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Triality and Universal Multiplication Groups
of Moufang Loops
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Abstract. We investigate the triality status of combinatorial and universal multipli-
cation groups of various classes of Moufang loops. We also investigate whether some
of these are, qua Doro, the largest and smallest groups with triality associated with a
given Moufang loop.
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1 Moufang Loops and Universal Multiplication Groups

A loop is a set with a single binary operation such that in = - y = z, knowledge
of any two of z, y, and z specifies the third uniquely, and with a unique two-sided
identity element, denoted by 1. A Moufang loop is a loop satisfying the identity
z-(y-(r-2)) = ((x-y) ) 2. We use the notation 7! to denote the unique 2-sided
inverse of x.

The commutant, C(M), of a Moufang loop M is the set of those elements which
commute with each element in the loop. That is, C(M) = {c: Vz € M, cx = xc};
it is a subloop. Define the left nucleus of a Moufang loop, M, by N)\(M) = {a :
a-(x-y) = (a-x)- y,Ve,y € M}. The middle nucleus, N, (M), and the right
nucleus, N,(M), are defined analogously. The nucleus, N(M), is then defined by
N(M) = Nx(M) NN, (M) NN,(M). (In fact, each of these four subsets coincides
with the other three [2].) N(M) is a normal subloop of M [2]. The center, Z(M), of
M is defined as Z(M) = C(M) N N(M); it is a normal subloop.

We use the standard notation for the right and left translations: xzR(y) =
yL(z) = x -y. The (combinatorial) multiplication group, MIt(M), of a loop M
is the subgroup of the group of all bijections on M generated by right and left
translations. Clearly, MIt(M) acts as a permutation group on M.

Let M be a Moufang loop, and let M be an arbitrary variety of Moufang loops
containing M. We also use M to denote the category whose objects are the Moufang
loops in M and whose morphisms are loop homomorphisms. As an algebraic cat-
egory, M is complete and co-complete [6, 13.12, 13.14]. In M, form the coproduct
of M with < x >, the free M-algebra on one generator. Denote this coproduct by
M [x] (the variety, M, though not explicitly noted in our coproduct notation, will be
clear from context). Since M may be indentified with its image in M [z] [8, p. 33], we
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can consider the subgroup of Mlt(M[x]) generated by right and left multiplications
by elements of M. This subgroup is the universal multiplication group, U(M;M),
of M in M.

The assignment of U(M;M) to M gives a functor from the category M to the
category GP of all groups [8, p. 34]. Note that U(M;M) is “variety dependent” in
the sense that for a given Moufang loop M and two varieties M1 and My containing
M, it is not necessarily the case that U(M;M;) = U(M;Ms;) [8, p. 36]. But if
M; C Mo, then there is a natural group epimorphism F' : U(M;My) — U(M;M;)
[8, p. 55]. This can be summarized informally as “the smaller the variety, the smaller
the universal multiplication group.”

For any variety, M of Moufang loops containing M, there is a natural group
epimorphism F' : U(M;M) — MItM [8, p. 55]. This can summarized informally as
“a universal multiplication group can be no smaller than the combinatorial multi-
plication group.”

2  Groups with Triality

If M is a Moufang loop, there exists an involutary automorphism, o on MItM,
defined on generators by R(x)” = L(z~') and L(z)° = R(z~') [4]. If N(M) = 1,
Glauberman [4] showed that there exists an automorphism p on MltM, defined on
generators by L(x)? = R(x), R(z)? = P(z) and P(x)? = L(x). Here and throughout,
P(x) = R(z~Y)L(z™!); and so note that P(z)R(x)L(xz) = 1. Also, clearly p? = 1.
So it is easy to see that if both o and p are nontrivial, then together they
generate Ss.

Inspired by Glauberman, Doro [3] defined a group with triality to be a group,
G with two automorphisms, o and p, such that 02 =1, p> =1, < 0,p >= S3 and
satisfying the identity g_lg”g_pg"pg_ngp" =1, Vg € G (this identity is a kind of
encoding of P(x)R(z)L(x) = 1, the details are in [3]). Groups with triality were
crucial in Liebeck’s classification of all finite simple Moufang loops [5].

Given a group with triality, G, Doro [3] constructs a Moufang loop, M so that
MItM is a homomorphic image of G. Conversely, given a Moufang loop, M, Doro
constructs a group with triality, GG, such that the construction in the previous sen-
tence yields M, and such that MItM is a homomorphic image of G. Note that for
a given Moufang loop, M, there may be more than one group with triality which
gives M via Doro’s construction. But, for a given M, Doro [3] shows that there
is a largest group with triality, denoted by G(M), that gives M, in the sense that
any other group with triality that gives M is itself a homomorphic image of G(M).
Doro [3] also shows that there is a smallest group with triality, denoted by Go(M),
that gives M, in the sense that Go(M) is a homomorphic image of any other group
with triality that gives M. And Doro shows that, given any group with triality, G, if
M is the Moufang loop constructed from G, then MItM is a homomorphic image of
G. Thus, given any group with triality, G, with associated Moufang loop M, there
is a sequence of group epimoprhisms, from G(M) to G to Go(M) to MItM.

Given a Moufang loop, M, to determine whether any of its multiplication
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groups is with triality, it suffices to determine which, if any, of these groups ad-
mit the automorphism p. This means that if we define p on generators (i.e.,
on the R(z)’s and L(x)’s, as above), we must decide if p extends to the en-
tire group. Thus, it suffices to determine if Q1(x1)Q2(x2)...Qn(zy) = 1 implies
that Q1(x1)PQ2(xz2)” ... Qn(xy)? = 1 (here, each Q;(z;) is either R(x;) or L(x;)).
This task is greatly simplified by the following result from Glauberman [4]: if
Q1(71)Q2(22) ... Qu(wn) = 1 then Q1(z1)PQ2(z2)” ... Qn(zn)? = R(c) for some
¢ € N(M). Thus, the multiplication group admits p, and hence is with triality,
precisely if this nuclear element ¢ equals 1. We use this fact freely in the balance of
the paper.

3 Results

In this section, M always represents a Moufang loop (perhaps with more struc-
ture, as noted in those instances). The first five results in this section focus on
Moufang loop multiplication groups with triality. In [7], the triality status of MltM
is established for all M except for those of the following form:

1< N(M) <C(M) < M and C(M)? = 1.

We note that the center of a loop and the center of its combinatorial multiplica-
tion group are isomorphic via the mapping z — R(z) [1]. Thus, we use Z(M) and
Z(MItM) interchangeably, as in the next theorem.

Theorem 3.1. If N(M) < C(M) then MItM/Z(M) is with triality.

Proof. Elements in MItM/Z(M) have the form Qi(z1)Qa(x2) ... Qn(zn)Z(M). So,
if Q1(x1)Qa(x2)...Qn(xn)Z(M) = 1Z(M), then there exists an element z in

the center, such that Qi(x1)Q2(x2)...Qn(x,) = R(z). Rearranging gives
Q1(21)Qa(x2) ... Qu(xy)R(271) = 1. Thus, applying p we have Q1(x1)?Qa(x2)” . ..
Qn(zn)?R(z71)? = R(c), for some element c in the center. Rearranging gives

Q1(21)PQa(x2)? . .. Qun(z,)? = R(272c), where obviously z~2c is in the center. Thus,
Q1($1)pQ2($2)p ce Qn(l‘n)pZ(M) = 1Z(M).
Hence p is well defined on MItM /Z(M), and so MItM /Z(M) is with triality. O

Theorem 3.2. If MItM is a group with triality, then so too is U(M; M), where M
is any variety of Moufang loops containing M.

Proof. Define p on the generators of U(M;M). We show that p extends to
all of U(M;M). Assume Qi(x1)Q2(x2)...Qn(zn) = 1 in U(M;M). Then
Q1(1)PQ2(x2)? ... Qn(xy)” = R(c) for some ¢ € N(M|[x]). But Q1(z1)Q2(x2)...
Qn(zy) = 1 in MItM, also. And since MItM is with triality, we have
Q1(x1)PQ2(x2)? ... Qn(xy)? = 1 in MItM. This means that ¢ = 1:-¢ =
1Q1(x1)PQ2(x2)? ... Qn(zy)? = 1. Hence, p is well defined, and so U(M;M) is
a group with triality. O
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Before proving our next theorem we need two technical lemmas. (For the balance
of the paper, if G is a group with triality, we let S be the subset of elements of G
fixed by p, and we let I be the subset of elements fixed by o.)

Lemma 3.3. If G is a group with triality and D is the S3 group of triality auto-
morphisms acting on G, then Cq(GD) = (INSNZ(G(M))).

Proof.

Ca(GD) = {(g,1):Yhe G,Y0 € D, (g,1)(h,0) = (h,0)(g,1)}
{(g,1) :Vh € G,¥8 € D, (gh,0) = (hg? ",0)}.

Taking h =1 and 6 = o (6 = p?, § = 1, respectively) yields

Ca(GD) C I (C S,G),respectively).

The converse is now trivial. O

Lemma 3.4. If M is a Moufang loop such that MItM is with triality, then
Cavitns (MItM D) = 1.

Proof. From the proof of the preceeding lemma, Cypypps (MItM D) = INSNZ(MItM).
Now, if h € Z(MItM), then h = R(c) for some ¢ € Z(M) [1, Thm. 11]. But & is also
in I, so ¢ =1, and hence h = 1. Thus, INSNZMItM) = 1. O

Our next theorem is a generalization of [3, Corollary 5]. It is offered here because
the proof in [3] is incorrect.

Theorem 3.5. If M is a Moufang loop such that MItM is with triality, then
MItM = Go(M).

Proof. Go(M) = MItM/Cypepr(MItM D) = MItM. The first isomorphism is
[3, Cor. 1, p. 384]. The second isomorphism is by the previous lemma. O

We turn our attention now to cyclic groups. We begin with a technical lemma.

Lemma 3.6. If M is a cyclic group, then M N C(M|z]) = 1. (Here, the coproduct
M]z] is any category of Moufang loops containing all groups.)

Proof. M embeds in some group G so that Z(G) N M = 1. (If M is infinite, take G
free on two or more generators; if the order of M is n, take G =< z,y : 2" =1 >.)
Say f: M — G is such an embedding. Then, given y € M, there is a g € GG such that
fly)g # gf(y). Let h :< z >— G be determined by x — g. Thus, there is a unique
F : M[x] — G such that the coproduct diagram commutes. So, if xy = yx, then
fw)g = fyh(z) = F(y)F(z) = F(yz) = F(zy) = F(2)F(y) = h(z)f(y) = 9f ().
Hence, yx # xy and y ¢ C(M|[z]). And thus, M N C(M|[z]) = 1. O

We are now able to describe the universal multiplication groups of cyclic groups.
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Theorem 3.7. If M is a cyclic group and M is any variety of Moufang loops
containing M and all groups, then U(M; M) = M x M and U(M; M) is with triality.

Proof. Let R(M) =< R(z) : * € M >y(ar;m), i-e., the subgroup of U(M;M) gen-
erated by the set of all right translations by elements in M. Similarly, let L(M) =<
L(z) : x € M >yum)- Since M s cyclic, M][z] is generated by two elements, and
so by Moufang’s Theorem [2], M|[x] is a group. Thus, both R(M) and L(M) are
normal in U(M;M). Thus, by the preceding lemma, R(M) N L(M) = 1, and since
UM;M) =< R(M),L(M) >, we have U(M;M) = R(M) x L(M) = M x M.

Now, define p on U(M;M) as follows: (R(w)L(y))? = R(w™ty)L(y~!). Next,
we compute,

([R(w1) L(y)][R(w2)L(y2)])? = (R(wiwz)L(y1y2))”

= R(w2_1w1 y1y2) L (w2 wl 1)
R(wy yl’wz_lyz) (wy 11)
R(wi 'y1) L(wi M R(wy  y2) L(wy ")
= [R(w1)L(y1)]* [R(w) ( )]”~

Thus, p is a well-defined homomorphism, and so U(M; M) is with triality. (As an
alternate proof, note that the proof of the following theorem shows that U(M; M) =
G(M), and hence, is with triality.) O

We are also able to describe G(M), the largest group with triality associated
with an arbitrary cyclic group, M.

Theorem 3.8. If M is a cyclic group, then G(M) = M x M.

Proof. Let M =< a >. Two trivial induction arguments show that for every pair
of positive integers m and n, we have R(a™)R(a") = R(a™*™") and L(a™)L(a") =
L(a™*™).

Next, we use induction on m + n to show that R(a™)L(a") = L(a™)R(a™). The
cases m+n = 1 and either m = 0 or n = 0 are both trivial. The nontrivial instance
of m +n = 2 is proved by noting that R(a)L(a) = R(a)P(1)L(a) = P(a™') =
L(a)P(1)R(a) = L(a)R(a). So assume that the statement is true for all m +n < k.
Now consider the case m +n = k:

R(a™)L(a") = R(a)R(a™ ")L(a""")L(a)
= R(a)L(a""")R(a™')L(a)
= L(a" ") R(a)L(a)R(a™")
= L(a""Y)L(a)R(a)R(a™")
= L(a")R(a™)

Thus, we have shown that R(a™)L(a™) = L(a™)R(a"™), and hence, the following
map is onto: F': M x M — G(M);(a™,a"™) — R(a™)L(a™). By the computations
above, F'is a homomorphism. Finally, U(M; M) = M x M is a homomorphic image
of G(M), and so F' is one-to-one. O
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For a finite cyclic group M we have a complete description of Go(M), the smallest
group with triality associated with M.

Theorem 3.9. If M is a finite cyclic group of order n then Go(M) = M x M if 3
does not divide n, and Go(M) = (M x M)/Cs if 3 divides n (cf. [3, Prop. 1]).

Proof. Let < x >= M. Doro shows that Go(M) = Cqun(G(M)D) [3, p. 384].
Thus, by Lemma 3.3, Go(M) = G(M)/(I NSNZ(G(M))).

In G(M), R(z*)L(x™) is in I if and only if R(z**™)L(z*+™) = 1. But since, as
above, G(M) is really just U(M;M) and since U(M; Gp) is a homomorphic image
of U(M;M), the proof of [8, Thm 235] assures us that |z| divides m+ k. But clearly
we are assuming that |z| is greater than or equal to both m and k. Thus, |x| = m+k.

On the other hand, in G(M), R(z*)L(2™) is in S if and only if |z| divides 3k.
So if 3 does not divide n (and note that n = |z|), we must have that |z| divides k.
And since |z| = m + k, this means that m = 0 and n = k. Thus, R(z*)L(z™) = 1
and so INS = 1. Thus, (I NSNZ(G(M))) =1. And hence, Go(M) = G(M)/(IN
SNZ(G(M))) =2 G(M) = M x M. This proves the first part of the theorem.

If 3 does divide n, say n = 3s, then it is easy to check that I NS =
{1, R(z®)L(z" %), R(z*)L(z"~%%)} = C3. And since Z(G(M)) = G(M) we have
INS =INSNZ(G(M))). And hence, Go(M) = G(M)/(I NSNZ(G(M))) =
(M X M)/Cg O

And we can describe the smallest group with triality associated with the infinite
cyclic group.

Theorem 3.10. If M is the infinite cyclic group, then Go(M) = M x M.

Proof. In G(M), R(z*)L(2™) is in I if and only if R(zF*™)L(2**™) = 1. But as we
have shown, G(M) is really just U(M; M), and since U(M; Gp) is a homomorphic
image of U(M;M), the proof of [8, Thm. 235] assures us that |z| divides m + k.
Thus 2 = 1 and hence, I = 1. Thus, Go(M) = G(M)/(INSNZ(G(M))) = G(M) =
M x M. U

We have thus shown that if M is a finite cyclic group whose order is divisible by
3, then there are precisely two groups with triality giving rise to M, namely M x M
and (M x M)/Cs. If M is any other type of cyclic group (i.e., either infinite or of
finite order coprime with 3), then there is precisely one group with triality giving
rise to M, namely M x M.

Next, in the corollary to the following theorem, we determine the triality status
of the universal multiplication groups of finitely generated abelian groups.

Theorem 3.11. If A = [[,c; A; and if each U(A;; V) is a group with triality, then
so too is U(A; V) where V is any variety of Moufang loops containing each A;.

Proof. We will use vector notation, x to denote elements of A. So, Q1(x1)Q2(x2) ...
Qn(x,) = 1, implies that Q1(x1)?Q2(x2)” ... Qn(xn)” = R(c) for some ¢ € N(A).
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Now, in each U(A;; V) we have Q1(x1)Q2(x2)...Qn(x,) = 1. But since each
U(A;; V) is with triality, we have Q1(x1)?Q2(x2)? ... Qn(x,)? = 1. Thus,

c = L1R(c)
= 1Q1(21)7Qa(z2)” ... Qn(zn)”
= 1Q1(21)"Q2(x2)" . .. Qn(zn)”
= 1
Thus, A is a group with triality. O

Corollary 3.12. If A is a finitely generated abelian group, then U(A; V) is a group
with triality.

Finally, we offer two theorems about other classes of Moufang loops.

Theorem 3.13. If M is a commutative Moufang loop of exponent three, if V is

any variety of commutative Moufang loops of exponent three containing M, and if
ZUM; V))NI =1, then U(M; V) = MItM.

Proof. U(M;V) is a group with triality with p = 1. Let G = U(M; V). By [3, Thm.
1] G/coreq(I) = MlItM. Now, let k be in coreg(l). Thus, for every ¢ in G, we have
k=g 19°k(g')?g. Taking g = R(x), for any = in M, we get k = P(x~')kP(x).
But M [z] is a commutative Moufang loop of exponent three, so R(z) = L(x) = P(x).
And since x was arbitrary, k is in Z(G). Thus, k is in Z(G) NI =1, and so k = 1.
Thus, coreg(I) =1, and so U(M; V) = Mt M. O

We note that if M is an infinitely generated free commutative Moufang loop
of exponent three, and if V is any variety of commutative Moufang loops of expo-
nent three containing M, then Z(U(M;V)) NI = 1. Hence, we have the following
corollary.

Corollary 3.14. With M and V as in the previous theorem, U(M; V) = MIt M.

Theorem 3.15. If M is a Moufang loop that is not commutative of exponent 2,
then M|x] is not commutative. (Here, the coproduct M|z] is in the variety of all
Moufang loops.)

Proof. If M is not commutative, then there is nothing to show. So assume that
M is commutative. Let J : M — M; x — z~'. Form the semidirect product
M < J >. Select y € M such that y=! # y. Let 1py : M — M < J >;
y — (y,1). Let h :< ¢ >> M < J > be determined by sending =z +— (1,J).
Then there exists a unique F': M[z] — M < J > such that the coproduct diagram
cominutes.

Thus, if yz = zy then (y,J) = (y,1)(1,J) = F(y)F(z) = F(yx) = F(zy) =
F(z)F(y) = (1,J)(y,1) = (y~%,J), and thus, y = ™', a contradiction. Thus,
yx # zy, and M[x] is not commutative. O
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