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On pseudoisomorphy and distributivity of quasigroups

Fedir M. Sokhatsky

Abstract. A repeated bijection in an isotopism of quasigroups is called a companion

of the third component. The last is called a pseudoisomorphism with the companion.
Isotopy coincides with pseudoisomorphy∗ in the class of inverse property loops and
with isomorphy in the class of commutative inverse property loops. This result is
a generalization of the corresponding theorem for commutative Moufang loops. A
notion of middle distributivity is introduced: a quasigroup is middle distributive if
all its middle translations are automorphisms. In every quasigroup two identities of
distributivity (left, right and middle) imply the third. This fact and some others help
us to find a short proof of a theorem which gives necessary and sufficient conditions for
a quasigroup to be distributive. There is but a slight difference between this theorem
and the well-known Belousov’s theorem.
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Introduction

V. D. Belousov’s monograph [1] was published almost 50 years ago and became
very popular among mathematicians. It is still a desk book for many algebraists.

The growth of applications of the quasigroup theory in information processing,
and expansion of research methods by computer tools and nascence of computer
algebra have increased the need to form a coherent quasigroup theory. The author
hopes that the proposed article will promote the development of this theory.

Here, a different approach to the proof of Belousov’s theorem is suggested. Due to
this approach, it became possible to significantly simplify the proof of the theorem
and all related statements. The article is self-contained, i. e., it includes all the
necessary properties with proofs despite the fact that some of them are well known
and can be found in [1], [2]. A historical overview of the results of distributive
quasigroups is not discussed here because it has already been done in [4].

In the first part of the paper, some properties of loop isotopy are established
and they are applied in the second part. The importance of study of isotopy rela-
tion in quasigroup theory is explained by the following fact: each homotopism of

∗isotopy, pseudoisomorphy, isomorphy denote relation among groupoids and isotopism, psuedoi-
somorphism, isomorphism are the corresponding sequence of bijections
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quasigroups can be represented as a composition of isotopisms from quasigroups to
loops and homomorphisms of loops. V. D. Belousov [1] has proposed a programm
of development of the quasigroup theory in problems, which are mainly related to
the study of isotopy.

Isotopisms with two coinciding components are proposed to be considered. The
repeated bijection is called a companion of the third component. The third compo-
nent is called a pseudoisomorphism. This notion is a generalization of the notion of
pseudoautomorphism, its companions are bijections, but not elements. The following
fact shows the importance of the concept: isotopy coincides with pseudoisomorphy
for inverse property loops (Corollary 3). It is easy to deduce that isotopy coin-
cides with isomorphy for commutative inverse property loops (Corollary 5). This
result is a generalization of the corresponding theorem for commutative Moufang
loops [1, Theorem 6.7], [2, Theorem IV.5.6].

Questions about the relations between different types of isotopy arise. For ex-
ample, when are pseudoisomorphic quasigroups isomorphic? A partial answer is
given in Theorem 1: pseudoisomorphic commutative loops with coinciding nuclei
are isomorphic. Or what properties are invariant under pseudoisomorphy? Etc.

It is suggested to consider also the middle distributivity identity, defining it in
the similar way as the identities of the left and right distributivity: a quasigroup is
middle distributive if all its middle translations are automorphisms of the quasigroup.
It is proved that in every quasigroup two identities of distributivity imply the third
(Theorem 9). Therefore, any distributive quasigroup satisfies left, right and middle
distributive identities. This fact and some others help us to give a short proof of
Theorem 3, which gives necessary and sufficient conditions for a quasigroup to be
distributive. There is but a slight difference between this theorem and the well-
known Belousov’s theorem (Corollary 11).

The theorem implies that every distributive quasigroup is defined over some
commutative Moufang loop by an automorphism of the loop which satisfies (16).
This identity is equivalent to all identities of distributivity in the loop. Finally, it
is proved that any two automorphisms defining distributive quasigroups over the
same commutative Moufang loop 1) differ in a central endomorphism of the loop
(Corollary 13); 2) define isomorphic distributive quasigroups if and only if they are
conjugate by an automorphism of the loop (Corollary 14).

1 Preliminaries

Let Q be an arbitrary set and (·) be an invertible operation defined on Q, then
the pair (Q; ·) is called a quasigroup. Invertibility means that for arbitrary a, b ∈ Q
each of the equations x · a = b and a · y = b is uniquely solvable in Q.

A τ -parastrophe (Q;
τ
·) of a quasigroup (Q; ·) is defined by

x1τ
τ
· x2τ = x3τ :⇔ x1 · x2 = x3
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for every τ ∈ S3 := {ι, ℓ, r, s, sℓ, sr}, where s := (12), ℓ := (13), r := (23). Special

notation: (∗) := (
s
·), (\) := (

r
·), (/) := (

ℓ
·). All parastrophes can be defined by

identities. Some of them are the following

(x · y)/y = x, (x/y) · y = x, x\(x · y) = y, x · (x\y) = y. (1)

A left La,τ , right Ra,τ and middle Ma,τ translations of the quasigroup (Q;
τ
· ) are

defined by

La,τ (x) := a
τ
· x, Ra,τ (x) := x

τ
· a, Ma,τ (x) = y :⇔ x

τ
· y = a (2)

for any a ∈ Q and τ ∈ S3. As usual, the translations La,ι, Ra,ι, Ma,ι are denoted
by La, Ra, Ma respectively. In general, there are six parastrophes of a quasigroup.
The set of all their translations consists of the following six transformations:

La(x) = a · x = a
ι
· x, Ra(x) = x · a = x

ι
· a, Ma(x) = x\a = x

r
· a,

L−1
a (x) = a\x = a

r
· x, R−1

a (x) = x/a = x
ℓ
· a, M−1

a (x) = a/x = a
ℓ
· x.

(3)

The relations among translations of parastrophic operations are easily verifiable (see,
for example [3]) and can be expressed in the following table:

. . . τ ι s ℓ r sℓ sr

La,τ La Ra M−1
a L−1

a R−1
a Ma

Ra,τ Ra La R−1
a Ma M−1

a L−1
a

Ma,τ Ma M−1
a L−1

a Ra La R−1
a

(4)

A triplet (α, β, γ) of mappings from a set Qo into a set Q is called a homotopism
of a groupoid (Qo; ◦) into a groupoid (Q; ·) if

γ(x ◦ y) = αx · βy

holds for all x, y ∈ Qo. A homotopism (α, β, γ) is called an isotopism if α, β, γ are
bijections. If in addition Qo = Q and (·) = (◦), then it is an autotopism of (Q; ·).

A triplet (Q; ·, e) is called a loop if (Q; ·) is a quasigroup and e is its neutral
element, i.e., e · x = x · e = x holds for all x ∈ Q.

Left, right and middle nuclei of a loop (Q; ·, e) are defined by

N
(·)
ℓ := {a | ax · y = a · xy} = {a | (La, ι, La) is an autotopism of (Q; ·, e)},

N
(·)
r := {a | x · ya = xy · a} = {a | (ι, Ra, Ra) is an autotopism of (Q; ·, e)},

N
(·)
m := {a | xa · y = x · ay} = {a | (R−1

a , La, ι) is an autotopism of (Q; ·, e)}.

(5)

An element of a loop is called central if it commutes and associates with all elements
of the loop. In other words, c is central if

c ∈ N
(·)
ℓ ∩N (·)

r ∩N (·)
m ∩ {a | ax = xa}.
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An element a of a loop (Q; ·, e) is called a Moufang element if there exists a
bijection λ of Q such that (La;Ra;λ) is an autotopism of the loop, i.e.,

ay · za = λ(y · z) (6)

for all y, z ∈ Q. Remark that if we put y = e, thereafter z = e, we obtain λ =
LaRa = RaLa. A loop is called a Moufang loop if its every element is Moufang, i.e.
if one of the identities

xy · zx = x(y · z) · x, xy · zx = x · (y · z)x (7)

hold.

2 Pseudoisomorphy

Let (Qo; ◦) and (Q; ·) be groupoids, α, β : Qo → Q be bijections, then α will be
called

• a left pseudoisomorphism if (β, α, β) is an isotopism of the groupoids;

• a right pseudoisomorphism if (α, β, β) is an isotopism of the groupoids;

• a middle pseudoisomorphism if (β, β, α) is an isotopism of the groupoids;

• a pseudoisomorphism if it is both left and right pseudoisomorphism.

In these cases, the bijection β will be called a companion of the corresponding
pseudoisomorphism. If α = β the pseudoisomorphism is an isomorphism.

It is easy to see that the set of all left (right and middle) pseudoautomorphisms
of a quasigroup as well as their corresponding companions forms groups Ψℓ, Ψ∗

ℓ (Ψr,
Ψ∗

r and Ψm, Ψ∗

m respectively).

Relationships between pseudoisomorphy and neutrality are given in the following
proposition.

Proposition 1. Let (Q; ·) be a quasigroup and θ be its

1) left pseudoautomorphism with a companion β, then (Q; ·) has a left neutral
element if and only if β = Laθ for some element a ∈ Q;

2) right pseudoautomorphism with a companion β, then (Q; ·) has a right neutral
element if and only if β = Rbθ for some element b ∈ Q;

3) middle pseudoautomorphism with a companion β, then (Q; ·) has a neutral
element if and only if β = L−1

c θ for some element c ∈ Q such that xc = cx for
all x ∈ Q.
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Proof. Let θ be a left pseudoautomorphism of a quasigroup (Q; ·) with a companion
β, then (β; θ;β) is an autotopism of (Q; ·), i.e.,

βx · θy = β(x · y)

Putting x := e and a := βe, where e denotes the left neutral element of (Q; ·), we
obtain β = Laθ. Conversely, let the previous equality be true for some a ∈ Q, i.e.,

(a · θx) · θy = a · θ(x · y).

Substituting x = e := θ−1L−1
a a, we obtain

(a · L−1
a a) · θy = a · θ(e · y), i.e. a · θy = a · θ(e · y).

Cancelling out, we have y = e · y. The item 2) can be proved analogously.

To prove 3) suppose that (β;β; θ) is an autotopism of (Q; ·) and let e denote its
neutral element, i.e.,

βx · βy = θ(x · y)

for all x, y ∈ Q. When x = e and y = e the equality implies Lcβ = θ and Rcβ = θ re-
spectively, where c := βe, so xc = cx for all x ∈ Q. Conversely, since (L−1

c θ, L−1
c θ, θ)

is an autotopism of (Q; ·), then

L−1
c θx · L−1

c θy = θ(x · y)

holds. As c commutes with all elements of Q, i.e. Lc = Rc, it is easy to verify that
e := θ−1Lc(c) is a neutral element in (Q; ·) replacing successively x and y with e in
the centralized formula.

Note. Proposition 1 implies that for loops the introduced concept of pseudoau-
tomorphism coincides with the well-known notion, except the notion of companion.
A companion is a bijection in the definition given here, and an element in the well-
known notion, but both of them uniquely define each other. Indeed, let a bijection
β be a companion of θ, then

βx · θy = β(x · y) or θy · βx = β(y · y)

holds. Let e denote the neutral element of the loop and let x := e, we obtain
Lβeθ = β or Rβeθ = β. In both cases βe is a companion element of the pseudoau-
tomorphism θ. Conversely, if an element c is a companion of θ, then the bijection
Laθ is its companion, in the case when θ is a left pseudoautomorphism; and Raθ is
its companion if θ is a right pseudoautomorphism. We will use both companions:
an element and a bijection, but companion-element does not exist in the case when
the quasigroup has no left and no right neutral elements.
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2.1 Isotopism of loops

Some relations between isotopy and pseudoisomorphy for loops are given in the
following lemma.

Lemma 1. Let (α;β; γ) be an arbitrary isotopism of a loop (Qo; ◦, e) on a quasigroup
(Q; ·) and let a := αe, b := βe. Then the following statements are true.

1. α = R−1
b γ, β = L−1

a γ;

2. β is a left pseudoisomorphism, i.e. α = γ if and only if b is a right neutral
element in (Q; ·);

3. If β is a left pseudoisomorphism, then

(a) the loops (Q; ◦) and (Q;⊙) are isomorphic, where x ⊙ y := L−1
a (ax · y),

i.e., (α;β; γ) = (Laβ;β;Laβ),

(b) β is an isomorphism of (Q; ◦) and (Q; ·) if and only if a ∈ N
(·)
ℓ ;

4. α is a right pseudoisomorphism, i.e. β = γ if and only if a is a left neutral
element in (Q; ·);

5. If α is a right pseudoisomorphism, then

(a) the loops (Q; ◦) and (Q; •) are isomorphic, where x • y := R−1
b (x · yb),

i.e., (α;β; γ) = (α;Rbα;Rbα);

(b) α is an isomorphism of the quasigroups (Q; ◦) and (Q; ·) if and only if

b ∈ N
(·)
r ;

6. γ is a middle pseudoisomorphism, i.e. α = β, if and only if a := αe = βe and
a · x = x · a for all x ∈ Q.

7. If γ is a middle pseudoisomorphism, then

(a) the loops (Q; ◦) and (Q; ⋆) are isomorphic, where x ⋆ y := L−1
a x · L−1

a y,
i.e., (α;β; γ) = (L−1

a γ;L−1
a γ; γ);

(b) γ is an isomorphism between (Q; ◦) and (Q; ·) if and only if a ∈ N
(·)
m and

a · a is a neutral element of the quasigroup (Q; ·);

8. α = β = γ is an isomorphism if and only if αe = βe is a neutral element of
the quasigroup (Q; ·).

Proof. The condition of the lemma means the truth of the equality

γ(x ◦ y) = αx · βy (8)

for all x, y ∈ Q. We successively put x := e, y := e and obtain

γy = α(e) · βy = a · βy, γx = αx · β(e) = αx · b.
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Herefrom β = L−1
a γ and α = R−1

b γ, that is why the items 1, 2 are obvious.

Now suppose that β is a left pseudoisomorphism, i.e., α = γ. But α = R−1
b γ, so

Rb = ι, then the equality (8) can be written as follows

Laβx · βy = Laβ(x ◦ y). (9)

Applying L−1
a to the equality and replacing x with β−1x, y with β−1y, we obtain

L−1
a (Lax · y) = β(β−1x ◦ β−1y). (10)

So, β is an isomorphism between (Q; ◦) and (Q;⊙).

If β is an isomorphism of (Q; ◦) and (Q; ·), then (10) implies

L−1
a (Lax · y) = x · y.

It means that a ∈ N
(·)
ℓ .

Thus, items 3a, 3b have been proved. The other statements of the lemma can
be proved in the same way.

This lemma immediately implies the following corollary.

Corollary 1. Let (α;β; γ) be an isotopism of a loop (Q; ◦; e1) on a loop (Q; ·, e),
then

• β is a left pseudoisomorphism if and only if βe1 = e;

• α is a right pseudoisomorphism if and only if αe1 = e;

• γ is a middle pseudoisomorphism if and only if a := αe1 = βe1 and ax = xa
for all x ∈ Q;

• γ is an isomorphism if and only if αe1 = βe1 = e.

Lemma 2. Let θ be a left (or right) pseudoisomorphism with a companion c of a
commutative loop (Q;⊕) on a commutative loop (Q; +) with coinciding neclei, then
θ is an isomorphism and c is a central element in the loop (Q; +).

Proof. Conditions of the lemma imply that

(c+ θx) + θy = c+ θ(x⊕ y) (11)

is true for all x, y ∈ Q. Using commutativity of both operations, we obtain

θy + (c+ θx) = c+ θ(y ⊕ x).

Mutually relabeling x and y, we have

θx+ (c+ θy) = c+ θ(x⊕ y).
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So, the left sides of this equality and (11) are equal:

(c+ θx) + θy = θx+ (c+ θy).

It means that c belongs to the middle nucleus of (Q; +). But, according to the
lemma’s condition, the middle nucleus coincides with the center of the loop. There-
fore, we can cancel out c in (11) and conclude that the pseudoisomorphism θ is an
isomorphism of these loops.

This lemma immediately implies the following theorem.

Theorem 1. Pseudoisomorphic commutative loops with coinciding nuclei are iso-
morphic.

3 Inverse property loops

Inverse property loop (briefly IP -loop) is a loop (Q; ·, e) that has a transformation
I of Q such that

Ix · (x · y) = y, (x · y) · Iy = x

for all x, y ∈ Q. It is easy to verify that Ix = x−1, I−1 = I and x ·x−1 = x−1 ·x = e.

IP -loop (Q; ·) with a neutral element e and unary operation I(x) := x−1 will be
denoted by (Q; ·, I, e).

Lemma 3. Let (α;β; γ) be an isotopism of an IP -loop (Q; ◦, I1, e1) on an IP -loop
(Q; ·, I, e), then both the triplets (IαI1; γ;β) and (γ; IβI1;α) are isotopisms of the
same loops.

Proof. The conditions of the lemma imply the equality αx · βy = γ(x ◦ y). We put
here successively y := I1x ◦ u and x = v ◦ I1y:

αx · β(I1x ◦ u) = γu, α(v ◦ I1y) · βy = γv.

In the first equality, we replace x with I1t, in the second one y with I1z:

β(t ◦ u) = IαI1t · γu, α(v ◦ z) = γv · IβI1z.

Thus, (IαI1; γ;β) and (γ; IβI1;α) are isotopisms of (Q; ◦, I1, e1) on (Q; ·, I, e).

Corollary 2. Nuclei of an inverse property loop coincide.

Proof. Let (Q; ·, I, e) be an IP -loop. Belonging of an element a to the left nucleus

N
(·)
ℓ of the loop means that the triplet (La;La; ι) is an autotopism of (Q; ·, I, e).

Lemma 3 implies that both

(ILaI;La; ι) and (ι; ILaI; ILaI)
−1
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are its autotopisms. Using the equality ILaI = R−1
a , we conclude that both

(R−1
a ;La; ι) and (ι;Ra;Ra)

are autotopisms. So, an arbitrary element a ∈ Q belongs to the left and middle
nucleus as well as to the left and right nucleus simultaneously, i.e., the nuclei coincide.

Lemma 4. The sets of all left and right pseudoisomorphisms between inverse
property loops coincide. If α is a pseudoisomorphism of an inverse property loop
(Q; ◦, I1, e1) on an inverse property loop (Q; ·, I, e), then αe1 = e; Iα = αI1.

Proof. Let (α;β;β) be an isotopism of an IP -loop (Q; ◦) on an IP -loop (Q; ·).
Applying Lemma 3, we conclude that (IβI1;α; IβI1) and (IαI1, β, β) are isotopisms
of these loops. So, α is a left pseudoisomorphism of these loops. Since any two
components of an isotopism of quasigroups uniquely define the third, then IαI1 = α,
i.e., Iα = αI1.

Theorem 2. Let T := (α;β; γ) be an isotopism of an inverse property loop
(Q1; ◦, e1) on an inverse property loop (Q; ·; e) and let a := α(e1), b := β(e1), then:

1. θ := L−1
a α is a pseudoisomorphism of (Q1; ◦, I1, e1) on (Q; ·; I, e) with the right

companion c := b · a−1;

2. the elements a, b, a · b are Moufang;

3. (α;β; γ) = (La;Ra;LaRa)(θ;Rcθ;Rcθ).

Proof. Lemma 1 and Lemma 3 imply that α = R−1
b γ, β = L−1

a γ and the triplet
T1 := (IαI1; γ;β) is an isotopism of these loops. Hence, the triplet

TT−1
1 = (R−1

b γ;L−1
a γ; γ)(I1γ

−1RbI; γ
−1; γ−1La) = (λ;L−1

a ;La)

is an autotopism of (Q; ·, e) for some bijection λ of the set Q. According to Lemma 3,

T2 := (La; IL
−1
a I;λ) = (La;Ra;λ)

is an autotopism of (Q; ·, e). So, a is Moufang in (Q; ·, e) and λ = LaRa = RaLa.
Lemma 3 implies that (γ; IβI1;α) and (β; IγI1; IαI1) are autotopisms, conse-

quently, the elements ab = α(e1) · β(e1) = γ(e1 ◦ e1) = γ(e1) and b = β(e1) are
Moufang too. Hence, the item 2. has been proved.

Then T−1
2 T is an isotopism of (Q1; ◦, I1, e1) on (Q; ·, I, e) and

T−1
2 T = (L−1

a α;R−1
a β;L−1

a R−1
a γ).

As L−1
a α(e1) = L−1

a a = e, by virtue of Corollary 1 and Proposition 1, L−1
a α =: θ is a

pseudoisomorphism with the right companion c := R−1
a β(e1) = b · a−1. This proves

the item 1). Thus, T−1
2 T = (θ;Rcθ;Rcθ). Therefrom, we obtain the item 3.



134 F. M. SOKHATSKY

Corollary 3. Isotopic inverse property loops are pseudoisomorphic.

Proof. It follows from the item 1 of Theorem 2.

Corollary 4. Let (α, β, γ) be an isotopism of a commutative inverse property loop
(Qo; ◦, e) on a commutative inverse property loop (Q; +, 0), then there exists an
isomorphism θ of (Qo; ◦, e) on (Q; +, 0), a central element c in (Q; +, 0) and a
Moufang element a ∈ Q such that α = Laθ, β = LaLcθ, γ = L2

aLcθ.

Proof. According to Theorem 2 there exists a pseudoisomorphism θ of (Qo; ◦, e) on
(Q; +, 0) with a companion c and a Moufang element a such that

α = Laθ, β = RaRcθ, γ = LaRaRcθ.

Since the nuclei coincide in these loops (Corollary 2), then by virtue of Lemma 2
θ is an isomorphism of these loops and c is a central element in the loop (Q; +, 0).
Commutativity means Lx = Rx for all x.

Corollary 5. Isotopic commutative inverse property loops are isomorphic.

Proof. The proof follows from Corollary 4.

Since every Moufang loop has the inverse property, then the following statement
is true.

Corollary 6. Isotopic commutative Moufang loops are isomorphic.

Corollary 7. In an arbitrary inverse property loop the set of all Moufang elements
form a subloop, which is a Moufang loop.

Proof. Let a, b be Moufang elements of an IP -loop (Q; ·, I, e), i.e.

(La, Ra, LaRa) and (Lb, Rb, LbRb)

are autotopisms. Then their inverses and composition are autotopisms too. By
virtue of the item 2 of Theorem 2, the elements a−1 = L−1

a (e) and a · b = LaLb(e)
are Moufang. Consequently, Moufang elements form a subloop.

4 Distributive quasigroups

A quasigroup is called left (right, middle) distributive if every its left (right,
middle) translations is its automorphism.

In other words, such quasigroups are defined by the identity of left, right, middle
distributivity :

x · yz = xy · xz, (12)

yz · x = yx · zx, (13)

yz\x = (y\x) · (z\x) (14)

respectively.
A quasigroup is called distributive if it is both left and right distributive.
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Lemma 5. For any element a ∈ Q of a distributive quasigroup (Q; ·), the transla-
tions La, Ra, Ma are pairwise commuting automorphisms of every parastrophe of
the quasigroup.

Proof. The left and right distributivity mean that La and Ra are automorphisms of
(Q; ·). Since automorphism groups of all parastrophes coincide, then La, Ra as well
as L−1

a , R−1
a are automorphisms of all parastrophes of the quasigroup.

Multiply the equality z · (z\y) = y (see (1)) by z\u from the right and use (13):

z(z\u) · (z\y)(z\u) = y(z\u).

As z(z\u) = u and L−1
z , Ly are automorphisms of (Q; ·) (see (3)), then

u · z\(yu) = yz\yu.

Let yu = a, i.e., y\a = u, then

(y\a)(z\a) = yz\a.

It means that for arbitrary a ∈ Q the middle translation Ma is an automorphism of
(Q; ·), and, consequently, of every its parastrophe.

Every of the identities (12), (13), (14) implies idempotency xx = x (when x =
y = z). The previous identity implies the equalities La(a) = Ra(a) = Ma(a) = a,
that is why

LaRa(x) = La(xa) = La(x) · La(a) = La(x) · a = RaLa(x),

MaLa(x) = Ma(ax) = Ma(a) ·Ma(x) = a ·Ma(x) = LaMa(x).

Analogously, MaRa = RaMa.

Corollary 8. All parastrophes of a distributive quasigroup are distributive and pair-
wise distributive.

In other words, for every σ, τ ∈ S3 the follow identities are true

x
σ
· (y

τ
· z) = (z

σ
· y)

τ
· (x

σ
· z), (y

τ
· z)

σ
· x = (y

σ
· x)

τ
· (z

σ
· x).

Proof. From the table (4), we conclude that Lx, Rx, Mx, L−1
x , R−1

x , M−1
x , where

x ∈ Q, are all translations of all parastrophes of a quasigroup (Q; ·). That is why
Lemma 5 implies this corollary.

Corollary 9. Every two of the identities (12), (13), (14) imply the third.

Proof. If a quasigroup (Q; ·) satisfies (12) and (13), then Lemma 5 implies (14). If
(12) and (14) hold in the quasigroup, then the table (4) implies that (Q; \) is left and
right distributive and, according to Lemma 5, it is middle distributive. Relations
between translations (the table (4)) induce right distributivity of (Q; ·), i.e., (13)
holds.

The implication (13) & (14) ⇒ (12) can be proved in the same way.
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Corollary 10. A quasigroup is distributive if and only if all its translations are its
automorphisms.

The following theorem is a specification of the corresponding Belousov’s result.

Theorem 3. A quasigroup (Q; ·) is distributive if and only if there exists a com-
mutative Moufang loop (Q; +) and its automorphism ϕ such that ψ := ι − ϕ is an
automorphism of (Q; +) and

x · y = ϕx+ ψy, (15)

x+ (y + z) = (ϕx+ y) + (ψx+ z). (16)

Proof. Let (Q; ·) be an arbitrary distributive quasigroup and 0 be an arbitrary fixed
element from Q. In this proof, we will write L, R, M instead of L0, R0, M0. We
define an operation (+) on the set Q putting

x+ y := R−1(x) · L−1(y). (17)

Herefrom

x · y = R(x) + L(y). (18)

Idempotency of (Q; ·) implies that 0 is a neutral element in (Q; +).
Since L and R are commuting automorphisms of (Q; ·), then they are automor-

phisms of the loop (Q; +). For example,

L(x+ y)
(17)
= L(R−1(x) · L−1(y))

Lemma 5
= LR−1(x) · LL−1(y) =

Lemma 5
= R−1L(x) · L−1L(y)

(17)
= L(x) + L(y).

We show that (Q; +) is a right IP -loop, i.e., for some mapping I the identity

(y + x) + I(x) = y (19)

holds. Put I := LMR−1 and, for brevity, we denote u := R−2(y), t := R−1L−1(x).
Hence, we have

(y + x) + I(x)
(17)
= R−1

(

R−1(y) · L−1(x)
)

· L−1LMR−1(x) =

Lemma 5
=

(

R−2(y) · R−1L−1(x)
)

· LMR−1L−1(x) = ut ·
(

0 ·M(t)
)

=

(12)
= (ut · 0)

(

ut ·M(t)
) (13)

= (ut · 0)
(

uM(t) · tM(t)
)

= (ut · 0)
(

uM(t) · 0
)

=

(13)
=

(

ut · uM(t)
)

· 0
(12)
= R

(

u · tM(t)
)

= R(u · 0) = R2R−2(y) = y.

To prove commutativity of (+), we note that for all x, y ∈ Q the equality

(x+ y) + I(x) = y (20)
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holds. Denote z := R−2(x), v := R−1L−1(y), then

(x+ y) + I(x)
(17)
= R−1

(

R−1(x) · L−1(y)
)

· L−1LMR−1(x) =

=
(

R−2(x) · R−1L−1(y)
)

·M
(

R−2(x) · 0
)

= zv ·M(z0) =

= L−1
z0

(

z0 ·
(

zv ·M(z0)
)

)

(12)
= L−1

z0

(

(z0 · zv) ·
(

z0 ·M(z0)
)

)

=

= L−1
z0

(

(z0 · zv) · 0
)

(12)
= L−1

z0

(

(z · 0v) · 0
)

=

(13)
= L−1

z0

(

z0 · (0v · 0)
)

= 0v · 0 = RLR−1L−1(y) = y.

The equality of the right sides of (19) and (20) implies the equality of their left
sides: (y+ x) + I(x) = (x+ y) + I(x), that is why y+ x = x+ y. Hence, (Q; +) is a
commutative IP -loop.

Using (18), we replace the second and the forth appearances of the operation (·)
with (+) in (12):

x · (Ry + Lz) = R(xy) + L(xz).

Replacing Ry with y and Lz with z, we obtain:

Lx(y + z) = RLxR
−1(y) + LLxL

−1(z).

It means that the triplet (RLxR
−1;LLxL

−1;Lx) is an autotopism of the IP -loop
(Q; +) for all x ∈ Q. Theorem 2 implies that the element Lx(0) = x · 0 = R(x) is
a Moufang element in (Q; +). As R is a bijection of Q, then an arbitrary element
from Q is Moufang, so (Q; +) is a commutative Moufang loop.

Idempotency x · x = x of (·) means that ϕx+ ψx = x, i.e., ψ = ι− ϕ.

It remains to prove that in a commutative Moufang loop (Q; +) which has two
commuting automorphisms ϕ and ψ such that the equality (15) holds, two identities
of distributivity (12) and (13) are equivalent to the identity (16). For this purpose,
we replace (·) with (+) in (12) and (13):

ϕx+ (ψϕy + ψ2z) = (ϕ2x+ ϕψy) + (ψϕx + ψ2z),

(ϕ2y + ϕψz) + ψx = (ϕ2y + ϕψx) + (ψϕz + ψ2x).

In the first identity, we replace ϕx with x, ψϕy with y and ψ2z with z, and in the
second one ϕ2y with y, ϕψz with z and ψx with x. Since ϕψ = ψϕ, then we obtain
identities being equivalent to above mentioned:

x+ (y + z) = (ϕx+ y) + (ψx+ z),

(y + z) + x = (y + ϕx) + (z + ψx).

Commutativity of (+) implies coincidence of both of them with (16).
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Remark that it is easy to verify that middle distributivity (14) coincides with
(16) if we replace (·) with (+).

Corollary 11 (V. D. Belousov [1]). Every distributive quasigroup is isotopic to a
commutative Moufang loop.

Note that Theorem 3 implies that any distributive quasigroup can be considered
as a corresponding algebra (Q; +, ϕ) which satisfies the conditions:

1) (Q; +) is a commutative Moufang loop;

2) ϕ and ι− ϕ := ψ are automorphisms of (Q; +);

3) the identity (16) holds.

(Compare with Belousov-Onoi module [4].) We will also say that “the automorphism
ϕ defines a distributive quasigroup (Q; ·) on the commutative Moufang loop (Q; +)”.

Theorem 3 creates a possibility for studying distributive quasigroups via com-
mutative Moufang loops. For example, we have to answer questions like “When
distributive quasigroups are isotopic? isomorphic?” and so on. The next three
propositions give answers to some of such questions.

Corollary 12. Distributive quasigroups are isotopic if and only if the corresponding
commutative Moufang loops are isomorphic.

Proof. The truth of the corollary follows from Corollary 5.

Taking into account Corollary 12, we may restrict our attention to distributive
quasigroups defined on the same commutative Moufang loop and the first question
that arises is the following: “What relation between automorphisms of the same
commutative Moufang loop which define distributive quasigroups?”

Corollary 13. Let an automorphism ϕ of a commutative Moufang loop (Q; +) de-
fine a distributive quasigroup on (Q; +). Then a bijection ϕo defines a distributive
quasigroup on (Q; +) if and only if there exists a homomorphism ν from (Q; +) into
its center such that ϕo = ϕ+ ν and ψo = ι− ϕ− ν are bijections of Q.

Proof. Let automorphisms ϕ and ϕo define distributive quasigroups on a commuta-
tive Moufang loop (Q; +). It implies that (16) and

x+ (y + z) = (ϕox+ y) + (ψox+ z)

hold. Consequently, the right sides of these identities are equal:

(ϕx+ y) + (ψx+ z) = (ϕox+ y) + (ψox+ z).

Replace z with −ψox+ z and y with −ϕx+ y:

y + (ψx+ (−ψox+ z)) = (ϕox+ (−ϕx+ y)) + z. (21)



ON PSEUDOISOMORPHY AND DISTRIBUTIVITY OF QUASIGROUPS 139

Let ν := ϕo − ϕ, then ψ − ψo = (ι− ϕ) − (ι − ϕo) = ϕo − ϕ = ν. When y = 0 and
when z = 0 the equality (21) implies

ψx+ (−ψox+ z) = νx+ z and y + νx = ϕox+ (−ϕx+ y).

So, (21) can be written as follows

y + (νx+ z) = (y + νx) + z.

So, ν is a mapping from the loop (Q; +) into its center and ϕo = ϕ+ ν.
Since ϕo is an automorphism of the loop (Q; +), then

(ϕ+ ν)x+ (ϕ+ ν)y = (ϕ+ ν)(x+ y),

i.e.,
(ϕx+ νx) + (ϕy + νy) = (ϕx+ ϕy) + ν(x+ y).

As νx is a central element for all x ∈ Q, then we can change the left side of the
equality:

(ϕx+ ϕy) + νx+ νy = (ϕx+ ϕy) + ν(x+ y).

Cancelling out ϕx+ ϕy, we obtain a homomorphic property for ν.
Vice versa, let ν be an arbitrary homomorphism from a commutative Moufang

loop (Q; +) into its center and let ν + ϕ and ι − ϕ − ν be bijections of Q. Define
transformations

ϕo := ϕ+ ν and ψo := ι− ϕ− ν = ι− ϕo = ψ − ν.

Both of them are automorphisms of (Q; +). Indeed, they are bijections according to
the assumption. In the following proof of the homomorphic property of ϕo we are
using the fact that νx is a central element of (Q; +) for arbitrary x ∈ Q:

ϕo(x+ y) = (ϕ+ ν)(x+ y) = ϕ(x+ y) + ν(x+ y) = (ϕx+ ϕy) + (νx+ νy) =

= (ϕx+ νx) + (ϕy + νy) = (ϕ+ ν)x+ (ϕ+ ν)y = ϕox+ ϕoy.

As ψo = ψ − ν, we have

ψox+ ψoy = (ψ − ν)x+ (ψ − ν)y = (ψx− νx) + (ψy − νy) =

= (ψx+ ψy) − (νx+ νy) = ψ(x+ y) − ν(x+ y) = (ψ − ν)(x+ y) =

= ψo(x+ y).

It remains to prove that (16) is true for ϕo. For this purpose, we add the neutral
element 0 in the form 0 = νx+ (−νx) to the right side of (16):

x+ (y + z) = (ϕx+ νx+ y) + (ψx− νx+ z) = (ϕox+ y) + (ψox+ z).

Thus, according to Theorem 3, the automorphism ϕo defines a distributive quasi-
group on the commutative Moufang loop (Q; +).
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The next theorem gives a isomorphy criterion of distributive quasigroups (it is
close to [5, Lemma 12.3]).

Theorem 4. Distributive quasigroups are isomorphic if and only if their correspond-
ing algebras are isomorphic.

Proof. Let (Q; ◦) and (Q; ·) be distributive quasigroups, which are defined on com-
mutative Moufang loops (Qo;⊕, 0

′) and (Q; +, 0) by their automorphisms ϕo and ϕ
respectively, that is (Qo;⊕, ϕo) and (Q; +, ϕ) are corresponding algebras. According
to Theorem 3, the mappings ψ := ι − ϕ and ψo := ι ⊖ ϕo are automorphisms of
(Q; +, 0) and (Qo;⊕, 0

′) respectively, besides (15) and

x ◦ y = ϕox⊕ ψoy

hold.
Let α be an isomorphism from (Qo; ◦) onto (Q; ·), i.e.,

αx · αy = α(x ◦ y)

for all x, y ∈ Q. This equality can be written as follows

ϕαx+ ψαy = α(ϕox⊕ ψoy).

Replace x with ϕ−1
o (x) and y with ψ−1

o (y):

ϕαϕ−1
o (x) + ψαψ−1

o (y) = α(x⊕ y).

The obtained equality means that the triplet (ϕαϕ−1
o , ψαψ−1

o , α) is an isotopism from
the Moufang loop (Qo;⊕) onto the Moufang loop (Q; +). According to Corollary 4,
there exists an isomorphism θ from (Qo;⊕, 0

′) onto (Q; +, 0), a central element c of
(Q; +) and an element a ∈ Q such that the equalities

ϕαϕ−1
o = Laθ, ψαψ−1

o = LaLcθ, α = L2
aLcθ

are true. Using the third equality, we substitute L2
aLcθ for α in the first one:

ϕL2
aLcθϕ

−1
o = Laθ.

Using Moufang identity (7), centrality of c and diassociativity of (Q; +), we have

L2
aLc(x) = a+ (a+ (c+ x)) = (a+c) + (a+x) = L−1

c ((a+c) + ((a+c) + x)) =

= L−1
c (((a+c) + (a+c)) + x) = L−1

c L2(a+c)(x).

Consequently,
ϕL−1

c L2(a+c)θϕ
−1
o = Laθ.

As ϕ is an automorphism of (Q; +), then

L−1
ϕcLϕ(2(c+a))ϕθϕ

−1
o = Laθ.
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Therefrom
Lϕ(2(c+a))ϕθϕ

−1
o = Lϕc+aθ.

Since ϕθϕ−1
o (0′) = 0 and θ(0′) = 0, the previous equality implies ϕ(2(c+a)) = ϕc+a.

Therefore, ϕθϕ−1
o = θ, i.e., ϕθ = θϕo. Thus, θ is an isomorphism from the algebra

(Qo;⊕, ϕo) onto the algebra (Q; +, ϕ).

Vice versa, let θ be an isomorphism from (Qo;⊕, ϕo) onto (Q; +, ϕ). It means,
that θ is an bijection from Qo onto Q and the following relations hold:

θ(x) + θ(y) = θ(x⊕ y), ϕθ = θϕo

for all x, y ∈ Qo. These equalities imply ψθ = θψo. Indeed,

ψθ(x) = (ι− ϕ)θ(x) = θ(x) − ϕθ(x) =

= θ(x) ⊖ θϕo(x) = θ(x⊖ ϕo(x)) = θ(ι⊖ ϕo)(x) = θψo(x).

That is why, we have

θx · θy = ϕθx+ ψθy = θϕox+ θψoy = θ(ϕx⊕ ψy) = θ(x ◦ y).

Hence, θ is an isomorphism from (Q; ◦) onto (Q; ·).

Corollary 14. Let distributive quasigroups (Q; ◦) and (Q; ·) be defined on a com-
mutative Moufang loop (Q; +) by its automorphisms ϕo and ϕ respectively. Then
the quasigroups are isomorphic if and only if there exists an automorphism θ of the
loop (Q; +) such that ϕo = θ−1ϕθ.

This corollary immediately implies that there exist exactly p− 3 non-isomorphic
distributive quasigroups of a prime power p > 3.
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