Doubly transitive sets of even permutations

Gábor P. Nagy

Abstract. In this paper we investigate doubly transitive sets of permutations which consist of even permutations.

Mathematics subject classification: 20N05, 51E05. Keywords and phrases: Sharply transitive set, finite projective plane, alternating group.

Dedicated to the 90th anniversary of Prof. V. D. Belousov

1 Introduction

Let S be a set of permutations of some fixed set Ω of n symbols. We say that S is sharply t-transitive if for any two tuples (x_1, \ldots, x_t) , (y_1, \ldots, y_t) of distinct symbols, there is a unique element $s \in S$ with $x_1^s = y_1, \ldots, x_t^s = y_t$. It is well known that sharply 1– and 2–transitive sets of permutations correspond to Latin squares and affine planes, respectively, cf.[3]. One of the main motivation for the study of finite sharply 2–transitive sets is the famous Prime Power Conjecture for projective planes. (Both parts of the PPC are *folklore*, and it is surprisingly hard to find them in printed literature. The second part of the PPC is mentioned in [4, p. 276].)

Problem 1. (Prime Power Conjecture (PPC) for projective planes)

- (1) Finite projective planes have prime power order.
- (2) Finite projective planes of prime order are desarguesian.

The classical construction of a sharply 2-transitive set is the group

$$AGL(1,F) = \{x \mapsto ax + b \mid a \in F^*, b \in F\}$$

of affine linear transformations of the field F. The corresponding projective plane is the desarguesian plane PG(2, F) over F. A wider class of sharply 2-transitive sets is based on the concept of *quasifields*. The set Q endowed with two binary operations $+, \cdot$ is called a (right) quasifield if

(Q1) (Q, +) is an abelian group with neutral element $0 \in Q$,

(Q2) any two of the elements $x, y, z \in Q \setminus \{0\}$ determine the third when $x \cdot y = z$,

[©] Gábor P. Nagy, 2016

Research supported by OTKA Grant No. NN.114614.

(Q3) the right distributive law (x + y)z = xz + yz holds, and,

(Q4) for each $a, b, c \in Q$ with $a \neq b$, there is a unique $x \in Q$ satisfying xa = xb + c.

The connection between affine and projective planes and their coordinatizing algebraic structures as plenary ternary rings and mutually orthogonal latin squares are given in [2, Chapter VIII], [4, Chapter 8]. One finds details on the concept of quasifields and translation planes in [4, Section 8.4], and, using the language of sharply transitive sets in [7, 12]. Notice that for the structures considered in [1], two-sided distributivity is assumed; such objects are now called *nearfields*.

It is immediate to show that for a quasifield Q, the set

$$\Lambda(Q) = \{ v \mapsto u \cdot v + w \mid u \in H^*, w \in H \}$$

of $Q \rightarrow Q$ maps forms a sharply 2-transitive set on Q.

Let $\Omega^{(t)}$ denote the set of t-tuples of distinct symbols of Ω . The permutation group $G \leq \text{Sym}(\Omega)$ has a natural action on $\Omega^{(t)}$, let $G^{(t)}$ denote the corresponding permutation group. It is immediate that the existence of a sharply t-transitive set in G is equivalent with the existence of a sharply 1-transitive set in $G^{(t)}$. In the 1970's, P. Lorimer started the systematic investigation of the question of existence of sharply 2-transitive sets in finite 2-transitive permutation groups. This program was continued by Th. Grundhöfer, M. E. O'Nan, P. Müller, see [6] and the references therein. Some of the 2-transitive permutation groups needed rather elaborated methods from character theory in order to show that they do not contain sharply 2-transitive sets of permutations.

In the paper [10], the authors presented a combinatorial method to show that a given permutation group cannot contain sharply 1–transitive sets. An important implication of this method was the following

Proposition 1 ([10, Theorem 3]). If $n \equiv 2, 3 \pmod{4}$ then the alternating group A_n does not contain a sharply 2-transitive set of permutations.

Recently, Gyula Károlyi [9] asked the question concerning the existence of a sharply 2-transitive set of A_n in the remaining cases, that is, when $n \equiv 0, 1 \pmod{4}$. The main result of this paper gives a partial answer to this problem. In particular, we show that for infinitely many integers $n \equiv 0, 1 \pmod{4}$, A_n does contain a sharply 2-transitive set.

Theorem 1. (1) If $n = 2^m$ with $m \ge 2$, or $n = p^{2m}$ with odd prime p, then A_n contains a sharply 2-transitive set of permutations.

(2) Let p be an odd prime, $n = p^{2m+1}$. If A_n contains a sharply 2-transitive set of permutations, then $p \equiv 1 \pmod{4}$ and the corresponding projective plane is nondesarguesian.

The formulation of the theorem shows that no attempts are made to attack the Prime Power Conjecture. We notice that the existence of a sharply 2-transitive set in A_p with a prime p would deliver a nondesarguesian plane of prime order, hence a counterexample to part (b) of Problem 1.

2 Proof of the theorem

In this section, Alt(X) denotes the group of even permutations of the finite set X. Furthermore, H^* denotes the set of nonzero elements of the quasifield H.

Lemma 1. Let $q = p^m$ be a prime power. $AGL(1,q) \le A_q$ if and only if p = 2 and $m \ge 2$.

Proof. Clearly, the only nontrivial element of AGL(1,2) is the transposition (0,1) which is odd. Let us assume q > 2. Let g be a primitive element in \mathbb{F}_q . AGL(1,q) is generated by an elementary abelian p-group N of order q and the permutation $\gamma : x \mapsto gx$. While the elements of N consist of q/p cycles of length p, the permutation γ acts on \mathbb{F}_q^* as a cycle of length q - 1. Hence, $N \leq A_q$ and $\gamma \in A_q$ if and only if $2 \mid q - 1$.

We recall the construction of Hall quasifields from [8, Section IX.2.]. Let F be a field and $f(s) = s^2 - as - b$ an irreducible polynomial over F. Let H be the two-dimensional right vector space over F, with basis elements 1 and λ so that Hconsists of all elements of the form $x + \lambda y$ as x and y vary over F. The multiplication on H is defined by

$$x \circ (z + \lambda t) = xz + \lambda(xt) \tag{1}$$

and

$$(x + \lambda y) \circ (z + \lambda t) = xz - y^{-1}tf(x) + \lambda(yz - xt + at)$$
(2)

for $y \neq 0$. As the right hand sides of (1) and (2) are linear in z, t, one can write the left translation maps $L_u: v \mapsto uv$ in the *F*-basis $\{1, \lambda\}$ as matrices:

$$L_x = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}, \qquad L_{x+\lambda y} = \begin{pmatrix} x & -y^{-1}f(x) \\ y & -x+a \end{pmatrix}.$$

The determinants are $det(L_x) = x^2$ and $det(L_{x+\lambda y}) = -b$.

Lemma 2. Let p be an odd prime, $r = p^m$, and $\varepsilon \in \mathbb{F}_r$ a nonsquare. Define the Hall quasifield $H = (H, +, \circ)$ with irreducible polynomial $f(s) = s^2 - as - b$, where

$$a = \frac{\varepsilon + 1}{2}, \qquad b = -\left(\frac{\varepsilon - 1}{4}\right)^2.$$

Then the set

$$\Lambda(H) = \{ v \mapsto u \circ v + w \mid u \in H^*, w \in H \}$$

of $H \to H$ maps forms a sharply 2-transitive set in Alt(H).

Proof. Since the discriminant of f is $a^2 + 4b = \varepsilon$ and is a non-square, the polynomial f is irreducible. Hence, the Hall quasifields is well defined and $\Lambda(H)$ is a sharply 2-transitive set of permutations. Each element of $\Lambda(H)$ is the composition of a translation $v \mapsto v + w$ and an H-multiplication L_u . Since the former is an even

permutation, it suffices to show that the *H*-multiplication L_u is in Alt(H^*). By the choice of the parameters, all *H*-multiplications are contained in the subgroup

$$S = \{A \in GL(2, r) \mid \det(A) \text{ is a square in } \mathbb{F}_r\}$$

of index 2 of GL(2,r). Since GL(2,r)/GL(2,r)' is cyclic, GL(2,r) has a unique subgroup of index 2. As the subgroup $GL(2,r) \cap Alt(H^*)$ has index at most 2 in GL(2,q), it must contain S. This proves the lemma.

Lemma 2 implies the first part, while Lemma 1 and Proposition 1 imply the second part of Theorem 1.

We finish the paper with a

Conjecture 1. Let $p \equiv 1 \pmod{4}$ be a prime and m a positive integer. The linear group

$$S = \{A \in GL(2m+1, p) \mid \det(A) \text{ is a square in } \mathbb{F}_p\}$$

does not contain sharply transitive sets.

Using the command OneLoopTableInGroup of the LOOPS package [11] of the computer algebra system GAP4 [5], the conjecture can be verified for p = 5, m = 1.

References

- BELOUSOV V. D. On the definition of the concept of a quasi-field. Bul. Akad. Stiince RSS Moldoven., 1964, 6, 3–10.
- [2] BELOUSOV V. D. Algebraic nets and quasigroups. Kishinev, Ştiinţa, 1971 (in Russian).
- [3] DEMBOWSKI P. Finite geometries. Ser. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44. Berlin, Springer-Verlag, 1968.
- [4] DÉNES J., KEEDWELL A. D. Latin squares and their applications. Academic Press, New York–London, 1974.
- [5] GAP Groups, Algorithms, and Programming, Version 4.7.9, (http://www.gap-system.org), The GAP Group, 2015.
- [6] GRUNDHÖFER T., MÜLLER P. Sharply 2-transitive sets of permutations and groups of affine projectivities. Beiträge zur Algebra und Geometrie. Contributions to Algebra and Geometry, 2009, 50, No. 1, 143–154.
- [7] HALL M. Projective planes. Trans. Amer. Math. Soc., 1943, 54, 229–277.
- [8] HUGHES D. R., PIPER F. C. Projective planes. New York, Springer-Verlag, 1973, Graduate Texts in Mathematics, Vol. 6.
- [9] KÁROLYI G. Private communication, 2015.

GÁBOR P. NAGY

- [10] MÜLLER P., NAGY G. P. On the non-existence of sharply transitive sets of permutations in certain finite permutation groups. Advances in Mathematics of Communications, 2011, 5, No. 2, 303–308.
- [11] NAGY G. P., VOJTECHOVSKY P. LOOPS, computing with quasigroups and loops in GAP, Version 3.1.0 (http://www.math.du.edu/loops). Refereed GAP package, 2015.
- [12] NAGY G. P. Semifields in loop theory and in finite geometry. Quasigroups and Related Systems, 2011, 1 9, No. 1, 109–122.

Received January 12, 2016

GÁBOR P. NAGY Bolyai Institute University of Szeged Aradi vértanúk tere 1 H-6720 Szeged, Hungary MTA-ELTE Geometric and Algebraic Combinatorics Research Group Pázmány P. sétány 1/c H-1117 Budapest, Hungary E-mail: nagyg@math.u-szeged.hu