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Triality and Universal Multiplication Groups

of Moufang Loops

J.D.Phillips

Abstract. We investigate the triality status of combinatorial and universal multipli-
cation groups of various classes of Moufang loops. We also investigate whether some
of these are, qua Doro, the largest and smallest groups with triality associated with a
given Moufang loop.
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1 Moufang Loops and Universal Multiplication Groups

A loop is a set with a single binary operation such that in x · y = z, knowledge
of any two of x, y, and z specifies the third uniquely, and with a unique two-sided
identity element, denoted by 1. A Moufang loop is a loop satisfying the identity
x · (y · (x · z)) = ((x · y) ·x) · z. We use the notation x−1 to denote the unique 2-sided
inverse of x.

The commutant, C(M), of a Moufang loop M is the set of those elements which
commute with each element in the loop. That is, C(M) = {c : ∀x ∈ M, cx = xc};
it is a subloop. Define the left nucleus of a Moufang loop, M , by Nλ(M) = {a :
a · (x · y) = (a · x) · y,∀x, y ∈ M}. The middle nucleus, Nµ(M), and the right
nucleus, Nρ(M), are defined analogously. The nucleus, N(M), is then defined by
N(M) = Nλ(M) ∩ Nµ(M) ∩ Nρ(M). (In fact, each of these four subsets coincides
with the other three [2].) N(M) is a normal subloop of M [2]. The center, Z(M), of
M is defined as Z(M) = C(M) ∩ N(M); it is a normal subloop.

We use the standard notation for the right and left translations: xR(y) =
yL(x) = x · y. The (combinatorial) multiplication group, Mlt(M), of a loop M
is the subgroup of the group of all bijections on M generated by right and left
translations. Clearly, Mlt(M) acts as a permutation group on M .

Let M be a Moufang loop, and let M be an arbitrary variety of Moufang loops
containing M . We also use M to denote the category whose objects are the Moufang
loops in M and whose morphisms are loop homomorphisms. As an algebraic cat-
egory, M is complete and co-complete [6, 13.12, 13.14]. In M, form the coproduct
of M with < x >, the free M-algebra on one generator. Denote this coproduct by
M [x] (the variety, M, though not explicitly noted in our coproduct notation, will be
clear from context). Since M may be indentified with its image in M [x] [8, p. 33], we
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can consider the subgroup of Mlt(M [x]) generated by right and left multiplications
by elements of M . This subgroup is the universal multiplication group, U(M ;M),
of M in M.

The assignment of U(M ;M) to M gives a functor from the category M to the
category GP of all groups [8, p. 34]. Note that U(M ;M) is “variety dependent” in
the sense that for a given Moufang loop M and two varieties M1 and M2 containing
M , it is not necessarily the case that U(M ;M1) ∼= U(M ;M2) [8, p. 36]. But if
M1 ⊆ M2, then there is a natural group epimorphism F : U(M ;M2) → U(M ;M1)
[8, p. 55]. This can be summarized informally as “the smaller the variety, the smaller
the universal multiplication group.”

For any variety, M of Moufang loops containing M , there is a natural group
epimorphism F : U(M ;M) → MltM [8, p. 55]. This can summarized informally as
“a universal multiplication group can be no smaller than the combinatorial multi-
plication group.”

2 Groups with Triality

If M is a Moufang loop, there exists an involutary automorphism, σ on MltM ,
defined on generators by R(x)σ = L(x−1) and L(x)σ = R(x−1) [4]. If N(M) = 1,
Glauberman [4] showed that there exists an automorphism ρ on MltM , defined on
generators by L(x)ρ = R(x), R(x)ρ = P (x) and P (x)ρ = L(x). Here and throughout,
P (x) = R(x−1)L(x−1); and so note that P (x)R(x)L(x) = 1. Also, clearly ρ3 = 1.
So it is easy to see that if both σ and ρ are nontrivial, then together they
generate S3.

Inspired by Glauberman, Doro [3] defined a group with triality to be a group,
G with two automorphisms, σ and ρ, such that σ2 = 1, ρ3 = 1, < σ, ρ >= S3 and
satisfying the identity g−1gσg−ρgσρg−ρ2

gρσ = 1, ∀g ∈ G (this identity is a kind of
encoding of P (x)R(x)L(x) = 1, the details are in [3]). Groups with triality were
crucial in Liebeck’s classification of all finite simple Moufang loops [5].

Given a group with triality, G, Doro [3] constructs a Moufang loop, M so that
MltM is a homomorphic image of G. Conversely, given a Moufang loop, M , Doro
constructs a group with triality, G, such that the construction in the previous sen-
tence yields M , and such that MltM is a homomorphic image of G. Note that for
a given Moufang loop, M , there may be more than one group with triality which
gives M via Doro’s construction. But, for a given M , Doro [3] shows that there
is a largest group with triality, denoted by G(M), that gives M , in the sense that
any other group with triality that gives M is itself a homomorphic image of G(M).
Doro [3] also shows that there is a smallest group with triality, denoted by G0(M),
that gives M , in the sense that G0(M) is a homomorphic image of any other group
with triality that gives M . And Doro shows that, given any group with triality, G, if
M is the Moufang loop constructed from G, then MltM is a homomorphic image of
G. Thus, given any group with triality, G, with associated Moufang loop M , there
is a sequence of group epimoprhisms, from G(M) to G to G0(M) to MltM .

Given a Moufang loop, M , to determine whether any of its multiplication
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groups is with triality, it suffices to determine which, if any, of these groups ad-
mit the automorphism ρ. This means that if we define ρ on generators (i.e.,
on the R(x)’s and L(x)’s, as above), we must decide if ρ extends to the en-
tire group. Thus, it suffices to determine if Q1(x1)Q2(x2) . . . Qn(xn) = 1 implies
that Q1(x1)

ρQ2(x2)
ρ . . . Qn(xn)ρ = 1 (here, each Qi(xi) is either R(xi) or L(xi)).

This task is greatly simplified by the following result from Glauberman [4]: if
Q1(x1)Q2(x2) . . . Qn(xn) = 1 then Q1(x1)

ρQ2(x2)
ρ . . . Qn(xn)ρ = R(c) for some

c ∈ N(M). Thus, the multiplication group admits ρ, and hence is with triality,
precisely if this nuclear element c equals 1. We use this fact freely in the balance of
the paper.

3 Results

In this section, M always represents a Moufang loop (perhaps with more struc-
ture, as noted in those instances). The first five results in this section focus on
Moufang loop multiplication groups with triality. In [7], the triality status of MltM
is established for all M except for those of the following form:

1 < N(M) ≤ C(M) < M and C(M)3 = 1.

We note that the center of a loop and the center of its combinatorial multiplica-
tion group are isomorphic via the mapping z 7→ R(z) [1]. Thus, we use Z(M) and
Z(MltM) interchangeably, as in the next theorem.

Theorem 3.1. If N(M) ≤ C(M) then MltM/Z(M) is with triality.

Proof. Elements in MltM/Z(M) have the form Q1(x1)Q2(x2) . . . Qn(xn)Z(M). So,
if Q1(x1)Q2(x2) . . . Qn(xn)Z(M) = 1Z(M), then there exists an element z in
the center, such that Q1(x1)Q2(x2) . . . Qn(xn) = R(z). Rearranging gives
Q1(x1)Q2(x2) . . . Qn(xn)R(z−1) = 1. Thus, applying ρ we have Q1(x1)

ρQ2(x2)
ρ . . .

Qn(xn)ρR(z−1)ρ = R(c), for some element c in the center. Rearranging gives
Q1(x1)

ρQ2(x2)
ρ . . . Qn(xn)ρ = R(z−2c), where obviously z−2c is in the center. Thus,

Q1(x1)
ρQ2(x2)

ρ . . . Qn(xn)ρZ(M) = 1Z(M).

Hence ρ is well defined on MltM/Z(M), and so MltM/Z(M) is with triality.

Theorem 3.2. If MltM is a group with triality, then so too is U(M ;M), where M

is any variety of Moufang loops containing M .

Proof. Define ρ on the generators of U(M ;M). We show that ρ extends to
all of U(M ;M). Assume Q1(x1)Q2(x2) . . . Qn(xn) = 1 in U(M ;M). Then
Q1(x1)

ρQ2(x2)
ρ . . . Qn(xn)ρ = R(c) for some c ∈ N(M [x]). But Q1(x1)Q2(x2) . . .

Qn(xn) = 1 in MltM , also. And since MltM is with triality, we have
Q1(x1)

ρQ2(x2)
ρ . . . Qn(xn)ρ = 1 in MltM . This means that c = 1 · c =

1Q1(x1)
ρQ2(x2)

ρ . . . Qn(xn)ρ = 1. Hence, ρ is well defined, and so U(M ;M) is
a group with triality.
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Before proving our next theorem we need two technical lemmas. (For the balance
of the paper, if G is a group with triality, we let S be the subset of elements of G
fixed by ρ, and we let I be the subset of elements fixed by σ.)

Lemma 3.3. If G is a group with triality and D is the S3 group of triality auto-
morphisms acting on G, then CG(GD) ∼= (I ∩ S ∩ Z(G(M))).

Proof.

CG(GD) = {(g, 1) : ∀h ∈ G,∀θ ∈ D, (g, 1)(h, θ) = (h, θ)(g, 1)}

= {(g, 1) : ∀h ∈ G,∀θ ∈ D, (gh, θ) = (hgθ−1
, θ)}.

Taking h = 1 and θ = σ (θ = ρ2, θ = 1, respectively) yields

CG(GD) ⊂ I (⊂ S,G), respectively).

The converse is now trivial.

Lemma 3.4. If M is a Moufang loop such that MltM is with triality, then
CMltM (MltMD) = 1.

Proof. From the proof of the preceeding lemma, CMltM (MltMD) = I∩S∩Z(MltM).
Now, if h ∈ Z(MltM), then h = R(c) for some c ∈ Z(M) [1, Thm. 11]. But h is also
in I, so c = 1, and hence h = 1. Thus, I ∩ S ∩ Z(MltM) = 1.

Our next theorem is a generalization of [3, Corollary 5]. It is offered here because
the proof in [3] is incorrect.

Theorem 3.5. If M is a Moufang loop such that MltM is with triality, then
MltM = G0(M).

Proof. G0(M) ∼= MltM/CMltM (MltMD) ∼= MltM . The first isomorphism is
[3, Cor. 1, p. 384]. The second isomorphism is by the previous lemma.

We turn our attention now to cyclic groups. We begin with a technical lemma.

Lemma 3.6. If M is a cyclic group, then M ∩ C(M [x]) = 1. (Here, the coproduct
M [x] is any category of Moufang loops containing all groups.)

Proof. M embeds in some group G so that Z(G) ∩ M = 1. (If M is infinite, take G
free on two or more generators; if the order of M is n, take G =< x, y : xn = 1 >.)
Say f : M → G is such an embedding. Then, given y ∈ M , there is a g ∈ G such that
f(y)g 6= gf(y). Let h :< x >→ G be determined by x 7→ g. Thus, there is a unique
F : M [x] → G such that the coproduct diagram commutes. So, if xy = yx, then
f(y)g = f(y)h(x) = F (y)F (x) = F (yx) = F (xy) = F (x)F (y) = h(x)f(y) = gf(y).
Hence, yx 6= xy and y /∈ C(M [x]). And thus, M ∩ C(M [x]) = 1.

We are now able to describe the universal multiplication groups of cyclic groups.
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Theorem 3.7. If M is a cyclic group and M is any variety of Moufang loops
containing M and all groups, then U(M ;M) ∼= M×M and U(M ;M) is with triality.

Proof. Let R(M) =< R(x) : x ∈ M >U(M ;M), i. e., the subgroup of U(M ;M) gen-
erated by the set of all right translations by elements in M . Similarly, let L(M) =<
L(x) : x ∈ M >U(M ;M). Since M is cyclic, M [x] is generated by two elements, and
so by Moufang’s Theorem [2], M [x] is a group. Thus, both R(M) and L(M) are
normal in U(M ;M). Thus, by the preceding lemma, R(M) ∩ L(M) = 1, and since
U(M ;M) =< R(M), L(M) >, we have U(M ;M) ∼= R(M) × L(M) ∼= M × M .

Now, define ρ on U(M ;M) as follows: (R(w)L(y))ρ = R(w−1y)L(y−1). Next,
we compute,

([R(w1)L(y1)][R(w2)L(y2)])
ρ = (R(w1w2)L(y1y2))

ρ

= R(w−1
2 w−1

1 y1y2)L(w−1
2 w−1

1 )

= R(w−1
1 y1w

−1
2 y2)L(w−1

2 w−1
1 )

= R(w−1
1 y1)L(w−1

1 )R(w−1
2 y2)L(w−1

2 )
= [R(w1)L(y1)]

ρ[R(w2)L(y2)]
ρ.

Thus, ρ is a well-defined homomorphism, and so U(M ;M) is with triality. (As an
alternate proof, note that the proof of the following theorem shows that U(M ;M) ∼=
G(M), and hence, is with triality.)

We are also able to describe G(M), the largest group with triality associated
with an arbitrary cyclic group, M .

Theorem 3.8. If M is a cyclic group, then G(M) ∼= M × M .

Proof. Let M =< a >. Two trivial induction arguments show that for every pair
of positive integers m and n, we have R(am)R(an) = R(am+n) and L(am)L(an) =
L(am+n).

Next, we use induction on m + n to show that R(am)L(an) = L(an)R(am). The
cases m + n = 1 and either m = 0 or n = 0 are both trivial. The nontrivial instance
of m + n = 2 is proved by noting that R(a)L(a) = R(a)P (1)L(a) = P (a−1) =
L(a)P (1)R(a) = L(a)R(a). So assume that the statement is true for all m + n < k.
Now consider the case m + n = k:

R(am)L(an) = R(a)R(am−1)L(an−1)L(a)
= R(a)L(an−1)R(am−1)L(a)
= L(an−1)R(a)L(a)R(am−1)
= L(an−1)L(a)R(a)R(am−1)
= L(an)R(am).

Thus, we have shown that R(am)L(an) = L(an)R(am), and hence, the following
map is onto: F : M × M → G(M); (am, an) 7→ R(am)L(an). By the computations
above, F is a homomorphism. Finally, U(M ;M) ∼= M ×M is a homomorphic image
of G(M), and so F is one-to-one.
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For a finite cyclic group M we have a complete description of G0(M), the smallest
group with triality associated with M .

Theorem 3.9. If M is a finite cyclic group of order n then G0(M) ∼= M × M if 3
does not divide n, and G0(M) ∼= (M × M)/C3 if 3 divides n (cf. [3, Prop. 1]).

Proof. Let < x >= M . Doro shows that G0(M) ∼= CG(M)(G(M)D) [3, p. 384].
Thus, by Lemma 3.3, G0(M) ∼= G(M)/(I ∩ S ∩ Z(G(M))).

In G(M), R(xk)L(xm) is in I if and only if R(xk+m)L(xk+m) = 1. But since, as
above, G(M) is really just U(M ;M) and since U(M ;Gp) is a homomorphic image
of U(M ;M), the proof of [8, Thm 235] assures us that |x| divides m+k. But clearly
we are assuming that |x| is greater than or equal to both m and k. Thus, |x| = m+k.

On the other hand, in G(M), R(xk)L(xm) is in S if and only if |x| divides 3k.
So if 3 does not divide n (and note that n = |x|), we must have that |x| divides k.
And since |x| = m + k, this means that m = 0 and n = k. Thus, R(xk)L(xm) = 1
and so I ∩ S = 1. Thus, (I ∩ S ∩ Z(G(M))) = 1. And hence, G0(M) ∼= G(M)/(I ∩
S ∩ Z(G(M))) ∼= G(M) ∼= M × M . This proves the first part of the theorem.

If 3 does divide n, say n = 3s, then it is easy to check that I ∩ S =
{1, R(xs)L(xn−s), R(x2s)L(xn−2s)} = C3. And since Z(G(M)) = G(M) we have
I ∩ S = (I ∩ S ∩ Z(G(M))). And hence, G0(M) ∼= G(M)/(I ∩ S ∩ Z(G(M))) ∼=
(M × M)/C3.

And we can describe the smallest group with triality associated with the infinite
cyclic group.

Theorem 3.10. If M is the infinite cyclic group, then G0(M) ∼= M × M .

Proof. In G(M), R(xk)L(xm) is in I if and only if R(xk+m)L(xk+m) = 1. But as we
have shown, G(M) is really just U(M ;M), and since U(M ;Gp) is a homomorphic
image of U(M ;M), the proof of [8, Thm. 235] assures us that |x| divides m + k.
Thus x = 1 and hence, I = 1. Thus, G0(M) = G(M)/(I ∩S∩Z(G(M))) ∼= G(M) ∼=
M × M .

We have thus shown that if M is a finite cyclic group whose order is divisible by
3, then there are precisely two groups with triality giving rise to M , namely M ×M
and (M × M)/C3. If M is any other type of cyclic group (i.e., either infinite or of
finite order coprime with 3), then there is precisely one group with triality giving
rise to M , namely M × M .

Next, in the corollary to the following theorem, we determine the triality status
of the universal multiplication groups of finitely generated abelian groups.

Theorem 3.11. If A =
∏

i∈I Ai and if each U(Ai;V) is a group with triality, then
so too is U(A;V) where V is any variety of Moufang loops containing each Ai.

Proof. We will use vector notation, x to denote elements of A. So, Q1(x1)Q2(x2) . . .
Qn(xn) = 1, implies that Q1(x1)

ρQ2(x2)
ρ . . . Qn(xn)ρ = R(c) for some c ∈ N(A).
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Now, in each U(Ai;V) we have Q1(x1)Q2(x2) . . . Qn(xn) = 1. But since each
U(Ai;V) is with triality, we have Q1(x1)

ρQ2(x2)
ρ . . . Qn(xn)ρ = 1. Thus,

c = 1R(c)
= 1Q1(x1)

ρQ2(x2)
ρ . . . Qn(xn)ρ

= 1Q1(x1)
ρQ2(x2)

ρ . . . Qn(xn)ρ

= 1.

Thus, A is a group with triality.

Corollary 3.12. If A is a finitely generated abelian group, then U(A;V) is a group
with triality.

Finally, we offer two theorems about other classes of Moufang loops.

Theorem 3.13. If M is a commutative Moufang loop of exponent three, if V is
any variety of commutative Moufang loops of exponent three containing M , and if
Z(U(M ;V)) ∩ I = 1, then U(M ;V) ∼= MltM .

Proof. U(M ;V) is a group with triality with ρ = 1. Let G = U(M ;V). By [3, Thm.
1] G/coreG(I) ∼= MltM . Now, let k be in coreG(I). Thus, for every g in G, we have
k = g−1gσk(g−1)σg. Taking g = R(x), for any x in M , we get k = P (x−1)kP (x).
But M [x] is a commutative Moufang loop of exponent three, so R(x) = L(x) = P (x).
And since x was arbitrary, k is in Z(G). Thus, k is in Z(G) ∩ I = 1, and so k = 1.
Thus, coreG(I) = 1, and so U(M ;V) ∼= MltM .

We note that if M is an infinitely generated free commutative Moufang loop
of exponent three, and if V is any variety of commutative Moufang loops of expo-
nent three containing M , then Z(U(M ;V)) ∩ I = 1. Hence, we have the following
corollary.

Corollary 3.14. With M and V as in the previous theorem, U(M ;V) ∼= MltM .

Theorem 3.15. If M is a Moufang loop that is not commutative of exponent 2,
then M [x] is not commutative. (Here, the coproduct M [x] is in the variety of all
Moufang loops.)

Proof. If M is not commutative, then there is nothing to show. So assume that
M is commutative. Let J : M → M ; x 7→ x−1. Form the semidirect product
M < J >. Select y ∈ M such that y−1 6= y. Let 1M : M → M < J >;
y 7→ (y, 1). Let h :< x >→ M < J > be determined by sending x 7→ (1, J).
Then there exists a unique F : M [x] → M < J > such that the coproduct diagram
commutes.

Thus, if yx = xy then (y, J) = (y, 1)(1, J) = F (y)F (x) = F (yx) = F (xy) =
F (x)F (y) = (1, J)(y, 1) = (y−1, J), and thus, y = y−1, a contradiction. Thus,
yx 6= xy, and M [x] is not commutative.
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