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On Lagrange algorithm for reduced algebraic

irrationalities∗

N.M. Dobrovol’skii, I. N. Balaba, I. Yu. Rebrova,

N.N. Dobrovol’skii

Abstract. In this paper the properties of Lagrange algorithm for expansion of alge-
braic number are refined. It has been shown that for reduced algebraic irrationalities
the quantity of elementary arithmetic operations which needed for the computation
of next incomplete quotient does not depend on the value of this incomplete quotient.

It is established that beginning with some index all residual fractions for an arbi-
trary reduced algebraic irrationality are the generalized Pisot numbers. An asymptotic
formula for conjugate numbers to residual fractions is obtained.

The definition of generalized Pisot numbers differs from the definition of Pisot
numbers by absence of the requirement to be integer.
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Keywords and phrases: Minimal polynomial, reduced algebraic irrationality, gene-
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1 Introduction

The continued fraction expansion of algebraic irrationalities is one of the most
difficult questions in the modern number theory. Various aspects of this theory can
be seen in the papers [1–9, 11–13] Even in such developed theory as the theory
of continued fractions of quadratic irrationalities one can find new interesting facts
(see [10,14]). The paper [17] describes the set of reduced algebraic irrationalities of
n-th degree and asserts that this set has the property of rational convexity.

The aim of this paper is the refinement of properties of Lagrange algorithm for
reduced algebraic irrationalities of n-th degree and for Pisot numbers in general case.

The case of the reduced algebraic irrationalities of n-th degree is very impor-
tant for us. This case is connected with totally real algebraic fields of n-th degree
which underly the construction of algebraic lattice used in quadrature formulas with
weights in K.K. Frolov’s method (see [5–7, 15, 16]).

2 Necessary definitions and facts

We begin with the definition of a reduced algebraic irrationality of n-th degree.
Here we follow [8,9, 17].
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Definition 1. Let

f(x) =

n
∑

k=0

akx
k ∈ Z[x], an > 0

be irreducible polynomial with integer coefficients 1 such that all its roots α(k) (k =
1, 2, . . . , n) are different real numbers satisfying the following condition

−1 < α(n) < . . . < α(2) < 0, α(1) > 1.

The algebraic number α = α(1) is called a reduced algebraic irrationality of n-th
degree.

Note that for minimal polynomial f(x) that defines a reduced algebraic irra-
tionality α of n-th degree we always have a0 < 0, since f(x) has only one root α

belonging to [0;∞) and f(x) > 0 for x > α, so f(0) < 0. Besides the following
inequalities hold

an + an−1 + . . . + a1 + a0 = f(1) < 0,

an − an−1 + . . . + (−1)n−1a1 + (−1)na0 = (−1)nf(−1) > 0.

For any real number α which is a reduced algebraic irrationality of n-th degree
consider infinite continued fraction expansion

α = α0 = q0 +
1

q1 +
1

. . . +
1

qn +
1

.. .

= q0 +
1

q1 +
1

. . . +
1

qk +
1

αk+1

.

As usually by Pk and Qk we denote numerator and denominator of k-th order
convergent of continued fraction and by αk we denote its residual fraction of
order k.

Thus α = α0 and the equality

α =
αk+1Pk + Pk−1

αk+1Qk + Qk−1
, k ≥ −1,

is valid if we assume as usually that P−1 = 1, P−2 = 0 and Q−1 = 0, Q−2 = 1.

It is easy to show that

αk+1 =
αQk−1 − Pk−1

Pk − αQk

, k ≥ −1.

1In particular, the irreducibility of a polynomial means that (a0, . . . , an) = 1.
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Lemma 1. For an arbitrary reduced algebraic irrationality α of n-th degree its resid-
ual fractions α1 is a reduced algebraic irrationality of n-th degree too that satisfies
the irreducible polynomial

f1(x) =
n
∑

k=0

ak,1x
k ∈ Z[x], an,1 > 0,

where

ak,1 =
bk

d
, d = (b0, . . . , bn), bk = −

n
∑

m=n−k

amCm+k−n
m qm+k−n

0 (0 ≤ k ≤ n).

Proof. See [8].

Theorem 1. For an arbitrary reduced algebraic irrationality α of n-th degree all its
residual fractions αm are reduced algebraic irrationalities of n-th degree, satisfying
the irreducible polynomials

fm(x) =

n
∑

k=0

ak,mxk ∈ Z[x], an,m > 0,

where

ak,m =
bk,m

dm

, dm = (b0,m, . . . , bn,m),

bk,m = −

n
∑

l=n−k

al,m−1C
l+k−n
l ql+k−n

m−1 (0 ≤ k ≤ n).

Proof. See [8].

Theorem 2. An incomplete quotient qk is uniquely defined as an integer which
satisfies the following condition

fk(qk) < 0, fk(qk + 1) > 0.

Proof. See [8].

It is not hard to see that to compute qk we need to calculate O(ln qk) values of
polynomial fk(x). Indeed, consider the sequence fk(1), fk(2), . . . , fk(2

m), fk(2
m+1),

where m = [log2(qk)]. It is clear that fk(2
j) < 0 for all 0 ≤ j ≤ m and fk(2

m+1) > 0.
Further using the method of interval bisection contract the segment [2m; 2m+1] to
the segment [qk; qk + 1], that will require to compute yet m values of fk(x). 2

Here in fact Lagrange algorithm of expansion for algebraic irrationality of arbi-
trary degree n ≥ 2 is described.

Theorem 1 is generalized to the case for continued fraction of arbitrary totally
real algebraic irrationality α of degree n. First we shall show Lemma on the trans-
formation of the roots.
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Lemma 2. Let

f(x) =

n
∑

k=0

akx
k ∈ Z[x], an > 0

be irreducible polynomial with integral coefficients such that all its roots α(k) (k =
1, 2, . . . , n) are different real number satisfying the following condition

α(n) < . . . < α(2) < α(1),

and for integer number q the following inequalities hold:






α(k) < q for k ≥ k0,

q < α(k) < q + 1 for k0 > k ≥ k1,

α(k) > q + 1 for k1 > k ≥ 1.

Then the polynomial

g(x) = −f

(

q +
1

x

)

· xn =
n
∑

k=0

bkx
k.

has roots β(k) = 1
α(k)−q

(k = 1, 2, . . . , n) satisfying the following inequalities







β(k) < 0 for k ≥ k0,

1 < β(k) for k0 > k ≥ k1,

0 < β(k) < 1 for k1 > k ≥ 1.

Proof. See [8].

Theorem 3. For an arbitrary totally real algebraic irrationality α of n-th degree all
its residual fractions αm are reduced algebraic irrationalities of n-th degree beginning
with some index m0 + 1.

Proof. See [8].

3 Refinement of Lagrange algorithm for reduced algebraic

irrationalities

Denote by PZn[x] the set of all irreducible polynomials with integer coefficients
of n-th degree considered in Definition 1.

Lemma 3. If polynomial

f0(x) = anxn + an−1x
n−1 + . . . + a1x + a0 ∈ PZn[x]

and α(1) > α(2) > . . . > α(n) are its roots, then for the continued fraction expansion

α(1) = α0 = q0 +
1

q1 +
1

. . . +
1

qn +
1

. . .
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we have
[

−
an−1

an

]

≤ q0 < −
an−1

an

+ n − 1. (1)

Proof. Indeed, using Viete’s formula we have

−
an−1

an

= α(1) + α(2) + . . . + α(n).

Since α(1) is a reduced algebraic irrationality of degree n, then

−1 < α(n) < . . . < α(2) < 0, α(1) > 1.

So

−n + 1 < α(2) + . . . + α(n) < 0

and

−
an−1

an

< α(1) < −
an−1

an

+ n − 1.

Since q0 < α(1) < q0 + 1 we get the statement of Lemma.

Revise Lemma 1.

Lemma 4. For a reduced algebraic irrationality α of degree n its residual fraction
α1 is a reduced algebraic irrationality of n-th degree too that satisfies the irreducible
polynomial

f1(x) =

n
∑

k=0

ak,1x
k ∈ Z[x], an,1 > 0,

where

ak,1 =
bk

d0
, d0 = (b0, . . . , bn), bk = −

n
∑

m=n−k

amCm+k−n
m qm+k−n

0 (0 ≤ k ≤ n).

The polynomial f1(x) has the roots

α
(j)
1 =

1

α(j) − q0
(1 ≤ j ≤ n)

and the following equality holds:

f1(x) =
−f0(q0)

d0

n
∏

j=1

(

x −
1

α(j) − q0

)

∈ PZn[x].

Proof. Consider the polynomial

g(x) = −xnf

(

q0 +
1

x

)

.
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We have:

g(x) = −an

n
∏

j=1

(

q0x + 1 − α(j)x
)

=

= −an

n
∏

j=1

(

q0 − α(j)
)

n
∏

j=1

(

x −
1

α(j) − q0

)

=

= −f0(q0)

n
∏

j=1

(

x −
1

α(j) − q0

)

and α1 = 1
α(1)−q0

.

On the other hand

g(x) = −

n
∑

j=0

aj(q0x + 1)jxn−j = −

n
∑

j=0

aj

j
∑

ν=0

Cν
j qν

0xn−j+ν =

= −

n
∑

k=0

xk

n
∑

m=n−k

amCk+m−n
m qk+m−n

0 =

n
∑

k=0

bkx
k,

where

bk = −

n
∑

m=n−k

amCk+m−n
m qk+m−n

0 ∈ Z (0 ≤ k ≤ n).

Since 1 ≤ q0 < α(1) < q0 + 1 we obtain

bn = −
n
∑

m=0

amqm
0 = −f0(q0) > 0,

1

α(1) − q0
> 1, −1 <

1

α(j) − q0
< 0 (2 ≤ j ≤ n).

So for d0 = (b0, . . . , bn) the polynomial f1(x) = 1
d0

g(x) ∈ PZn[x] and Lemma is
completely proved.

Theorem 4. Let α = α0 be a reduced algebraic irrationality of n-th degree satisfying
the irreducible polynomial

f0(x) =
n
∑

k=0

ak,0x
k ∈ Z[x], an,0 > 0.

And let a sequence of the polynomials fm(x) (m ≥ 1) and a sequence of natural
numbers qm (m ≥ 0) define the recurrence relations

fm−1(qm−1) < 0, fm−1(qm−1 + 1) > 0 (m ≥ 1), (2)
[

−
an−1,m−1

an,m−1

]

≤ qm−1 < −
an−1,m−1

an,m−1
+ n − 1 (m ≥ 1), (3)
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fm(x) =

n
∑

k=0

ak,mxk ∈ Z[x], an,m > 0,

ak,m =
bk,m

dm−1
, dm−1 = (b0,m, . . . , bn,m),

bk,m = −
n
∑

ν=n−k

aν,m−1C
ν+k−n
ν qν+k−n

m−1 (0 ≤ k ≤ n). (4)

Then:

(1) the polynomials fm(x) have the roots

α(j)
m =

α(j)Qm−2 − Pm−2

Pm−1 − α(j)Qm−1
(1 ≤ j ≤ n); (5)

(2)

fm(x) =
−fm−1(qm−1)

dm−1

n
∏

j=1

(

x − α(j)
m

)

∈ PZn[x];

(3) α has the following continued fraction expansion

α = α0 = q0 +
1

q1 +
1

. . . +
1

qn +
1

. . .

.

Proof. The proof is by induction on m.

For m = 1 the statements of theorem are valid by Lemma 4 and the equalities
Q0 = 1, P0 = q0, Q−1 = 0 and P−1 = 1.

Suppose the statements are valid for m ≥ 1, applying Lemma 4 to reduced

algebraic irrationality α
(1)
m we get the statements (2) – (4).

Further we obtain

α
(j)
m+1 =

1

α
(j)
m − qm

=
1

α(j)Qm−2−Pm−2

Pm−1−α(j)Qm−1
− qm

=
α(j)Qm−1 − Pm−1

Pm − α(j)Qm

and the statement (5) holds.

By (5) numbers α
(1)
m are the residual fractions for α (m = 0, 1, . . .), so a sequence

q0, q1, . . . is a sequence of incomplete quotients for α. This completes the proof.

It is easy to show that we need to calculate O(ln n) values of fm(x) for the

computation of qm. Indeed, for A =
[

−
an−1,m

an,m

]

consider a sequence of fm(A),

fm(A + 1), . . . , fm(A + n − 1) consisting of n members. It is clear that if fm(A +
n − 1) < 0 then qm = A + n − 1. Otherwise using the method of interval bisection
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contract the segment [A;A + n − 1] to the segment [qm; qm + 1] that will require to
compute yet O(ln n) values of fm(x).

Thus the new version of Lagrange algorithm for expansion of an algebraic irra-
tionality of arbitrary degree n ≥ 2 in the case of reduced algebraic irrationality of
n-th degree has a new property: for the computation of next incomplete quotient of
continued fraction expansion of this irrationality we need to calculate at most O(ln n)
values of polynomial fm(x). Since for the computation of coefficients of a polynomial
fm(x) via the coefficients of a polynomial fm−1(x) we need at most O

(

n2
)

elemen-
tary arithmetic operations then the quantity of operations for the computation of
next incomplete quotient does not depend on the value of this incomplete quotient.

Make an essential remark. If we will not use the greatest common divisor dm−1

in formula (4), then all coefficients will be increased and time for practical realisa-
tion using symbolic arithmetic will increase too. The calculation of dm−1 requires
additional time, but it is compensated by range extension for calculations of incom-
plete quotients. On the other hand, even establishing that dm−1 = 1 requires time
which depends on the polynomial coefficients, but it does not depend on the value
of incomplete quotient.

4 The case of generalized Pisot numbers

Now we give the definition of generalized Pisot numbers.

Definition 2. Let

f(x) =
n
∑

k=0

akx
k ∈ Z[x], an > 0,

be an arbitrary irreducible polynomial with integer coefficients such that its roots
α(k) (k = 1, 2, . . . , n) satisfy the following conditions

|α(j)| < 1 (2 ≤ j ≤ n), α(1) > 1.

The algebraic number α = α(1) is called a generalized Pisot number of n-th
degree.

It is easy to see that the definition of generalized Pisot numbers differs from the
definition of Pisot numbers by absence of the requirement to be integer.

Theorem 5. Let α = α0 be a real algebraic irrationality of n-th degree satisfying
the irreducible polynomial

f0(x) =

n
∑

k=0

ak,0x
k ∈ Z[x], an,0 > 0,
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and α have the following continued fraction expansion

α = α0 = q0 +
1

q1 +
1

. . . +
1

qn +
1

. . .

.

Let a sequence of the polynomials fm(x) (m ≥ 1) be defined by the recurrence rela-
tions

fm(x) =
n
∑

k=0

ak,mxk ∈ Z[x], an,m > 0,

ak,m =
bk,m

dm−1
, dm−1 = (b0,m, . . . , bn,m),

bk,m = −

n
∑

ν=n−k

aν,m−1C
ν+k−n
ν qν+k−n

m−1 (0 ≤ k ≤ n). (6)

Then:
(1) the polynomials fm(x) have the following roots

α(j)
m =

α(j)Qm−2 − Pm−2

Pm−1 − α(j)Qm−1
(1 ≤ j ≤ n). (7)

(2)

fm(x) =
−fm−1(qm−1)

dm−1

n
∏

j=1

(

x − α(j)
m

)

. (8)

(3) beginning with some index m0 all residual fractions α
(1)
m are generalized Pisot

numbers (m ≥ m0).

Proof. Consider a sequence of the polynomials

gm(x) = −xnfm−1

(

qm−1 +
1

x

)

(m ≥ 1).

Repeating arguments of Lemma 4 and Theorem 4 we get (7) and (8).
To prove the last statement of Theorem, transforming expression (7) we obtain:

α(j)
m =

Qm−2

Qm−1

α(j) − Pm−2

Qm−2

Pm−1

Qm−1
− α(j)

(1 ≤ j ≤ n). (9)

For j = 1 we have the obvious inequality α
(1)
m > 1 using the definition of a residual

fraction.
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Let 2 ≤ j ≤ n, then

α(j)
m =

Qm−2

Qm−1

(

−1 +

Pm−1

Qm−1
− Pm−2

Qm−2

Pm−1

Qm−1
− α(j)

)

=
Qm−2

Qm−1



−1 +

(−1)m

Qm−1Qm−2

Pm−1

Qm−1
− α(j)



 =

=
Qm−2

Qm−1



−1 +
(−1)m

Qm−1Qm−2

(

Pm−1

Qm−1
− α(j)

)



 . (10)

Since

lim
m→∞

∣

∣

∣

∣

Pm−1

Qm−1
− α(j)

∣

∣

∣

∣

=
∣

∣

∣α
(1) − α(j)

∣

∣

∣ ,

and all roots are distinct, it follows that

|α(j)
m | ≤

Qm−2

Qm−1

(

1 +
2

Qm−1Qm−2δ

)

=
Qm−2

Qm−1
+

2

Q2
m−1δ

< 1, (11)

for m > m0, where

δ = min
2≤j≤n

∣

∣

∣α
(1) − α(j)

∣

∣

∣ > 0.

By (11) we obtain that beginning with index m0 all residual fractions α
(1)
m are

generalized Pisot numbers. This completes the proof.

The importance of generalized Pisot numbers for Lagrange algorithm of contin-
ued fraction expansion of an algebraic number is explained by the following gener-
alization of Lemma 3.

Lemma 5. If

f0(x) = anxn + an−1x
n−1 + . . . + a1x + a0 ∈ Z[x]

is a minimal polynomial for generalized Pisot number α(1) = α0, then for the con-
tinued fraction expansion

α(1) = α0 = q0 +
1

q1 +
1

. . . +
1

qn +
1

. . .

the following inequality holds

[

−
an−1

an

]

+ 1 − n ≤ q0 < −
an−1

an

+ n − 1. (12)
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Proof. Indeed, using Viete’s formula we have:

−
an−1

an

= α(1) + α(2) + . . . + α(n).

Since a minimal polynomial f0(x) is irreducible it follows that

α(2) + α(3) + . . . + α(n) 6= 0,

for otherwise we have α(1) = −an−1

an
∈ Q and get a contradiction with the irreducibil-

ity of minimal polynomial f0(x).

As α(1) is a generalized Pisot number then

|α(j)| < 1 (2 ≤ j ≤ n).

So

0 < |α(2) + . . . + α(n)| < n − 1

and

−
an−1

an

+ 1 − n < α(1) < −
an−1

an

+ n − 1.

Since q0 < α(1) < q0 + 1 we obtain the statement of Lemma.

Thus, from Theorem 5 and Lemma 5 it follows that beginning with some index
m0 all incomplete quotients qm (m ≥ m0) require for their calculations at most
O(ln n) computations of values of polynomial fm(x).

5 Conclusion

The results of this paper show that reduced algebraic irrationalities in the case
of totally real algebraic fields and generalized Pisot numbers in general case play
a fundamental role in the continued fraction expansion of algebraic irrationalities.
Beginning with some index all residual fractions are the reduced algebraic numbers
in the first case and generalized Pisot numbers in the second case.

The formulas (10) and (11) imply that beginning with some index m0 a peculiar
asymptotic formula for the conjugate to residual fractions takes place

α(j)
m = −

Qm−2

Qm−1
+ O

(

2

Q2
m−1δ

)

.

Hence beginning with index m0 some more powerful analog of Lemma 3 holds, which
is valid for any real irrationality. The next article will be devoted to the study of
this phenomenon.
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