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1 Introduction

The theory of graphs is an extremely useful tool for solving numerous problems
in different areas such as geometry, algebra, operations research, optimization, and
computer science. In many cases, some aspects of a graph-theoretic problem may be
uncertain. For example, the vehicle travel time or vehicle capacity on a road network
may not be known exactly. In such cases, it is natural to deal with the uncertainty
using the methods of fuzzy sets, and fuzzy logic. But, the using of fuzzy graphs as
models of various systems (social, economics systems, communication networks and
others) leads to difficulties. In many domains, we deal with bipolar information. It
is noted that positive information represents what is granted to be possible, while
negative information represents what is considered to be impossible. The bipolar
fuzzy sets as an extension of fuzzy sets were introduced by Zhang [20, 21] in 1994.
In a bipolar fuzzy set, the membership degree range is [−1, 1], the member degree 0
of an element shows that the element is irrelevant to the corresponding property. If
membership degree of an element is positive, it means that the element somewhat
satisfies the property, and a negative membership degree shows that the element
somewhat satisfies the implicit counter-property. The bipolar fuzzy graph model is
more precise, flexible, and compatible as compared to the classical and fuzzy graph
models. This is the motivation to generalize the notion of fuzzy graphs to the notion
of bipolar fuzzy graphs. In 1965, Zadeh [19] introduced the notion of a fuzzy subset
of a set as a method for representing uncertainty. Now, the theory of fuzzy sets has
become a vigorous area of research in different disciplines including medical, life sci-
ence, management sciences, engineering, statistics, graph theory, signal processing,
pattern recognition, computer networks and expert systems. Fuzzy graphs and fuzzy
analogs of several graph theoretical notions were discussed by Rosenfeld [13], whose
basic idea was introduced by Kauffmann [7] in 1973. Rosenfeld considered the fuzzy
relations between fuzzy sets and developed the structure of fuzzy graphs. Some op-
erations on fuzzy graphs were introduced by Mordeson and Peng [11]. Akram and
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Dudek [3] generalized some operations to interval-valued fuzzy graphs. The concept
of intuitionistic fuzzy graphs was introduced by Shannon and Atanassov [16], they
investigated some of their properties in [17]. Parvathi et al. defined operations on
intuitionistic fuzzy graphs in [12]. Akram introduced the concept of bipolar fuzzy
graphs in [1], he discussed the concept of isomorphism of these graphs, and inves-
tigated some of their important properties, also defined some operations on bipolar
fuzzy graphs (see also [2, 4–6]).

In this paper, we define the notion of level graphs of a bipolar fuzzy graph and
investigate some of their properties. Next we show that level graphs can be used to
the characterization of various products of two bipolar fuzzy graphs.

2 Preliminaries

In this section, we review some definitions that are necessary for this paper.

Let V be a nonempty set. Denote by Ṽ 2 the collection of all 2-element subsets

of V. A pair (V,E), where E ⊆ Ṽ 2, is called a graph.

Further, for simplicity, the subsets of the form {x, y} will be denoted by xy.

Definition 1. Let G∗

1 = (V1, E1) and G∗

2 = (V2, E2) be two graphs and let
V = V1 × V2.

• The union of graphs G∗

1 and G∗

2 is the graph (V1 ∪ V2, E1 ∪ E2).

• The graph (V1 ∪V2, E1 ∪E2 ∪E′), where E′ is the set of edges joining vertices
of V1 and V2, is denoted by G∗

1+G∗

2 and is called the join of graphs G∗

1 and G∗

2.

• The Cartesian product of graphs G∗

1 and G∗

2, denoted by G∗

1 ×G∗

2, is the graph
(V,E) with
E = {(x, x2)(x, y2) |x ∈ V1 , x2y2 ∈ E2} ∪ {(x1, z)(y1, z) | z ∈ V2 , x1y1 ∈ E1}.

• The cross product of graphs G∗

1 and G∗

2, denoted by G∗

1∗G∗

2, is the graph (V,E)
such that E = {(x1, x2)(y1, y2) |x1y1 ∈ E1 , x2y2 ∈ E2}.

• The lexicographic product of graphs G∗

1 and G∗

2, denoted by G∗

1 • G∗

2, is the
graph (V,E) such that
E = {(x, x2)(x, y2) |x∈V1, x2y2∈E2}∪{(x1, x2)(y1, y2) |x1y1∈E1, x2y2∈E2}.

• The strong product of graphs G∗

1 and G∗

2, denoted by G∗

1 ⊠ G∗

2, is the graph
(V,E) such that
E = {(x, x2)(x, y2) |x ∈ V1 , x2y2 ∈ E2} ∪ {(x1, z)(y1, z) | z ∈ V2 , x1y1 ∈
E1} ∪ {(x1, x2)(y1, y2) |x1y1 ∈ E1 , x2y2 ∈ E2}.

• The composition of graphs G∗

1 and G∗

2, denoted by G∗

1[G
∗

2], is the graph (V,E)
such that
E = {(x, x2)(x, y2) |x ∈ V1 , x2y2 ∈ E2} ∪ {(x1, z)(y1, z) | z ∈ V2 , x1y1 ∈
E1} ∪ {(x1, x2)(y1, y2) |x2, y2 ∈ V2, , x2 6= y2 , x1y1 ∈ E1}.
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One can find the corresponding examples clarifying the above concepts in [9,10,
14,15,18].

Definition 2. Let X be a set, a mapping A = (µN
A , µP

A) : X → [−1, 0] × [0, 1]
is called a bipolar fuzzy set on X. For every x ∈ X, the value A(x) is written as
(µN

A (x), µP
A(x)).

We use the positive membership degree µP
A(x) to denote the satisfaction degree of

elements x to the property corresponding to a bipolar fuzzy set A, and the negative

membership degree µN
A (x) to denote the satisfaction degree of an element x to some

implicit counter-property corresponding to a bipolar fuzzy set A.

Definition 3. A fuzzy graph of a graph G∗ = (V,E) is a pair G = (σ, µ), where σ

and µ are fuzzy sets on V and Ṽ 2, respectively, such that µ(x, y) ≤ min(σ(x), σ(y))

for all xy ∈ E and µ(xy) = 0 for xy ∈ Ṽ 2 \ E.

Let G∗ = (V,E) be a crisp graph and let A,B be bipolar fuzzy sets on V and
E, respectively. The pair (A,B) is called a bipolar fuzzy pair of a graph G∗.

Definition 4. ([1]) A bipolar fuzzy graph of a graph G∗ = (V,E) is a bipolar fuzzy
pair G = (A,B) of G∗, where A = (µN

A , µP
A) and B = (µN

B , µP
B) are such that

µP
B(xy) ≤ min(µP

A(x), µP
A(y)), µN

B (xy) ≥ max(µN
A (x), µN

A (y)) for all xy ∈ E.

A fuzzy graph (σ, µ) of a graph G∗ can be considered as an bipolar fuzzy graph
G = (A,B), where µN

A (x) = 0 for all x ∈ V , µN
B (xy) = 0 for all xy ∈ E and µP

B = µ,
µP

A = σ.

Definition 5. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy pair of graphs
G∗

1 = (V1, E1) and G∗

2 = (V2, E2), respectively. Consider two bipolar fuzzy sets
A = (µN

A , µP
A) and B = (µN

B , µP
B).

• The union G1 ∪ G2 is defined as the pair (A,B) of bipolar fuzzy sets deter-
mined on the union of graphs G∗

1 and G∗

2 such that

(i) µP
A(x) =





µP
A1

(x) if x ∈ V1 and x 6∈ V2

µP
A2

(x) if x ∈ V2 and x 6∈ V1

max(µP
A1

(x), µP
A2

(x)) if x ∈ V1 ∩ V2,

(ii) µN
A (x) =





µN
A1

(x) if x ∈ V1 and x 6∈ V2

µN
A2

(x) if x ∈ V2 and x 6∈ V1

min(µN
A1

(x), µN
A2

(x)) if x ∈ V1 ∩ V2,

(iii) µP
B(xy) =





µP
B1

(xy) if xy ∈ E1 and xy 6∈ E2

µP
B2

(xy) if xy ∈ E2 and xy 6∈ E1

max(µP
B1

(xy), µP
B2

(xy)) if xy ∈ E1 ∩ E2,
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(iv) µN
B (xy) =





µN
B1

(xy) if xy ∈ E1 and xy 6∈ E2

µN
B2

(xy) if xy ∈ E2 and xy 6∈ E1

min(µN
B1

(xy), µN
B2

(xy)) if xy ∈ E1 ∩ E2.

• The join G1 + G2 is the pair (A,B) of bipolar fuzzy sets defined on the join
G∗

1 + G∗

2 such that

(i) µP
A(x) =





µP
A1

(x) if x ∈ V1 and x 6∈ V2

µP
A2

(x) if x ∈ V2 and x 6∈ V1

max(µP
A1

(x), µP
A2

(x)) if x ∈ V1 ∩ V2,

(ii) µN
A (x) =





µN
A1

(x) if x ∈ V1 and x 6∈ V2

µN
A2

(x) if x ∈ V2 and x 6∈ V1

min(µN
A1

(x), µN
A2

(x)) if x ∈ V1 ∩ V2,

(iii) µP
B(xy) =





µP
B1

(xy) if xy ∈ E1 and xy 6∈ E2

µP
B2

(xy) if xy ∈ E2 and xy 6∈ E1

max(µP
B1

(xy), µP
B2

(xy)) if xy ∈ E1 ∩ E2

min(µP
A1

(x), µP
A2

(x)) if xy ∈ E′,

(iv) µN
B (xy) =





µN
B1

(xy) if xy ∈ E1 and xy 6∈ E2

µN
B2

(xy) if xy ∈ E2 and xy 6∈ E1

min(µN
B1

(xy), µN
B2

(xy)) if xy ∈ E1 ∩ E2

max(µN
A1

(x), µN
A2

(y)) if xy ∈ E′.

• The Cartesian product G1 ×G2 is the pair (A,B) of bipolar fuzzy sets defined
on the Cartesian product G∗

1 × G∗

2 such that

(i) µP
A(x1, x2) = min(µP

A1
(x1), µ

P
A2

(x2)),

µN
A (x1, x2) = max(µN

A1
(x1), µ

N
A2

(x2)) for all (x1, x2) ∈ V1 × V2,

(ii) µP
B((x, x2)(x, y2)) = min(µP

A1
(x), µP

B2
(x2y2)),

µN
B ((x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2)) for all x∈V1 and x2y2∈E2,

(iii) µP
B((x1, z)(y1, z)) = min(µP

B1
(x1y1), µ

P
A2

(z)),

µN
B ((x1, z)(y1, z)) = max(µN

B1
(x1y1), µ

N
A2

(z)) for all z∈V2 and x1y1∈E1.

• The cross product G1 ∗ G2 is the pair (A,B) of bipolar fuzzy sets defined on
the cross product G∗

1 ∗ G∗

2 such that

(i) µP
A(x1, x2) = min(µP

A1
(x1), µ

P
A2

(x2)),

µN
A (x1, x2) = max(µN

A1
(x1), µ

N
A2

(x2)) for all (x1, x2) ∈ V1 × V2,

(ii) µP
B((x1, x2)(y1, y2)) = min(µP

B1
(x1y1), µ

P
B2

(x2y2)),

µN
B ((x1, x2)(y1, y2)) = max(µN

B1
(x1y1), µ

N
B2

(x2y2)) for all x1y1 ∈ E1 and
for all x2y2 ∈ E2.

• The lexicographic product G1•G2 is the pair (A,B) of bipolar fuzzy sets defined
on the lexigographic product G∗

1 • G∗

2 such that
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(i) µP
A(x1, x2) = min(µP

A1
(x1), µ

P
A2

(x2)),

µN
A (x1, x2) = max(µN

A1
(x1), µ

N
A2

(x2)) for all (x1, x2) ∈ V1 × v2,

(ii) µP
B((x, x2)(x, y2)) = min(µP

A1
(x), µP

B2
(x2y2)),

µN
B ((x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2)) for all x ∈ V1 and for all

x2y2 ∈ E2,

(iii) µP
B((x1, x2)(y1, y2)) = min(µP

B1
(x1y1), µ

P
B2

(x2y2)),

µN
B ((x1, x2)(y1, y2)) = max(µN

B1
(x1y1), µ

N
B2

(x2y2)) for all x1y1 ∈ E1 and
for all x2y2 ∈ E2.

• The strong product G1⊠G2 of G1 is the pair (A,B) of bipolar fuzzy sets defined
on the strong product G∗

1 ⊠ G∗

2 such that

(i) µP
A(x1, x2) = min(µP

A1
(x1), µ

P
A2

(x2)),

µN
A (x1, x2) = max(µN

A1
(x1), µ

N
A2

(x2)) for all (x1, x2) ∈ V1 × V2,

(ii) µP
B((x, x2)(x, y2)) = min(µP

A1
(x), µP

B2
(x2y2)),

µN
B ((x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2)) for all x ∈ V1 and for all

x2y2 ∈ E2,

(iii) µP
B((x1, z)(y1, z)) = min(µP

B1
(x1y1), µ

P
A2

(z)),

µN
B ((x1, z)(y1, z)) = max(µN

B1
(x1y1), µ

N
A2

(z)) for all z ∈ V2 and for all
x1y1 ∈ E1,

(iv) µP
B((x1, x2)(y1, y2)) = min(µP

B1
(x1y1), µ

P
B2

(x2y2)),

µN
B ((x1, x2)(y1, y2)) = max(µN

B1
(x1y1), µ

N
B2

(x2y2)) for all x1y1 ∈ E1 and
for all x2y2 ∈ E2.

• The composition G1[G2] is the pair (A,B) of bipolar fuzzy sets defined on the
composition G∗

1[G
∗

2] such that

(i) µP
A(x1, x2) = min(µP

A1
(x1), µ

P
A2

(x2)),

µN
A (x1, x2) = max(µN

A1
(x1), µ

N
A2

(x2)) for all (x1, x2) ∈ V1 × V2,

(ii) µP
B((x, x2)(x, y2)) = min(µP

A1
(x), µP

B2
(x2y2)),

µN
B ((x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2)) for all x ∈ V1 and for all

x2y2 ∈ E2,

(iii) µP
B((x1, z)(y1, z)) = min(µP

B1
(x1y1), µ

P
A2

(z)),

µN
B ((x1, z)(y1, z)) = max(µN

B1
(x1y1), µ

N
A2

(z)) for all z ∈ V2 and for all
x1y1 ∈ E1,

(iv) µP
B((x1, x2)(y1, y2)) = min(µP

A2
(x2), µ

P
A2

(y2), µ
P
B1

(x1y1)),

µN
B ((x1, x2)(y1, y2)) = max(µN

A2
(x2), µ

N
A2

(y2), µ
N
B1

(x1y1)) for all x2, y2 ∈
V2, where x2 6= y2 and for all x1y1 ∈ E1.
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3 Level graphs of bipolar fuzzy graphs

In this section we define the level graph of a bipolar fuzzy graph and discuss some
important operations on bipolar fuzzy graphs by characterizing these operations by
their level counterparts graphs.

Definition 6. Let A : X → [−1, 0] × [0, 1] be a bipolar fuzzy set on X. The set
A(a,b) = {x ∈ X |µP

A(x) ≥ b , µN
A (x) ≤ a}, where (a, b) ∈ [−1, 0] × [0, 1], is called the

(a, b)-level set of A.

The following theorem is important in this paper. It is substantial modification
of the transfer principle for fuzzy sets described in [8].

Theorem 1. Let V be a set, and A = (µN
A , µP

A) and B = (µN
B , µP

B) be bipolar fuzzy

sets on V and Ṽ 2, respectively. Then G = (A,B) is a bipolar fuzzy graph if and

only if (A(a,b), B(a,b)), called the (a, b)-level graph of G, is a graph for each pair

(a, b) ∈ [−1, 0] × [0, 1].

Proof. Let G = (A,B) be a bipolar fuzzy graph. For every (a, b) ∈ [−1, 0]× [0, 1], if
xy ∈ B(a,b), then µN

B (xy) ≤ a and µP
B(xy) ≥ b. Since G is a bipolar fuzzy graph,

a ≥ µN
B (xy) ≥ max(µN

A (x), µN
A (y))

and

b ≤ µP
B(xy) ≤ min(µP

A(x), µP
A(y)),

and so a ≥ µN
A (x), a ≥ µN

A (y), b ≤ µP
A(x), b ≤ µP

A(y), that is, x, y ∈ A(a,b). Therefore,
(A(a,b), B(a,b)) is a graph for each (a, b) ∈ [−1, 0] × [0, 1].

Conversely, let (A(a,b), B(a,b)) be a graph for all (a, b) ∈ [−1, 0]× [0, 1]. For every

xy ∈ Ṽ 2, let µN
B (xy) = a and µP

B(xy) = b. Then xy ∈ B(a,b). Since (A(a,b), B(a,b))

is a graph, we have x, y ∈ A(a,b); hence µN
A (x) ≤ a, µP

A(x) ≥ b, µN
A (y) ≤ a and

µP
A(x) ≥ b. Therefore,

µN
B (xy) = a ≥ max(µN

A (x), µN
A (y))

and

µP
B(xy) = b ≤ min(µP

A(x), µP
A(y)),

that is G = (A,B) is a bipolar fuzzy graph.

Theorem 2. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs of

G∗

1 = (V1, E1) and G∗

2 = (V2, E2), respectively. Then G = (A,B) is the Carte-

sian product of G1 and G2 if and only if for each pair (a, b) ∈ [−1, 0] × [0, 1] the

(a, b)-level graph (A(a,b), B(a,b)) is the Cartesian product of ((A1)(a,b), (B1)(a,b)) and

((A2)(a,b), (B2)(a,b)).
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Proof. Let G = (A,B) be the Cartesian product of bipolar fuzzy graphs G1 and G2.
For every (a, b) ∈ [−1, 0] × [0, 1], if (x, y) ∈ A(a,b), then

min(µP
A1

(x), µP
A2

(y)) = µP
A(x, y) ≥ b

and
max(µN

A1
(x), µN

A2
(y)) = µN

A (x, y) ≤ a,

hence x ∈ (A1)(a,b) and y ∈ (A2)(a,b); that is (x, y) ∈ (A1)(a,b) × (A2)(a,b).
Therefore, A(a,b) ⊆ (A1)(a,b) × (A2)(a,b). Now if (x, y) ∈ (A1)(a,b) × (A2)(a,b),

then x ∈ (A1)(a,b) and y ∈ (A2)(a,b). It follows that min(µP
A1

(x), µP
A2

(y)) ≥ b

and max(µN
A1

(x), µN
A2

(y)) ≤ a. Since (A,B) is the Cartesian product of G1

and G2, µP
A(x, y) ≥ b and µN

A (x, y) ≤ a; that is (x, y) ∈ A(a,b). Therefore,
(A1)(a,b) × (A2)(a,b) ⊆ A(a,b) and so (A1)(a,b) × (A2)(a,b) = A(a,b).

We now prove B(a,b) = E, where E is the edge set of the Cartesian product
(G1)(a,b) × (G2)(a,b) for all (a, b) ∈ [−1, 0]× [0, 1]. Let (x1, x2)(y1, y2) ∈ B(a,b). Then,

µP
B((x1, x2)(y1, y2)) ≥ b and µN

B ((x1, x2)(y1, y2)) ≤ a. Since (A,B) is the Cartesian
product of G1 and G2, one of the following cases holds:

(i) x1 = y1 and x2y2 ∈ E2,

(ii) x2 = y2 and x1y1 ∈ E1.

For the case (i), we have

µP
B((x1, x2)(y1, y2)) = min(µP

A1
(x1), µ

P
B2

(x2y2)) ≥ b,

µN
B ((x1, x2)(y1, y2)) = max(µN

A1
(x1), µ

N
B2

(x2y2)) ≤ a,

and so µP
A1

(x1) ≥ b, µN
A1

(x1) ≤ a, µP
B2

(x2y2) ≥ b and µN
B2

(x2y2) ≤ a. It follows that
x1 = y1 ∈ (A1)(a,b), x2y2 ∈ (B2)(a,b); that is (x1, x2)(y1, y2) ∈ E. Similarly, for the
case (ii), we conclude that (x1, x2)(y1, y2) ∈ E. Therefore, B(a,b) ⊆ E. For every

(x, x2)(x, y2) ∈ E, µP
A1

(x) ≥ b, µN
A1

(x) ≤ a, µP
B2

(x2y2) ≥ b and µN
B2

(x2y2) ≤ a. Since
(A,B) is the Cartesian product of G1 and G2, we have

µP
B((x, x2)(x, y2)) = min(µP

A1
(x), µP

B2
(x2y2)) ≥ b,

µN
B ((x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2)) ≤ a.

Therefore, (x, x2)(x, y2) ∈ B(a,b). Similarly, for every (x1, z)(y1, z) ∈ E, we have
(x1, z)(y1, z) ∈ B(a,b). Therefore, E ⊆ B(a,b), and so B(a,b) = E.

Conversely, suppose that the (a, b)-level graph (A(a,b), B(a,b)) is the Cartesian
product of ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)) for all (a, b) ∈ [−1, 0]× [0, 1].

Let min(µP
A1

(x1), µ
P
A2

(x2)) = b and max(µN
A1

(x1), µ
N
A2

(x2)) = a for some (x1, x2) ∈
V1 ×V2. Then x1 ∈ (A1)(a,b) and x2 ∈ (A2)(a,b). By the hypothesis, (x1, x2) ∈ A(a,b),
hence

µP
A((x1, x2)) ≥ b = min(µP

A1
(x1), µ

P
A2

(x2))
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and

µN
A ((x1, x2)) ≤ a = max(µN

A1
(x1), µ

N
A2

(x2)).

Now let µN
A (x1, x2) = c and µP

A(x1, x2) = d, then we have (x1, x2) ∈ A(c,d).
Since (A(c,d), B(c,d)) is the Cartesian product of levels ((A1)(c,d), (B1)(c,d)) and
((A2)(c,d), (B2)(c,d)), then x1 ∈ (A1)(c,d) and x2 ∈ (A2)(c,d). Hence,

µP
A1

(x1) ≥ d = µP
A(x1, x2), µN

A1
(x1) ≤ c = µN

A (x1, x2),

µP
A2

(x2) ≥ d = µP
A(x1, x2) and µN

A2
(x2) ≤ c = µN

A (x1, x2).

It follows that
min(µP

A1
(x1), µ

P
A2

(x2)) ≥ µP
A(x1, x2)

and

max(µN
A1

(x1), µ
N
A2

(x2)) ≤ µN
A (x1, x2).

Therefore,

µP
A(x1, x2) = min(µP

A1
(x1), µ

P
A2

(x2))

and

µN
A (x1, x2) = max(µN

A1
(x1), µ

N
A2

(x2)) for all (x1, x2) ∈ V1 × V2.

Similarly, for every x ∈ V1 and every x2y2 ∈ E2, let

min(µP
A1

(x), µP
B2

(x2y2)) = b, max(µN
A1

(x), µN
B2

(x2y2)) = a,

µP
B((x, x2)(x, y2)) = d and µN

B ((x, x2)(x, y2)) = c.

Then we have µP
A1

(x) ≥ b, µP
B2

(x2y2) ≥ b, µN
A1

(x) ≤ a, µN
B2

(x2y2) ≤ a and
(x, x2)(x, y2) ∈ B(c,d), i.e., x ∈ (A1)(a,b), x2y2 ∈ (B2)(a,b) and (x, x2)(x, y2) ∈ B(c,d).
Since (A(a,b), B(a,b)) (respectively, (A(c,d), B(c,d))) is the Cartesian product of le-
vels ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)) (respectively, ((A1)(c,d), (B1)(c,d))
and ((A2)(c,d), (B2)(c,d))), we have (x, x2)(x, y2) ∈ B(a,b), x ∈ (A1)(c,d), and

x2y2 ∈ (B2)(c,d), which implies (x, x2)(x, y2) ∈ B(a,b), µP
A1

(x) ≥ d, µN
A1

(x) ≤ c,

µP
B2

(x2y2) ≥ d and µN
B2

(x2y2) ≤ c. It follows that

µN
B ((x, x2)(x, y2)) ≤ a = max(µN

A1
(x), µN

B2
(x2y2)),

µP
B((x, x2)(x, y2)) ≥ b = min(µP

A1
(x), µP

B2
(x2y2)),

min(µP
A1

(x), µP
B2

(x2y2)) ≥ d = µP
B((x, x2)(x, y2)),

and

max(µN
A1

(x), µN
B2

(x2y2)) ≤ c = µN
B ((x, x2)(x, y2)).

Therefore,

µP
B((x, x2)(x, y2)) = min(µP

A1
(x), µP

B2
(x2y2)),

µN
B ((x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2))
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for all x ∈ V1 and x2y2 ∈ E2.

As above we can show that

µP
B((x1, z)(y1, z)) = min(µP

B1
(x1y1), µ

P
A2

(z)),

µN
B ((x1, z)(y1, z)) = max(µN

B1
(x1y1), µ

N
A2

(z))

for all z ∈ V2 and for all x1y1 ∈ E1. This completes the proof.

Now by Theorem 1 and Theorem 2 we have the following corollary.

Corollary 1. If G1 = (A1, B1) and G2 = (A2, B2) are bipolar fuzzy graphs, then

the Cartesian product G1 × G2 is a bipolar fuzzy graph.

Theorem 3. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs of

G∗

1 = (V1, E1) and G∗

2 = (V2, E2), respectively. Then G = (A,B) is the composition

of G1 and G2 if and only if for each (a, b) ∈ [−1, 0] × [0, 1] the (a, b)-level graph

(A(a,b), B(a,b)) is the composition of ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)).

Proof. Let G = (A,B) be the composition of bipolar fuzzy graphs G1 and G2.
By the definition of G1[G2] and the same argument as in the proof of Theorem 2,
we have A(a,b) = (A1)(a,b) × (A2)(a,b). Now we prove B(a,b) = E, where E is the
edge set of the composition (G1)(a,b)[(G2)(a,b)] for all (a, b) ∈ [−1, 0] × [0, 1]. Let

(x1, x2)(y1, y2) ∈ B(a,b). Then µP
B((x1, x2)(y1, y2)) ≥ b and µN

B ((x1, x2)(y1, y2)) ≤ a.
Since G = (A,B) is the composition G1[G2], one of the following cases holds:

(i) x1 = y1 and x2y2 ∈ E2,

(ii) x2 = y2 and x1y1 ∈ E1,

(iii) x2 6= y2 and x1y1 ∈ E1.

For the cases (i) and (ii), similarly as in the cases of (i) and (ii) in the proof of
Theorem 2, we obtain (x1, x2)(y1, y2) ∈ E. For the case (iii), we have

µP
B((x1, x2)(y1, y2)) = min(µP

A2
(x2), µ

P
A2

(y2), µ
P
B1

(x1y1)) ≥ b,

µN
B ((x1, x2)(y1, y2)) = max(µN

A2
(x2), µ

N
A2

(y2), µ
N
B1

(x1y1)) ≤ a.

Thus, µP
A2

(x2) ≥ b, µP
A2

(y2) ≥ b, µP
B1

(x1y1) ≥ b, µN
A2

(x2) ≤ a, µN
A2

(y2) ≤ a and

µN
B1

(x1y1) ≤ a. It follows that x2, y2 ∈ (A2)(a,b) and x1y1 ∈ (B1)(a,b); that is
(x1, x2)(y1, y2) ∈ E. Therefore, B(a,b) ⊆ E.

For every (x, x2)(x, y2) ∈ E, µP
A1

(x) ≥ b, µN
A1

(x) ≤ a, µP
B2

(x2y2)) ≥ b and

µN
B2

(x2y2) ≤ a. Since G = (A,B) is the composition G1[G2], we have

µP
B((x, x2)(x, y2)) = min(µP

A1
(x), µP

B2
(x2y2)) ≥ b,

µN
B ((x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2)) ≤ a.
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Therefore, (x, x1)(x, y2) ∈ B(a,b). Similarly, for every (x1, z)(y1, z) ∈ E, we have
(x, x2)(x, y2) ∈ B(a,b). For every (x1, x2)(y1, y2) ∈ E, where x2 6= y2, is x1 6= y1,

µP
B1

(x1y1) ≥ b, µN
B1

(x1y1) ≤ a, µP
A2

(y2) ≥ b, µN
A2

(y2) ≤ a, µP
A2

(x2) ≥ b and

µN
A2

(x2) ≤ a. Since G = (A,B) is the composition G1[G2], we have

µP
B((x1, x2)(y1, y2)) = min(µP

A2
(x2), µ

P
A2

(y2), µ
P
B1

(x1y1)) ≥ b,

µN
B ((x1, x2)(y1, y2)) = max(µN

A2
(x2), µ

N
A2

(y2), µ
N
B1

(x1y1)) ≤ a,

hence (x1, x2)(y1, y2) ∈ B(a,b). Therefore E ⊆ B(a,b), and so E = B(a,b).
Conversely, suppose that (A(a,b), B(a,b)), where (a, b) ∈ [−1, 0] × [0, 1], is the

composition of ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)). By the definition of the
composition and the proof of Theorem 2, we have

(i) µP
A(x1, x2) = min(µP

A1
(x1), µ

P
A2

(x2)),

µN
A (x1, x2) = max(µN

A1
(x1), µ

N
A2

(x2)) for all (x1, x2) ∈ V1 × V2,

(ii) µP
B((x, x2)(x, y2)) = min(µP

A1
(x), µP

B2
(x2y2)),

µN
B ((x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2)) for all x ∈ V1 and x2y2 ∈ E2,

(iii) µP
B((x1, z)(y1, z)) = min(µP

B1
(x1y1), µ

P
A2

(z)),

µN
B ((x1, z)(y1, z)) = max(µN

B1
(x1y1), µ

N
A2

(z)) for all z ∈ V2 and x1y1 ∈ E1.

Similarly, by the same argumentation as in the proof of Theorem 2, we obtain

µP
B((x1, x2)(y1, y2)) = min(µP

A2
(x2), µ

P
A2

(y2), µ
P
B1

(x1y1)),

µN
B ((x1, x2)(y1, y2)) = max(µN

A2
(x2), µ

N
A2

(y2), µ
N
B1

(x1y1))

for all x2, y2 ∈ V2 (x2 6= y2) and for all x1y1 ∈ E1. This completes the proof.

Corollary 2. If G1 = (A1, B1) and G2 = (A2, B2) are bipolar fuzzy graphs, then

their composition G1[G2] is a bipolar fuzzy graph.

Theorem 4. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs of

G∗

1 = (V1, E1) and G∗

2 = (V2, E2), respectively, and V1 ∩ V2 = ∅. Then G = (A,B)
is the union of G1 and G2 if and only if each (a, b)-level graph (A(a,b), B(a,b)) is the

union of ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)).

Proof. Let G = (A,B) be the union of bipolar fuzzy graphs G1 and G2. We show
that A(a,b) = (A1)(a,b) ∪ (A2)(a,b) for each (a, b) ∈ [−1, 0] × [0, 1]. Let x ∈ A(a,b),

then x ∈ V1 \ V2 or x ∈ V2 \ V1. If x ∈ V1 \ V2, then µP
A1

(x) = µP
A(x) ≥ b and

µN
A1

(x) = µN
A (x) ≤ a, which implies x ∈ (A1)(a,b). Analogously x ∈ V2 \ V1 implies

x ∈ (A2)(a,b). Therefore, x ∈ (A1)(a,b)∪ (A2)(a,b), and so A(a,b) ⊆ (A1)(a,b)∪ (A2)(a,b).
Now let x ∈ (A1)(a,b) ∪ (A2)(a,b). Then we have x ∈ (A1)(a,b) and x 6∈ (A2)(a,b)

or x ∈ (A2)(a,b) and x 6∈ (A1)(a,b). For the first case, we have µP
A(x) = µP

A1
(x) ≥ b

and µN
A (x) = µN

A1
(x) ≤ a, which implies x ∈ A(a,b). For the second case, we have
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µP
A(x) = µP

A2
(x) ≥ b and µN

A (x) = µN
A2

(x) ≤ a. Hence x ∈ A(a,b). Consequently,
(A1)(a,b) ∪ (A2)(a,b) ⊆ A(a,b). To prove that B(a,b) = (B1)(a,b) ∪ (B2)(a,b) for all
(a, b) ∈ [−1, 0] × [0, 1] consider xy ∈ B(a,b). Then xy ∈ E1 \ E2 or xy ∈ E2 \ E1.

For xy ∈ E1 \ E2 we have µP
B1

(xy) = µP
B(xy) ≥ b and µN

B1
(xy) = µN

B (xy) ≤ a. Thus
xy ∈ (B1)(a,b). Similarly xy ∈ E2 \ E1 gives xy ∈ (B2)(a,b). Therefore B(a,b) ⊆
(B1)(a,b) ∪ (B2)(a,b). If xy ∈ (B1)(a,b) ∪ (B2)(a,b), then xy ∈ (B1)(a,b) \ (B2)(a,b) or

xy ∈ (B2)(a,b) \ (B1)(a,b). For the first case, µP
B(xy) = µP

B1
(xy) ≥ b and µN

B (xy) =

µN
B1

(xy) ≤ a, hence xy ∈ B(a,b). In the second case we obtain xy ∈ B(a,b). Therefore,
(B1)(a,b) ∪ (B2)(a,b) ⊆ B(a,b).

Conversely, let for all (a, b) ∈ [−1, 0] × [0, 1] the level graph (A(a,b), B(a,b)) be

the union of ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)). Let x ∈ V1, µP
A1

(x) = b,

µN
A1

(x) = a, µP
A(x) = d and µN

A (x) = c. Then x ∈ (A1)(a,b) and x ∈ A(c,d). But by

the hypothesis x ∈ A(a,b) and x ∈ (A1)(c,d). Thus, µP
A(x) ≥ b, µN

A (x) ≤ a, µP
A1

(x) ≥ d

and µN
A1

(x) ≤ c. Therefore, µP
A1

(x) ≤ µP
A(x), µN

A (x) ≥ µN
A1

(x), µP
A1

(x) ≥ µP
A(x) and

µN
A1

(x) ≤ µN
A (x). Hence µP

A1
(x) = µP

A(x) and µN
A (x) = µN

A1
(x). Similarly, for every

x ∈ V2, we get µP
A2

(x) = µP
A(x) and µN

A (x) = µN
A2

(x). Thus, we conclude that

(i)

{
µP

A(x) = µP
A1

(x) if x ∈ V1

µP
A(x) = µP

A2
(x) if x ∈ V2,

(ii)

{
µN

A (x) = µN
A1

(x) if x ∈ V1

µN
A (x) = µN

A2
(x) if x ∈ V2.

By a similar method as above, we obtain

(iii)

{
µP

B(xy) = µP
B1

(xy) if xy ∈ E1

µP
B(xy) = µP

B2
(xy) if xy ∈ E2,

(iv)

{
µN

B (xy) = µN
B1

(xy) if xy ∈ E1

µN
B (xy) = µN

B2
(xy) if xy ∈ E2.

This completes the proof.

Corollary 3. If G1 and G2 are bipolar fuzzy graphs of G∗

1 = (V1, E1) and G∗

2 =
(V2, E2), respectively, in which V1 ∩ V2 = ∅, then G1 ∪ G2 is a bipolar fuzzy graph.

Theorem 5. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs of

G∗

1 = (V1, E1) and G∗

2 = (V2, E2), respectively, and V1 ∩ V2 = ∅. Then G = (A,B)
is the join of G1 and G2 if and only if each (a, b)-level graph (A(a,b), B(a,b)) is the

join of ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)).

Proof. Let G = (A,B) be the join of bipolar fuzzy graphs G1 and G2. Then by the
definition and the proof of Theorem 4, A(a,b) = (A1)(a,b) ∪ (A2)(a,b) for all (a, b) ∈
[−1, 0] × [0, 1]. We show that B(a,b) = (B1)(a,b) ∪ (B2)(a,b) ∪ E′

(a,b) for all (a, b) ∈

[−1, 0] × [0, 1], where E′

(a,b) is the set of all edges joining the vertices (A1)(a,b) and

(A2)(a,b).
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From the proof of Theorem 4 it follows that (B1)(a,b) ∪ (B2)(a,b) ⊆ B(a,b). If

xy ∈ E′

(a,b), then µP
A1

(x) ≥ b, µN
A1

(x) ≤ a, µP
A2

(y) ≥ b and µN
A2

(y) ≤ a. Hence

µP
B(xy) = min(µP

A1
(x), µP

A2
(y)) ≥ b

and
µN

B (xy) = max(µN
A1

(x), µN
A2

(y)) ≤ a.

It follows that xy ∈ B(a,b). Therefore, (B1)(a,b)∪ (B2)(a,b) ∪E′

(a,b) ⊆ B(a,b). For every

xy ∈ B(a,b), if xy ∈ E1 ∪E2, then xy ∈ (B1)(a,b) ∪ (B2)(a,b), by the proof of Theorem
4. If x ∈ V1 and y ∈ V2, then

min(µP
A1

(x), µP
A2

(y)) = µP
B(xy) ≥ b

and
max(µN

A1
(x), µN

A2
(y)) = µN

B (xy) ≤ a,

hence x ∈ (A1)(a,b) and y ∈ (A2)(a,b). So, xy ∈ E′

(a,b). Therefore, B(a,b) ⊆ (B1)(a,b) ∪

(B2)(a,b) ∪ E′

(a,b).

Conversely, let each level graph (A(a,b), B(a,b)) be the join of ((A1)(a,b), (B1)(a,b))
and ((A2)(a,b), (B2)(a,b)). From the proof of Theorem 4, we have

(i)

{
µP

A(x) = µP
A1

(x) if x ∈ V1

µP
A(x) = µP

A2
(x) if x ∈ V2,

(ii)

{
µN

A (x) = µN
A1

(x) if x ∈ V1

µN
A (x) = µN

A2
(x) if x ∈ V2,

(iii)

{
µP

B(xy) = µP
B1

(xy) if xy ∈ E1

µP
B(xy) = µP

B2
(xy) if xy ∈ E2,

(iv)

{
µN

B (xy) = µN
B1

(xy) if xy ∈ E1

µN
B (xy) = µN

B2
(xy) if xy ∈ E2.

Let x ∈ V1, y ∈ V2, min(µP
A1

(x), µP
A2

(y)) = b, max(µN
A1

(x), µN
A2

(y)) = a,

µP
B(xy) = d and µN

B (xy) = c. Then x ∈ (A1)(a,b), y ∈ (A2)(a,b) and xy ∈ B(c,d). It

follows that xy ∈ B(a,b), x ∈ (A1)(c,d) and y ∈ (A2)(c,d). So, µP
B(xy) ≥ b, µN

B (xy) ≤ a,

µP
A1

(x) ≥ d, µN
A1

(x) ≤ c, µP
A2

(y) ≥ d and µN
A2

(y) ≤ c. Therefore,

µP
B(xy) ≥ b = min(µP

A1
(x), µP

A2
(y)) ≥ d = µP

B(xy),

µN
B (xy) ≤ a = max(µN

A1
(x), µP

A2
(y)) ≤ c = µN

B (xy).

Thus,

µP
B(xy) = min(µP

A1
(x), µP

A2
(y)), µN

B (xy) = max(µN
A1

(x), µN
A2

(y)),

as desired.
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Theorem 6. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs of

G∗

1 = (V1, E1) and G∗

2 = (V2, E2), respectively. Then G = (A,B) is the cross

product of G1 and G2 if and only if each (a, b)-level graph (A(a,b), B(a,b)) is the cross

product of ((A1)(a,b), (B1)(a,b) and ((A2)(a,b), (B2)(a,b)).

Proof. Let G = (A,B) be the cross product of G1 and G2. By the definition of
the Cartesian product G1 × G2 and the proof of Theorem 2, we have A(a,b) =
(A1)(a,b) × (A2)(a,b) for all (a, b) ∈ [−1, 0] × [0, 1]. We show that

B(a,b) = {(x1, x2)(y1, y2) |x1y1 ∈ (B1)(a,b) , x2y2 ∈ (B2)(a,b)}

for all (a, b) ∈ [−1, 0] × [0, 1]. Indeed, if (x1, x2)(y1, y2) ∈ B(a,b), then

µP
B((x1, x2)(y1, y2)) = min(µP

B1
(x1y1), µ

P
B2

(x2y2)) ≥ b,

µN
B ((x1, x2)(y1, y2)) = max(µN

B1
(x1y1), µ

P
B2

(x2y2)) ≤ a,

hence µP
B1

(x1y1) ≥ b, µP
B2

(x2y2) ≥ b, µN
B1

(x1y1) ≤ a and µP
B2

(x2y2) ≤ a. So,
x1y1 ∈ (B1)(a,b) and x2y2 ∈ (B2)(a,b). Now if x1y1 ∈ (B1)(a,b) and x2y2 ∈ (B2)(a,b),

then µP
B1

(x1y1) ≥ b, µN
B1

(x1y1) ≤ a, µP
B2

(x2y2) ≥ b and µN
B2

(x2y2) ≤ a. It follows
that

µP
B((x1, x2)(y1, y2)) = min(µP

B1
(x1y1), µ

P
B2

(x2y2)) ≥ b,

µN
B ((x1, x2)(y1, y2)) = max(µN

B1
(x1y1), µ

N
B2

(x2y2)) ≤ a,

because G = (A,B) is the cross product G1 ∗G2. Therefore, (x1, x2)(y1, y2) ∈ B(a,b).
Conversely, let each (a, b)-level graph (A(a,b), B(a,b)) be the cross product

of ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)). In view of the fact that the
cross product (A(a,b), B(a,b)) has the same vertex set as the cartesian product of
((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)), and by the proof of Theorem 2, we
have

µP
A((x1, x2)) = min(µP

A1
(x1), µ

P
A2

(x2)),

µN
A ((x1, x2)) = max(µN

A1
(x1), µ

N
A2

(x2)),

for all (x1, x2) ∈ V1 × V2.

Let min(µP
B1

(x1y1), µ
P
B2

(x2y2)) = b, max(µN
B1

(x1y1), µ
N
B2

(x2y2)) = a,

µP
B((x1, x2)(y1, y2)) = d and µN

B ((x1, x2)(y1, y2)) = c for x1y1 ∈ E1, x2y2 ∈ E2. Then
µP

B1
(x1y1) ≥ b, µP

B2
(x2y2) ≥ b, µN

B1
(x1y1) ≤ a, µN

B2
(x2y2) ≤ a and (x1, x2)(y1, y2) ∈

B(c,d), hence x1y1 ∈ (B1)(a,b) , x2y2 ∈ (B2)(a,b), and consequently, x1y1 ∈ (B1)(c,d),
x2y2 ∈ (B2)(c,d) since B(c,d) = {(x1, x2)(y1, y2) |x1y1 ∈ (B1)(c,d) , x2y2 ∈ (B2)(c,d)}.

It follows that (x1, x2)(y1, y2) ∈ B(a,b), µP
B1

(x1y1) ≥ d, µN
B1

(x1y1) ≤ c, µP
B2

(x2y2) ≥ d

and µN
B2

(x2y2) ≤ c. Therefore,

µP
B((x1, x2)(y1, y2)) = d ≤ min(µP

B1
(x1y1), µ

P
B2

(x2y2)) = b ≤ µP
B((x1, x2)(y1, y2)),

µN
B ((x1, x2)(y1, y2)) = c ≥ max(µN

B1
(x1y1), µ

N
B2

(x2y2)) = a ≥ µN
B ((x1, x2)(y1, y2)).
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Hence

µP
B((x1, x2)(y1, y2)) = min(µP

B1
(x1y1), µ

P
B2

(x2y2)),

µN
B ((x1, x2)(y1, y2)) = max(µN

B1
(x1y1), µ

N
B2

(x2y2)),

which completes our proof.

Corollary 4. The cross product of two bipolar fuzzy graphs is a bipolar fuzzy graph.

Theorem 7. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs of

G∗

1 = (V1, E1) and G∗

2 = (V2, E2), respectively. Then G = (A,B) is the lexicographic

product of G1 and G2 if and only if G(a,b) = (G1)(a,b) • (G2)(a,b) for all (a, b) ∈
[−1, 0] × [0, 1].

Proof. Let G = (A,B) = G1•G2. By the definition of the Cartesian product G1×G2

and the proof of Theorem 2, we have A(a,b) = (A1)(a,b) × (A2)(a,b) for all (a, b) ∈
[−1, 0] × [0, 1]. We show that B(a,b) = E(a,b) ∪ E′

(a,b) for all (a, b) ∈ [−1, 0] × [0, 1],

where E(a,b) = {(x, x2)(x, y2) |x ∈ V1 , x2y2 ∈ (B2)(a,b)} is the subset the edge set
of the direct product (G1)(a,b) × (G2)(a,b), and E′

(a,b) = {(x1, x2)(y1, y2) |x1y1 ∈

(B1)(a,b) , x2y2 ∈ (B2)(a,b)} is the edge set of the cross product (G1)(a,b) ∗ (G2)(a,b).
For every (x1, x2)(y1, y2) ∈ B(a,b), x1 = y1, x2y2 ∈ E2 or x1y1 ∈ E1, x2y2 ∈ E2. If
x1 = y1, x2y2 ∈ E2, then (x1, x2)(y1, y2) ∈ E(a,b), by the definition of the Cartesian
product and the proof of Theorem 2. If x1y1 ∈ E1, x2y2 ∈ E2, then (x1, x2)(y1, y2) ∈
E′

(a,b), by the definition of the cross product and the proof of Theorem 6. Therefore,

B(a,b) ⊆ E(a,b) ∪ E′

(a,b). From the definition of the Cartesian product and the proof
of Theorem 2, we conclude that E(a,b) ⊆ B(a,b), and also from the definition of the
cross product and the proof of Theorem 6, we obtain E′

(a,b) ⊆ B(a,b). Therefore,

E(a,b) ∪ E′

(a,b) ⊆ B(a,b).

Conversely, let G(a,b) = (A(a,b), B(a,b)) = (G1)(a,b) • (G2)(a,b) for all (a, b) ∈
[−1, 0] × [0, 1]. We know that (G1)(a,b) • (G2)(a,b) has the same vertex set as the
Cartesian product (G1)(a,b) × (G2)(a,b). Now by the proof of Theorem 2, we have

µP
A((x1, x2)) = min(µP

A1
(x1), µ

P
A2

(x2)),

µN
A ((x1, x2)) = max(µN

A1
(x1), µ

N
A2

(x2))

for all (x1, x2) ∈ V1 × V2.

Assume that for some x ∈ V1 and x2y2 ∈ E2 is min(µP
A1

(x), µP
B2

(x2y2)) = b,

max(µN
A1

(x), µN
B2

(x2y2)) = a, µP
B((x, x2)(x, y2)) = d and µN

B ((x, x2)(x, y2)) = c.
Then, in view of the definitions of the Cartesian and lexicographic products, we
have

(x, x2)(x, y2) ∈ (B1)(a,b) • (B2)(a,b) ⇔ (x, x2)(x, y2) ∈ (B1)(a,b) × (B2)(a,b),

(x, x2)(x, y2) ∈ (B1)(c,d) • (B2)(c,d) ⇔ (x, x2)(x, y2) ∈ (B1)(c,d) × (B2)(c,d).
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From this, by the same argument as in the proof of Theorem 2, we can conclude

µP
B((x, x2)(x, y2)) = min(µP

A(x), µP
B2

(x2y2)),

µN
B ((x, x2)(x, y2)) = max(µN

A (x), µN
B2

(x2y2)).

Suppose now that we have µP
B((x1, x2)(y1, y2)) = d, µN

B ((x1, x2)(y1, y2)) = c,
min(µP

B1
(x1y1), µ

P
B2

(x2y2)) = b, max(µN
B1

(x1y1), µ
N
B2

(x2y2)) = a for x1y1 ∈ E1 and
x2y2 ∈ E2. Then, in view of the definitions of the cross product and the lexicographic
product, we have

(x1, x2)(y1, y2) ∈ (B1)(a,b) • (B2)(a,b) ⇔ (x1, x2)(y1, y2) ∈ (B1)(a,b) ∗ (B2)(a,b),

(x1, x2)(y1, y2) ∈ (B1)(c,d) • (B2)(c,d) ⇔ (x1, x2)(y1, y2) ∈ (B1)(c,d) ∗ (B2)(c,d).

By the same argument as in the proof of Theorem 6, we can conclude

µP
B((x1, x2)(y1, y2)) = min(µP

B1
(x1y1), µ

P
B2

(x2y2)),

µN
B ((x1, x2)(y1, y2)) = max(µN

B1
(x1y1), µ

N
B2

(x2y2)),

which completes the proof.

Corollary 5. The lexicographic product of two bipolar fuzzy graphs is a bipolar fuzzy

graph.

Lemma 1. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs of G∗

1 =
(V1, E1) and G∗

2 = (V2, E2), respectively, such that V1 = V2, A1 = A2 and E1 ∩E2 =
∅. Then G = (A,B) is the union of G1 and G2 if and only if (A(a,b), B(a,b)) is the

union of ((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)) for all (a, b) ∈ [−1, 0] × [0, 1].

Proof. Let G = (A,B) be the union of bipolar fuzzy graphs G1 and G2. Then by the
definition of the union and the fact that V1 = V2, A1 = A2, we have A = A1 = A2,
hence A(a,b) = (A1)(a,b)∪(A2)(a,b). We now show that B(a,b) = (B1)(a,b)∪(B2)(a,b) for

all (a, b) ∈ [−1, 0] × [0, 1]. For every xy ∈ (B1)(a,b) we have µP
B(xy) = µP

B1
(xy) ≥ b

and µN
B (xy) = µN

B1
(xy) ≤ a, hence xy ∈ B(a,b). Therefore, (B1)(a,b) ⊆ B(a,b).

Similarly, we obtain (B2)(a,b) ⊆ B(a,b). Thus, (B1)(a,b) ∪ (B2)(a,b) ⊆ B(a,b). For every

xy ∈ B(a,b) either xy ∈ E1 or xy ∈ E2. If xy ∈ E1, µP
B1

(xy) = µP
B(xy) ≥ b and

µN
B1

(xy) = µN
B (xy) ≤ a and hence xy ∈ (B1)(a,b). If xy ∈ E2, we have xy ∈ (B2)(a,b).

Therefore, B(a,b) ⊆ (B1)(a,b) ∪ (B2)(a,b).
Conversely, suppose that the (a, b)-level graph (A(a,b), B(a,b)) be the union of

((A1)(a,b), (B1)(a,b)) and ((A2)(a,b), (B2)(a,b)). Let µP
A(x) = b, µN

A (x) = a, µP
A1

(x) = d

and µN
A1

(x) = c for some x ∈ V1 = V2. Then x ∈ A(a,b) and x ∈ (A1)(c,d), so x ∈
(A1)(a,b) and x ∈ A(c,d), because A(a,b) = (A1)(a,b) and A(c,d) = (A1)(c,d). It follows

that µP
A1

(x) ≥ b, µN
A1

(x) ≤ a, µP
A(x) ≥ d and µN

A (x) ≤ c. Therefore, µP
A1

(x) ≥ µP
A(x),

µN
A1

(x) ≤ µN
A (x), µP

A(x) ≥ µP
A1

(x) and µN
A (x) ≤ µN

A1
(x). So, µP

A(x) = µP
A1

(x) and

µN
A (x) = µN

A1
(x). Since A1 = A2, V1 = V2, then A = A1 = A1 ∪ A2.

By a similar method, we conclude that
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(i)

{
µP

B(xy) = µP
B1

(xy) if xy ∈ E1

µP
B(xy) = µP

B2
(xy) if xy ∈ E2,

(ii)

{
µN

B (xy) = µN
B1

(xy) if xy ∈ E1

µN
B (xy) = µN

B2
(xy) if xy ∈ E2.

This completes the proof.

Theorem 8. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs of

G∗

1 = (V1, E1) and G∗

2 = (V2, E2), respectively. Then G = (A,B) is the strong

product of G1 and G2 if and only if each G(a,b), where (a, b) ∈ [−1, 0] × [0, 1], is the

strong product of (G1)(a,b) and (G2)(a,b).

Proof. According to the definitions of the strong product, the cross product and the
Cartesian product, we obtain G1 ⊠ G2 = (G1 × G2) ∪ (G1 ∗ G2) and

(G1)(a,b) ⊠ (G2)(a,b) = ((G1)(a,b) × (G2)(a,b)) ∪ ((G1)(a,b) ∗ (G2)(a,b))

for all (a, b) ∈ [−1, 0] × [0, 1]. Now by Theorem 6, Theorem 2 and Lemma 1, we see
that

G = G1 ⊠ G2 ⇐⇒ G = (G1 × G2) ∪ (G1 ∗ G2)

⇐⇒ G(a,b) = (G1 × G2)(a,b) ∪ (G1 ∗ G2)(a,b)

⇐⇒ G(a,b) = ((G1)(a,b) × (G2)(a,b)) ∪ ((G1)(a,b) ∗ (G2)(a,b))

⇐⇒ G(a,b) = (G1)(a,b) ⊠ (G2)(a,b)

for all (a, b) ∈ [−1, 0] × [0, 1].

Corollary 6. The strong product of two bipolar fuzzy graphs is a bipolar fuzzy graph.

4 Conclusion

Graph theory is one of the branches of modern mathematics applied to many
areas of mathematics, science, and technology. In computer science, graphs are used
to represent networks of communication, computational devices, image segmenta-
tion, clustering and the flow of computation. In many cases, some aspects of a
graph theoretic problem may be uncertain, and we deal with bipolar information.
Bipolarity is met in many areas such as knowledge representation, reasoning with
conditions, inconsistency handling, constraint satisfaction problem, decision, learn-
ing, etc. In this paper, we define the notion of level graph of a bipolar fuzzy graph
and investigate some of their properties. We define three kinds of new operations
of bipolar fuzzy graphs and discuss these operations and some defined important
operations on bipolar fuzzy graphs by characterizing these operations by their level
counterparts graphs.
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