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The multiplicative Zagreb co-indices on two graph
operators

Mansoureh Deldar, Mehdi Alaeiyan

Abstract. Let G be a graph with vertex set V (G) and edge set E(G). The first and
second multiplicative Zagreb co-indices are defined as:

∏
1
(G) =

∏
uv/∈E(G)

[dG(u) + dG(v)] ,
∏

2
(G) =

∏
uv /∈E(G)

[dG(u)dG(v)],

respectively, where dG(u) is the degree of the vertex u of G. The aim of this paper is
to investigate the multiplicative Zagreb co-indices of the subdivision graphs of tadpole
graphs and wheel graphs

Mathematics subject classification: 05C05, 05C07, 05C90, 05C020.
Keywords and phrases: Multiplicative Zagreb co-indices, Subdivision graph,
Zagreb indices.

1 Introduction

Throughout the paper, we consider connected finite graphs without any loops
or multiple edges. Let G be a graph with vertex set V (G) and edge set E(G). The
degree of v ∈ V (G), denoted by dG(v), is the number of vertices in G adjacent to v.
A graphical invariant is a number related to a graph which is a structural invariant,
in other words, it is a fixed number under graph automorphisms. In chemical graph
theory, these invariants are also known as the topological indices. The Zagreb indices
are among the oldest topological indices, and were introduced in 1972 [13]. Gutman
and Trinajstic examined the dependence of total π-electron energy on molecular
structure, elaborated in [12]. The first and second Zagreb indices of G are denoted
by M1(G) and M2(G), respectively, and defined as follows:

M1(G) =
∑

v∈V (G)

d2
G(v) and M2(G) =

∑

uv∈V (G)

dG(u)dG(v).

The first Zagreb index can be also expressed as a sum over edges of G:

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)].

The main properties of the Zagreb indices were summarized in [4, 5, 10]. In particu-
lar, Deng [5] gave a unified approach to determine extremal values of Zagreb indices
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for trees, unicyclic graphs and bicyclic graphs. Other recent results on ordinary Za-
greb indices can be found in [15]. Note that the contribution of non-adjacent vertex
pairs should be taken into account when computing the weighted Wiener polynomi-
als of certain composite graphs [4]. The first and second Zagreb co-indices, as the
sums involved run over the edges of the complement of G, are denoted by M1(G)
and M2(G) and were defined in 2010 [1] as follows:

M1(G) =
∑

uv/∈E(G)

[dG(u) + dG(v)] and M2 =
∑

uv/∈E(G)

[dG(u)dG(v)].

The multiplicative versions of Zagreb indices were introduced by Gutman in 2012
[9]. The first and second multiplicative Zagreb indices of G are denoted by

∏
1(G)

and
∏

2(G), respectively, and are defined as:
∏

1
(G) =

∏
u∈V (G)

dG(u)2 and
∏

2
(G) =

∏
uv∈E(G)

[dG(u)dG(v)].

The first and second multiplicative Zagreb indices were extensively studied in [9,
18, 19]. In particular, Gutman have determined the extremal tree with respect to
multiplicative Zagreb indices. In 2012 Xu and Hua [19] provided a unified approach
to extremal trees, unicyclic and bicyclic graphs with respect to this multiplicative
version of Zagreb indices. Xu et al. introduced the first and second multiplicative
Zagreb co-indices of G [14]. The first and second multiplicative Zagreb co-indices of
G are denoted by

∏
1(G) and

∏
2(G), respectively, and defined as:

∏
1
(G) =

∏
uv/∈E(G)

[dG(u) + dG(v)] and
∏

2
(G) =

∏
uv/∈E(G)

[dG(u)dG(v)].

The subdivision graph S(G) is the graph obtained from G by replacing each of its
edges by a path of length 2, or equivalently, by inserting an additional vertex into
each edge of G, and the operator R(G) is the graph obtained from G by adding
a new vertex corresponding to each edge of G and by joining each new vertex to
the end vertices of the edge corresponding to it [16]. The tadpole graph, Tn,k, is
the graph obtained by joining a cycle graph Cn to a path of length k [17]. The
wheel graph Wn+1 is defined as the graph K1 +Cn, where K1 is the singleton graph
and Cn is the cycle graph. In this paper we will calculate the multiplicative Zagreb
co-indices of Tn,k, Wn+1 and the subdivision S(G) and R(G) on these graphs.

2 The multiplicative Zagreb co-indices on S(G) and R(G) for
tadpole graph

In this section, we compute the multiplicative Zagreb co-indices on two graph
operators S(G) and R(G) for tadpole graph Tn,k. At first we prove the following
lemma, which plays an important role in the proofs.

Proposition 1. For a connected graph G, we have

∏
2
(G) =

∏

v∈V (G)

dG(v)(n−1−dG(v)).
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Proof. By definition of complement graph of G we find that for each vertex v ∈ V (G),
the factor dG(v) occurs n − 1 − dG(v) times in

∏
2(G). Thus this theorem follows

immediately.

Theorem 1. For the tadpole graph, the multiplicative Zagreb co-indices satisfy the

following equations:

∏
1
(Tn,k) = (2n2+k2+2nk−7n−7k+16)(5n+k−5)(3k+n−4)

and ∏
2
(Tn,k) = (2n2+k2

−5n−5k+2nk+6)(3n+k−4).

Proof. The tadpole graph Tn,k contains n + k − 2 vertices of degree 2, one vertex
of degree 3 and a pendent vertex. The subdivision graph S(Tn,k) contains n + k

additional vertices of degree 2. In Tn,k, let vl be a vertex of degree 3 and v1′ and v2′

be the neighbors of vl in the cycle Cn and vj be the neighbor of vl in the path Pk+1.

Let v1 be the pendent vertex in Tn,k. We calculate
∏

1[dG(u) + dG(v)]:
1. Among the vertices in Cn.
2. From cycle Cn to the path Pk+1.
3. Among the vertices in the path Pk+1.

Case I. In Cn, v1′ and v2′ are non-adjacent with n − 3 vertices of degree 2. Re-
maining n−3 vertices in Cn are non-adjacent with n−4 vertices of degree 2 and one
vertex of degree 3. Also vl is non-adjacent with n − 3 vertices of degree 2. Hence
in Cn,

∏
1[dG(u) + dG(v)] = (4n2

−5n+6)(52n−6). Since one edge is shared between a

pair of vertices,
∏

1[dG(u) + dG(v)] in Cn is

∏
1
[dG(u) + dG(v)] = (4n2

−5n+652n−6)
1
2 . (2.1)

Case II. From cycle Cn to path Pk+1, all the n − 1 vertices other than vl in Cn

are non-adjacent with v1. Also all of n− 1 vertices except vl in Cn are non-adjacent
with k − 1 vertices of degree 2 and one vertex of degree 1. Hence

∏
1
[dG(u) + dG(v)] = (4(k−1)(n−1))(3(n−1)). (2.2)

Case III: In the path Pk+1, the vertex vl is non-adjacent with k − 2 vertices of

degree 2 and one vertex of degree 1. The neighbor of vl in Pk+1 is non-adjacent with
k − 3 vertices of degree 2 and one vertex of degree 1. The vertex vj is non-adjacent
with k − 4 vertices of degree 2 and one vertex of degree 1 and one vertex of degree
3 for 3 ≤ j ≤ k − 1. Also the vertex v2 has k − 3 non-adjacent vertices of degree 2
and one vertex of degree 3. The vertex v2 has k − 2 non-adjacent vertices of degree
2 and one vertex of degree 3. Thus

∏
1[dG(u) + dG(v)] = (52k−4)(4k2

−5k+8)(32k−6).
Since one edge is shared between a pair of vertices,

∏
1
[dG(u) + dG(v)] = 5k−22k2

−5k+83k−3. (2.3)
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The product of equations (2.1), (2.2) and (2.3) implies that

∏
1
(Tn,k) = (2n2+k2+2nk−7n−7k+16)(5n+k−5)(3k+n−4).

By Proposition 1,
∏

2(Tn,k) can be easily obtained,

∏
2
(Tn,k) = (2n2+k2

−5n−5k+2nk+6)(3n+k−4).

Theorem 2. For the subdivision graph S(G) of a tadpole graph, the multiplicative

Zagreb co-indices are:

∏
1
(S(Tn,k)) = (24n2+4k2

−14n−14k+8nk+16)(52n+2k−5)(32k+2n−5)

and ∏
2
(S(Tn,k)) = (24n2+4k2

−10n−10k+8nk+6)(32n+2k−4).

Proof. S(Tn,k) contains 2(n + k − 1) vertices of degree 2, one vertex of degree 3 and
a pendent vertex. In S(Tn,k), let vl be the vertex of degree 3 and v1′ and v2′ be the
neighbors of vl in the cycle S(Cn) and vj be the neighbor of v1 in the path S(Pk+1).

Let v1 be the pendent vertex in S(Tn,k). We calculate
∏

1[dG(u) + dG(v)]:
1. Among the vertices in S(Cn).
2. From cycle S(Cn) to the path S(Pk+1).
3. Among the vertices in the path S(Pk+1).
In S(Cn), v1′ and v2′ are non-adjacent with 2n − 3 vertices of degree 2. Remaining
2n − 3 vertices in S(Cn) are non-adjacent with 2n − 4 vertices of degree 2 and one
vertex of degree 3. Also v1 is non-adjacent with 2n − 3 vertices of degree 2. Hence
in S(Cn),

∏
1[dG(u) + dG(v)] = (4(4n2

−10n+6))(54n−6). Since one edge is shared

between a pair of vertices,
∏

1[dG(u) + dG(v)] in S(Cn) is

∏
1
[dG(u) + dG(v)] = 24n2

−10n+652n−3. (2.4)

From cycle S(Cn) to path S(Pk+1), all the 2n−1 vertices other than vl in S(Cn) are
non-adjacent with v1. Also all of 2n−1 vertices except vl in S(Cn) are non-adjacent
with 2k − 1 vertices of degree 2 and one vertex of degree 1. In the S(Pk+1), the
vertex vl is non-adjacent with 2k−2 vertices of degree 2 and pendent vertex. Hence

∏
1
[dG(u) + dG(v)] = (44nk−2n−2k+2)(3(2n−1))(52k−2). (2.5)

In the path S(Pk+1), the neighbor of v1 in S(Pk+1) is non-adjacent with 2k − 3
vertices of degree 2 and one vertex of degree 1. The vertex vj is non-adjacent with
2k − 4 vertices of degree 2 and one vertex of degree 1 for 3 ≤ j ≤ 2k − 1. Also the
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vertex v2 has 2k − 3 non-adjacent vertices of degree 2. Thus
∏

1[dG(u) + dG(v)] =

(44k2
−18k++18)(34k−4). Since one edge is shared between a pair of vertices,

∏
1
[dG(u) + dG(v)] = (24k2

−18k+18)(32k−2). (2.6)

By multiplying equations (2.4), (2.5) and (2.6) we have:

∏
1
(S(Tn,k)) = (24n2+4k2

−14n−14k+8nk+16)(52n+2k−5)(32k+2n−5).

By Proposition 1, it can be easily obtained:

∏
2
(S(Tn,k)) = (24n2+4k2

−10n−10k+8nk+6)(32n+2k−4).

Theorem 3. For the tadpole graph Tn,k we have:

∏
1
(R(Tn,k)) = (2

1
2
(7n2+7k2

−23k−17n+23))(3k2+n2
−4k−3n+3)(5k+n−5)

and ∏
2
(R(Tn,k)) = (26(n+k)2−17(n+k)+17)(32(n+k)−7).

Proof. The vertices which are of degree l in S(Tn,k) are of degree 2l in R(Tn,k). All
the subdivision vertices are of the same degree in both S(Tn,k) and in R(Tn,k).
In the cycle R(Cn), the vertices which are adjacent to v1 make the sum 8 with
remaining n− 3 vertices in the cycle and the remaining n− 3 vertices make the sum
8 with n− 4 vertices in the cycle. Also v1 makes the sum 10 with the n− 3 vertices.
All the n subdivision vertices make the sum 4 with the remaining n− 1 subdivision
vertices. The vertex v1 makes the sum 8 with n− 2 subdivision vertices. The n− 1
vertices other than v1 make the sum 6 with the n−2 subdivision vertices. Therefore
in R(Cn),

∏
1
[dG(u) + dG(v)] = [(27n2

−15n+4)(3n2
−3n+2)(52n−6)]

1
2 . (2.7)

To calculate
∏

1[dG(u)+ dG(v)] from R(Cn) to R(Pk+1), all the n− 1 vertices in the
cycle other than v1 make the sum 6 with vl and k subdivision vertices in the path.
All the n subdivision vertices in the cycle make the sum 4 with vl and k subdivision
vertices in the path. Also all n subdivision vertices in R(Cn) make the sum 6 with
k − 1 vertices in the path. So from cycle to path,

∏
1
[dG(u) + dG(v)] = (27nk−4k−n+2)(32nk−k−1). (2.8)

In the path R(Pk+1), vertex v1 makes the sum 8 with k − 1 subdivision vertices in
the path as well as with vl. Also v1 makes the sum 10 with k − 2 vertices in the
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path. The subdivision vertex vj in the path makes the sum 4 with the remaining
k − 1 subdivision vertices as well as with vl. It also makes the sum 6 with k − 2
vertices in the path. The neighbors of vj in the path make the sum 8 with k − 3
vertices and 6 with k − 2 vertices and so on. Thus in the path,

∏
1
[dG(u) + dG(v)] = [(27k2

−15k+15)(32k2
−6k+4)(52k−4)]

1
2 . (2.9)

By multiplying equations (2.7), (2.8) and (2.9) we have:

∏
1
(R(Tn,k)) = (2

1
2
(7n2+7k2

−23k−17n+23))(3k2+n2
−4k−3n+3)(5k+n−5).

By Proposition 1,
∏

2(R(Tn,k)) = (26(n+k)2−17(n+k)+17)(32(n+k)−7).

3 The multiplicative Zagreb co-indices on S(G) and R(G) for
wheel graph

In this section we compute the multiplicative Zagreb co-indices on two graph
operators S(G) and R(G) for wheel graph Wn+1.

Theorem 4. The multiplicative Zagreb co-indices for the wheel graph Wn+1 are

∏
1
(Wn+1) = 6

n2
−3n
2 ,

∏
2
(Wn+1) = 3n(n−3).

Proof. In Wn+1, the hub of the wheel is of degree n and the remaining vertices are
of degree 3. Each vertex on Cn has n − 3 non-adjacent vertices of degree 3. Hence∏

1[dG(u) + dG(v)] = 6n2
−3n. Since one edge is shared between a pair of vertices,

then ∏
1
(Wn+1) = 6

n2
−3n
2 .

Proposition 1 implies that

∏
2
(Wn+1) = 3n(n−3).

Theorem 5. For the subdivision graph S(G) of a wheel graph, the multiplicative

Zagreb co-indices are

∏
1
S(Wn+1) = [54n−6 44n−2 6n−1 (2 + n)

2
(n + 3)2]

n
2

and ∏
2
S(Wn+1) = (33n−343n−2n3)

n
.
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Proof. S(Wn+1) contains n vertices of degree 3, 2n vertices of degree 2 and one
vertex of degree n. Each vertex of degree 3 has n−1 non-adjacent vertices of degree
3, 2n − 3 non-adjacent vertices of degree 2 and one vertex of degree n. So,

∏
1
[dG(u) + dG(v)] = [6n−1 52n−3 (3 + n)]n. (3.1)

The subdivision vertices of degree 2 on S(Cn) are non-adjacent with n − 2 vertices
of degree 3, 2n − 1 vertices of degree 2 and one vertex of degree n. Hence

∏
1
[dG(u) + dG(v)] = [5n−2 42n−1 (2 + n)]n. (3.2)

The remaining subdivision vertices of degree 2 are non-adjacent with n − 1 vertices
of degree 3 and 2n − 1 vertices of degree 2. So,

∏
1
[dG(u) + dG(v)] = [5n−1 42n−1]

n
. (3.3)

The hub of the wheel has n non-adjacent vertices of degree 3 and n non-adjacent
vertices of degree 2. Hence

∏
1
[d(u) + d(v)] = [n + 2(3 + n)]n. (3.4)

The equations (3.1), (3.2), (3.3) and (3.4) make the product

∏
1
[d(u) + d(v)] = [54n−6 44n−2 6n−1 (2 + n)

2
(n + 3)2]

n
.

Since one edge is shared between a pair of vertices, then

∏
1
S(Wn+1) = [54n−6 44n−2 6n−1 (2 + n)

2
(n + 3)2]

n
2
.

Proposition 1 implies that

∏
2
S(Wn+1) = (33n−343n−2n3)

n
.

Theorem 6. For the subdivision graph R(G) of a wheel graph, the multiplicative

Zagreb co-indices are

∏
1
R(Wn+1) = [(2n + 2)2 224n−28 3n−3]

n
2

and ∏
2
R(Wn+1) = 26n2+6k2+12nk−17n−17k+932n+2k−7.
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Proof. In R(Wn+1), n vertices are of degree 6, hub of the wheel is of degree 2n and
all subdivision vertices are of degree 2. Hence,

∏
1[d(u) + d(v)] with respect to the

hub of the wheel is ∏
1
[d(u) + d(v)] = (2n + 2)n

. (3.5)

The product of [d(u)+d(v)] degrees with respect to all the n vertices of Cn is
given by ∏

1
[d(u) + d(v)] = [82n−3 12n−3]

n
. (3.6)

With respect to the n subdivision vertices on the spokes of the wheel,
∏

1[d(u)+d(v)]
is ∏

1
[d(u) + d(v)] = [42n−1 8n−1]

n
. (3.7)

The calculation with respect to n subdivision vertices on the edge of the cycle Cn

of R(Wn+1) is ∏
1
[d(u) + d(v)] = [8n−2 42n−1 (2n + 2)]

n
. (3.8)

The equations (3.5), (3.6), (3.7) and (3.8) make the product

∏
1
[d(u) + d(v)] = [(2n + 2)2 222n−28 3n−3]

n
.

Since one edge is shared by a pair of vertices, then

∏
1
R(Wn+1) = [(2n + 2)2 224n−28 3n−3]

n
2 .

Proposition 1 implies that

∏
2
R(Wn+1) = 26n2+6k2+12nk−17n−17k+932n+2k−7.
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