaxk−aL(ε) =
1

hr

∑

k∈Jr

νxk−L

(

ε

|a|

)

≥ T





1

hr

∑

k∈Jr

νxk−L(ε), ν0

(

ε

|a|
− ε

)





≥ T





1

hr

∑

k∈Jr

νxk−L(ε), 1



 ≥
1

hr

∑

k∈Jr

νxk−L(ε) > 1 − α.

Hence

A(ε, α) ⊂







r ∈ N :
1

hr

∑

k∈Jr

νaxk−aL(ε) > 1 − α






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and






r ∈ N :
1

hr

∑

k∈Jr

νaxk−aL(ε) > 1 − α







∈ F (I).

It follows that






r ∈ N :
1

hr

∑

k∈Jr

νaxk−aL(ε) ≤ 1 − α







∈ I.

Hence Iν
θ − lim axk = aL.

Next suppose that a = 0. Then for each ε > 0 and α ∈ (0, 1), we have

1

hr

∑

k∈Jr

ν0xk−0L(ε) =
1

hr

∑

k∈Jr

ν0(ε) = 1 > 1 − α,

it follows that νθ − lim x = ℓ. Hence from Theorem 3, Iν
θ − lim x = ℓ.

Theorem 5. Let (X, ν, T ) be a PNS and let x = (xk) in X. If νθ − lim x = L, then
there exists a subsequence (xmk

) of x = (xk) such that ν − lim xmk
= L.

Proof. Let νθ − lim x = L. Then, for every ε > 0 and given α ∈ (0, 1), there exists
r0 ∈ N such that

1

hr

∑

k∈Jr

νxk−L(ε) > 1 − α

for all r ≥ r0. Clearly, for each r ≥ r0, we can select an mk ∈ Jr such that

νxmk
−L(ε) >

1

hr

∑

k∈Jr

νxk−L(ε) > 1 − α.

It follows that ν − lim xmk
= L.

Definition 11. Let (X, ν, T ) be a PNS and let x = (xk) be a sequence in X. Then,

(1) An element L ∈ X is said to be Iθ-limit point of x = (xk) if there is a set M =
{m1 < m2 < ... < mk < ...} ⊂ N such that the set M ı = {r ∈ N : mk ∈ Jr} /∈
I and νθ − lim xmk

= L.

(2) An element L ∈ X is said to be Iθ-cluster point of x = (xk) if for every ε > 0
and α ∈ (0, 1) , we have







r ∈ N :
1

hr

∑

k∈Jr

νxk−L(ε) > 1 − α







/∈ I.

Let ΛIθ
ν (x) denote the set of all Iθ-limit points and ΓIθ

ν (x) denote the set of all
Iθ-cluster points in X, respectively.



12 BIPAN HAZARIKA, AYHAN ESI

Theorem 6. Let (X, ν, T ) be a PNS. For each sequence x = (xk) in X, we have
ΛIθ

ν (x) ⊂ ΓIθ
ν (x) .

Proof. Let L ∈ ΛIθ
ν (x) , then there exists a set M ⊂ N such that M ı /∈ I, where M

and M ı are as in Definition 5, satisfies νλ − lim xmk
= L. Thus, for every ε > 0 and

α ∈ (0, 1) , there exists r0 ∈ N such that

1

hr

∑

k∈Jr

νxmk
−L(ε) > 1 − α

for all r ≥ r0. Therefore,

B =







r ∈ N :
1

hr

∑

k∈Jr

νxk−L(ε) > 1 − α







⊇ M ı \ {m1,m2, ...,mn0} .

Now, with I being admissible, we must have M ı \ {m1,m2, ...,mk0} /∈ I and as such
B /∈ I. Hence L ∈ ΓIθ

ν (x) .

Theorem 7. Let (X, ν, T ) be a PNS. For each sequence x = (xk) in X, the set
ΓIθ

ν (x) is a closed set in X with respect to the usual topology induced by the proba-
bilistic norm νθ.

Proof. Let y ∈ ΓIθ
ν (x). Take ε > 0 and α ∈ (0, 1) . Then there exists L0 ∈ ΓIθ

ν (x) ∩
B (y, α, ε) . Choose δ > 0 such that B (L0, δ, ε) ⊂ B (y, α, ε) . We have

G =







r ∈ N :
1

hr

∑

k∈Jr

νxk−y(ε) > 1 − α







⊇







r ∈ N :
1

hr

∑

k∈Jr

νxk−L0(ε) > 1 − δ







= H.

Thus H /∈ I and so G /∈ I. Hence y ∈ ΓIθ
ν (x) .

Theorem 8. Let (X, ν, T ) be a PNS and let x = (xk) in X. Then the following
statements are equivalent:

(1) L is an Iθ−limit point of x,

(2) There exist two sequences y and z in X such that x = y+z and νθ−lim y = L
and

{

r ∈ N : k ∈ Jr, zk 6= θ
}

∈ I, where θ is the zero element of X.

Proof. Suppose that (1) holds. Then there exist sets M and M ı as in Definition 11
such that M ı /∈ I and νθ − lim xmk

= L. Define the sequences y and z as follows:

yk =

{

xk if k ∈ Jr; r ∈ M ı,
L otherwise
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and

zk =

{

θ if k ∈ Jr; r ∈ M ı,
xk − L otherwise.

It sufficies to consider the case k ∈ Jr such that r ∈ N�M ı. Then for each
α ∈ (0, 1) and ε > 0, we have νyk−L(ε) = 1 > 1 − α. Thus, in this case,

1

hr

∑

k∈Jr

νyk−L(ε) = 1 > 1 − α.

Hence νθ − lim y = L. Now {r ∈ N : k ∈ Jr, zk 6= θ} ⊂ N�M ı and so
{r ∈ N : k ∈ Jr, zk 6= θ} ∈ I.

Now, suppose that (2) holds. Let M ı = {r ∈ N : k ∈ Jr, zk = θ} . Then,
clearly M ı ∈ F (I) and so it is an infinite set. Construct the set M =
{m1 < m2 < ... < mk < ...} ⊂ N such that mk ∈ Jr and zmk

= θ. Since xmk
= ymk

and νθ − lim y = L we obtain νθ − lim xmk
= L. This completes the proof.

Theorem 9. Let (X, ν, T ) be a PNS and x = (xk) be a sequence in X. Let I be an
admissible ideal in N. If there is an Iν

θ -convergent sequence y = (yk) in X such that
{k ∈ N : yk 6= xk} ∈ I then x is also Iν

θ -convergent.

Proof. Suppose that {k ∈ N : yk 6= xk} ∈ I and Iν
θ − lim y = ℓ. Then for every

α ∈ (0, 1) and ε > 0, the set







r ∈ N :
1

hr

∑

k∈Jr

νyk−L(ε) ≤ 1 − α







∈ I.

For every 0 < α < 1 and ε > 0, we have







r ∈ N :
1

hr

∑

k∈Jr

νxk−L(ε) ≤ 1 − α







(2)

⊆ {k ∈ N : yk 6= xk} ∪







r ∈ N :
1

hr

∑

k∈Jr

νyk−L(ε) ≤ 1 − α







.

As the both sets of right-hand side of (2) are in I, therefore we have that







r ∈ N :
1

hr

∑

k∈Jr

νxk−L(ε) ≤ 1 − α







∈ I.

This completes the proof of the theorem.
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Definition 12. Let (X, ν, T ) be a PNS. A sequence x = (xk) in X is said to be
θ-Cauchy sequence with respect to the probabilistic norm ν if, for every ε > 0 and
α ∈ (0, 1) , there exist r0,m ∈ N satisfying

1

hr

∑

k∈Jr

νxk−xm(ε) > 1 − ε

for all r ≥ r0.

Definition 13. Let I be an admissible ideal of N. Let (X, ν, T ) be a PNS. A sequence
x = (xk) in X is said to be Iθ-Cauchy sequence with respect to the probabilistic
norm ν if, for every ε > 0 and α ∈ (0, 1) , there exists m ∈ N satisfying







r ∈ N :
1

hr

∑

k∈Jr

νxk−xm(ε) > 1 − ε







∈ F (I) .

Definition 14. Let I be an admissible ideal of N. Let (X, ν, T ) be a PNS. A sequence
x = (xk) in X is said to be I∗θ -Cauchy sequence with respect to the probabilistic
norm ν if there exists a set M = {m1 < m2 < ... < mk < ...} ⊂ N such that the
set M ı = {r ∈ N : mk ∈ Jr} ∈ F (I) and the subsequence (xmk

) of x = (xk) is a
θ-Cauchy sequence with respect to the probabilistic norm ν.

The following theorem is an analogue of Theorem 3, so the proof is omitted.

Theorem 10. Let I be an admissible ideal of N. Let (X, ν, T ) be a PNS. If a
sequence x = (xk) in X is θ-Cauchy sequence with respect to the probabilistic norm
ν, then it is Iθ-Cauchy sequence with respect to the same norm.

The proof of the following theorem is similar to that of Theorem 5.

Theorem 11. Let (X, ν, T ) be a PNS. If a sequence x = (xk) in X is θ-Cauchy
sequence with respect to the probabilistic norm ν, then there is a subsequence of
x = (xk) which is ordinary Cauchy sequence with respect to the same norm.

The following theorem can be proved easily using similar techniques as in the
proof of Theorem 6.

Theorem 12. Let I be an admissible ideal of N. Let (X, ν, T ) be a PNS. If a
sequence x = (xk) in X is I∗θ -Cauchy sequence with respect to the probabilistic norm
ν, then it is Iθ-Cauchy sequence as well.
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[2] Çakalli H. On statistical convergence in topological groups. Pure Appl. Math. Sci., 1996, 43,
27–31.



LACUNARY IDEAL CONVERGENCE IN PROBABILISTIC NORMED SPACE 15
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