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Abstract. Quantum quasigroups are self-dual objects that provide a general
framework for the nonassociative extension of quantum group techniques. Within
this context, the classical theorem of Belousov on the isotopy of distributive quasi-
groups and commutative Moufang loops is reinterpreted to yield solutions of the
quantum Yang-Baxter equation. A new concept of principal bimagma isotopy is
introduced.
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1 Introduction

In the 1960s, Belousov published his now classic theorem on the isotopy of
distributive quasigroups and commutative Moufang loops [1, Teorema 1], [2, Teo-
rema 8.1]. The theorem states that for each element e of a given distributive
quasigroup (Q, ·), the operation x+y = xR(e)−1 ·yL(e)−1 defines a commutative
Moufang loop on Q, with identity element e. In the following decade, Belousov’s
Theorem became a key step in showing how a purely group-theoretic result of
Fischer [6], on the nilpotence of the derived subgroup G′ of a group G generated
by a class of involutions whose products have order 3, could be proved entirely
by quasigroup-theoretical methods [8]. The current paper sets out to explore
further new aspects of Belousov’s Theorem, showing how it leads to solutions of
the quantum Yang-Baxter equation within the theory of quantum quasigroups.

The self-dual concept of a quantum quasigroup was introduced recently as a
far-reaching unification of Hopf algebras and quasigroups [11]. Let (V,⊗,1) be
a symmetric monoidal category (§2). For example, one might take a category of
vector spaces under the usual tensor product, or the category of sets under the
cartesian product. Consider a bimagma (A,∇,∆), an object of V equipped with
morphisms providing a magma structure ∇ : A⊗A → A and a comagma structure
∆: A → A⊗A such that ∆ is a magma homomorphism. Then the definition of a
quantum quasigroup requires the invertibility of two dual endomorphisms of the
tensor square of the bimagma object: the left composite

G : A ⊗ A
∆⊗1A // A ⊗ A ⊗ A

1A⊗∇ // A ⊗ A
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and the right composite

a : A ⊗ A
∆⊗1A // A ⊗ A ⊗ A

1A⊗∇// A ⊗ A .

The quantum Yang-Baxter equation (QYBE) is

R12R13R23 = R23R13R12 (1.1)

[3, §2.2C], [12]. It applies to an endomorphism

R : A ⊗ A → A ⊗ A

of the tensor square of an object A in a symmetric, monoidal category. For a
given integer n > 1, the notation Rij, for 1 ≤ i < j ≤ n, means applying R to
the i-th and j-th factors in the n-th tensor power of A. Since the left and right
composite morphisms are also endomorphisms of tensor squares, it is natural to
seek conditions under which they satisfy the QYBE. Then, as anticipated by
B. B.Venkov working in the category of sets with cartesian product [5, §9], the
QYBE corresponds generally to various distributivity conditions on the products
∇ : A ⊗ A → A appearing in the left and right composites. If the left (or right)
composite of a bimagma satisfies the QYBE, then the bimagma is said to possess
the property of left (or right) quantum distributivity.

The plan of the paper is as follows. Section 2 presents the requisite background
on symmetric monoidal categories and bimagmas; Section 3 gives the background
on quasigroups and quantum quasigroups. Section 4 then examines quantum
distributivity of bimagmas, in particular furnishing both necessary and sufficient
conditions (Theorem 4.5, Corollary 4.6) that correspond to sufficient conditions
for quantum distributivity established earlier [12]. The formal similarity of the
identities (4.4) and (4.7) of these results, namely

x(yz) = (xRy)(xLz) and (zy)x = (zxR)(yxL) ,

with identities that appear in connection with the proof of Belousov’s Theorem
[2, (8.7), (8.8)], was the first indication that Belousov’s Theorem might prove
relevant to quantum distributivity and solution of the QYBE.

Section 5 reformulates the well-known concept of principal isotopy in terms
of magmas in a symmetric monoidal category (Definition 5.1). The new concept
specializes to the classical concept in the symmetric monoidal category of sets
with the cartesian product (Remark 5.2). Definition 5.3 then introduces the
concept of principal bimagma isotopy, which combines the principal isotopy of
magmas with a new enneagon condition on the comagma side. Corollary 5.6 notes
that in the category of sets with the cartesian product, any classical principal
isotopy, whose components are commuting automorphisms of the domain magma
of the isotopy, may be enriched to a principal bimagma isotopy simply by defining
a suitable comultiplication on the underlying set of the classical principal isotopy.
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Section 6 investigates preservation of quantum distributivity under principal
isotopy of magmas and bimagmas. The main results (Theorem 6.1, Corollary 6.2,
Theorem 6.4) include a number of apparently restrictive conditions within their
hypotheses, but these conditions are both modeled on, and implemented by, the
prototype of Belousov’s Theorem. Indeed, the culminating Theorem 7.2 shows
how the isotopy in Belousov’s Theorem from a classically distributive quasigroup
to a commutative Moufang loop yields a quantum distributive quantum quasi-
group with the commutative Moufang loop as its magma reduct. Thus the
commutative Moufang loop yields new solutions to the quantum Yang-Baxter
equation that are not apparent from the classical distributivity of the original
quasigroup.

For algebraic concepts and conventions that are not otherwise discussed in
this paper, readers are referred to [13]. In particular, algebraic notation is used
throughout the paper, with functions to the right of, or as superfixes to, their
arguments. Thus compositions are read from left to right. These conventions
serve to minimize the proliferation of brackets.

2 Structures in symmetric monoidal categories

The general setting for the structures studied in this paper is a symmetric
monoidal category (or “symmetric tensor category” — compare [14, Ch. 11])
(V,⊗,1). The standard example is provided by the category K of vector spaces
over a field K, under the usual tensor product. More general concrete examples
are provided by varieties V of entropic (universal) algebras, algebras on which
each (fundamental and derived) operation is a homomorphism (compare [4, 7]).
These include the categories Set of sets and FinSet of finite sets (under the
cartesian product), the category of pointed sets, the category S of unital (right)
modules over a commutative, unital ring S, the category of commutative monoids,
and the category of semilattices.

In a monoidal category (V,⊗,1), there is an object 1 known as the unit
object. For example, the unit object of K is the vector space K, while the unit
object of Set under the cartesian product is a terminal object ⊤, a singleton.
For objects A and B in a monoidal category, a tensor product object A ⊗ B

is defined. For example, if U and V are vector spaces over K with respective
bases X and Y , then U ⊗ V is the vector space with basis X × Y , written as
{x ⊗ y | x ∈ X, y ∈ Y }. There are natural isomorphisms with components

αA,B;C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C) , ρA : A ⊗ 1 → A , λA : 1 ⊗ A → A

satisfying certain coherence conditions guaranteeing that one may as well regard
these isomorphisms as identities [14, p.67]. Thus the bracketing of repeated tensor
products is suppressed in this paper. In the vector space example, adding a third
space W with basis Z, one has

αU,V ;W : (x ⊗ y) ⊗ z 7→ x ⊗ (y ⊗ z)
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for z ∈ Z, along with ρU : x ⊗ 1 7→ x and λU : 1 ⊗ x 7→ x for x ∈ X.
A monoidal category (V,⊗,1) is said to be symmetric if there is a given

natural isomorphism with twist components τA,B : A ⊗ B → B ⊗ A such that
τA,BτB,A = 1A⊗B [14, pp.67–8]. One uses τU,V : x ⊗ y 7→ y ⊗ x with x ∈ X and
y ∈ Y in the vector space example.

Definition 2.1. Let V be a symmetric monoidal category.

(a.1) A magma in V is a V-object A with a V-morphism

∇ : A ⊗ A → A

known as multiplication.

(a.2) Let A and B be magmas in V. Then a magma homomorphism f : A → B

is a V-morphism such that the diagram

A

f

��

A ⊗ A

f⊗f

��

∇oo

B B ⊗ B
∇

oo

commutes.

(b.1) A comagma in V is a V-object A with a V-morphism

∆: A → A ⊗ A

known as comultiplication.

(b.2) Let A and B be comagmas in V. A comagma homomorphism f : A → B

is a V-morphism such that the diagram

B
∆ // B ⊗ B

A

f

OO

∆
// A ⊗ A

f⊗f

OO

commutes.

(c) A bimagma (A,∇,∆) in V is a magma (A,∇) and comagma (A,∆) in V

such that the following bimagma diagram commutes:

A
∆

))SSSSSSSSSSSSSSSSS

A ⊗ A

∆⊗∆

��

∇

55kkkkkkkkkkkkkkkkk

**TTTTTTTTTTTTTTTTTT A ⊗ A

A ⊗ A ⊗ A ⊗ A
1A⊗τ⊗1A

//

44jjjjjjjjjjjjjjjjjj

A ⊗ A ⊗ A ⊗ A

∇⊗∇

OO

(2.1)
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Remark 2.2. (a) The arrow across the bottom of the bimagma diagram (2.1)
makes use of the twist isomorphism τA,A or τ : A ⊗ A → A ⊗ A.

(b) Commuting of the bimagma diagram (2.1) in a bimagma (A,∇,∆) means
that

∆: (A,∇) →
(

A ⊗ A, (1A ⊗ τ ⊗ 1A)(∇⊗∇)
)

is a magma homomorphism (commuting of the upper left-hand solid and dotted
quadrilateral), or equivalently, that

∇ :
(

A ⊗ A, (∆ ⊗ ∆)(1A ⊗ τ ⊗ 1A)
)

→ (A,∆)

is a comagma homomorphism (commuting of the upper right-hand solid and
dotted quadrilateral).

(c) If V is an entropic variety of universal algebras, the comultiplication of a
comagma in V may be written as

∆: A → A ⊗ A; a 7→
(

(aL1 ⊗ aR1) . . . (aLna ⊗ aRna )
)

wa (2.2)

in a universal-algebraic version of the well-known Sweedler notation. In (2.2),
the tensor rank of the image of a (or any such general element of A ⊗ A) is
the smallest arity na of the derived word wa expressing the image (or general
element) in terms of elements of the generating set {b ⊗ c | b, c ∈ A} for A ⊗ A.
A more compact but rather less explicit version of Sweedler notation, generally
appropriate within any concrete monoidal category V, is a∆ = aL⊗aR, with the
understanding that the tensor rank of the image is not implied to be 1.

(d) Magma multiplications on an object A of a concrete monoidal category are
often denoted by juxtaposition, namely (a ⊗ b)∇ = ab, or with a · b as an infix
notation, for elements a, b of A.

(e) With the notations of (c) and (d), commuting of the bimagma diagram (2.1)
in a concrete bimagma (A,∇,∆) amounts to

aLbL ⊗ aRbR = (ab)L ⊗ (ab)R (2.3)

for a, b in A.

3 Quantum quasigroups

While one- or two-sided quasigroups may be defined either equationally or
combinatorially, it is actually the combinatorial definition of these structures
which is “quantized” into the definition of quantum quasigroups, so here it suffices
to recall the classical combinatorial definitions. Thus a quasigroup (Q, ·) is defined
as a set Q that is equipped with a binary multiplication operation denoted by
· or simple juxtaposition of the two arguments, where specification of any two
of x, y, z in the equation x · y = z determines the third uniquely. Such a binary
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multiplication Q×Q → Q; (x, y) 7→ xy will often be written as a magma structure
∇ : Q ⊗ Q → Q;x ⊗ y 7→ xy in notation for the symmetric monoidal category
(Set,×,⊤) of sets under the cartesian product. In particular, note that tensor
products of elements just correspond here to tuples. For example, x ⊗ y ⊗ z is
the ordered triple (x, y, z).

A left quasigroup (Q, ·) is a set Q with a multiplication such that in the
equation a · x = b, specification of a and b determines x uniquely. The definition
of right quasigroups is chirally dual: In the equation x · a = b, specification of a

and b determines x uniquely. If Q is a set, the right projection product xy = y

yields a left quasigroup structure on Q, while the left projection product xy = x

yields a right quasigroup structure.

Definition 3.1. Let (A,∇,∆) be a bimagma in a symmetric monoidal category
(V,⊗,1).

(a) On (A,∇,∆), the endomorphism

G : A ⊗ A
∆⊗1A // A ⊗ A ⊗ A

1A⊗∇ // A ⊗ A (3.1)

of A ⊗ A is known as the left composite morphism.

(b) On (A,∇,∆), the endomorphism

a : A ⊗ A
1A⊗∆// A ⊗ A ⊗ A

∇⊗1A // A ⊗ A (3.2)

of A ⊗ A is known as the right composite morphism.

Definition 3.2. Consider a symmetric monoidal category (V,⊗,1).

(a) A left quantum quasigroup (A,∇,∆) in V is a bimagma in V for which the
left composite morphism G is invertible.

(b) A right quantum quasigroup (A,∇,∆) in V is a bimagma in V for which
the right composite morphism a is invertible.

(c) A quantum quasigroup (A,∇,∆) in V is a bimagma in V where both G

and a are invertible.

Since these basic definitions are expressed entirely within the structure of a
symmetric, monoidal category, their concepts are maintained under the so-called
symmetric, monoidal functors which preserve that structure. A typical example
of such a functor is given by the free monoid functor from sets under cartesian
products to the category of modules over a commutative ring, with the usual
tensor product.

Proposition 3.3. Suppose that (V,⊗,1V) and (W,⊗,1W) are symmetric
monoidal categories. Let F : V → W be a symmetric monoidal functor. If
(A,∇,∆) is a left, right, or two-sided quantum quasigroup in (V,⊗,1V), the
structure (AF,∇F ,∆F ) is a respective left, right, or two-sided quantum quasi-
group in (W,⊗,1W).
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Theorem 3.4. Consider the symmetric, monoidal category (FinSet,×,⊤) of
finite sets under the cartesian product.

(a) Left quantum quasigroups (Q,∇,∆: x 7→ xL ⊗ xR) in (FinSet,×,⊤) are
equivalent to triples (A,L,R) that consist of a left quasigroup (Q,∇) with
an automorphism L and endomorphism R [10].

(b) The quantum quasigroups (Q,∇,∆: x 7→ xL ⊗ xR) in (FinSet,×,⊤) are
equivalent to triples (Q,L,R) consisting of a quasigroup (Q,∇) equipped
with automorphisms L and R [11].

Corollary 3.5. [10] Given a left quasigroup (Q, ·) with an automorphism L and
endomorphism R, define ∇ : Q ⊗ Q → Q;x ⊗ y 7→ xy as a multiplication and
∆: Q → Q ⊗ Q;x 7→ xL ⊗ xR as a comultiplication. Then (Q,∇,∆) is a left
quantum quasigroup in (Set,×,⊤).

Corollary 3.6. [11] Suppose that (Q, ·) is a quasigroup equipped with two auto-
morphisms L and R. Define ∇ : Q⊗Q → Q;x⊗ y 7→ xy as a multiplication and
∆: Q → Q⊗Q;x 7→ xL⊗xR as a comultiplication. Then (Q,∇,∆) is a quantum
quasigroup in (Set,×,⊤).

4 Quantum distributivity

Definition 4.1 ([12]). Suppose that (A,∇,∆) is a bimagma in a symmetric,
monoidal category.

(a) The bimagma (A,∇,∆) is said to satisfy the condition of quantum left
distributivity if the left composite G of (A,∇,∆) satisfies the quantum Yang-
Baxter equation (1.1).

(b) The bimagma (A,∇,∆) is said to satisfy the condition of quantum right
distributivity if the right composite a of (A,∇,∆) satisfies the quantum
Yang-Baxter equation (1.1).

(c) The bimagma (A,∇,∆) satisfies the condition of quantum distributivity if
it has both the left and right quantum distributivity properties.

Since the quantum distributivity concepts of Definition 4.1 are written entirely
in the language of symmetric monoidal categories, one immediately obtains the
following analogue of Proposition 3.3.

Proposition 4.2. Suppose that (V,⊗,1V) and (W,⊗,1W) are symmetric
monoidal categories. Let F : V → W be a symmetric monoidal functor. If
(A,∇,∆) is a left, right, or two-sided distributive bimagma in (V,⊗,1V), then
the structure (AF,∇F ,∆F ) becomes a respective left, right, or two-sided quantum
distributive bimagma in (W,⊗,1W).
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The explicit results of this paper are predominantly concerned with obtaining
quantum distributivity, and therefore solutions of the QYBE, in the symmetric
monoidal category (Set,⊗,⊤) of sets with the cartesian product. On the other
hand, one is generally interested in solving the QYBE within the symmetric
monoidal category (K,⊗,K) of unital modules over a commutative, unital ring
K. To this end, one may apply Proposition 4.2, with the symmetric, monoidal
free monoid functor F : Set → K, to the quantum distributive structures in
(Set,⊗,⊤) that are exhibited in the paper.

The terminology of Definition 4.1 is justified by the following result.

Proposition 4.3 ([5, 12]). Let (Q,∇) be a magma in the category of sets with
the cartesian product. Define ∆: Q → Q ⊗ Q;x 7→ x ⊗ x. Then the bimagma
(Q,∇,∆) is quantum left distributive if and only if the magma (Q,∇) is left
distributive, in the classical sense that the identity

x(yz) = (xy)(xz) (4.1)

is satsified.

Proposition 4.4 ([12], Prop. 6.4). Let (Q,∇,∆) be a bimagma in (Set,×,⊤),
equipped with the comultiplication ∆: Q → Q ⊗ Q;x 7→ xL ⊗ xR.

(a) The bimagma (Q,∇,∆) is quantum left distributive if LR = RL and the
identity

xR(yRz) = (xRRyR)(xRLz) (4.2)

is satisfied.

(b) The bimagma (Q,∇,∆) is quantum right distributive if LR = RL and the
identity

(zyL)xL = (zxLR)(yLxLL) (4.3)

is satisfied.

Theorem 4.5. Let (Q,∇,∆) be a bimagma in (Set,×,⊤), with comultiplication
∆: Q → Q⊗Q;x 7→ xL ⊗xR. Suppose that the following conditions are satisfied:

(a) The magma (Q,∇) is a right quasigroup;

(b) The second comultiplication component R : Q → Q is surjective.

Then the bimagma (Q,∇,∆) is quantum left distributive if and only if LR = RL

and the identity

x(yz) = (xRy)(xLz) (4.4)

is satisfied.
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Proof. Note that the identity (4.4) implies the identity (4.2). Then the sufficiency
of (4.4), together with the commutation condition, follows by Proposition 4.4(a).

Conversely, suppose that (Q,∇,∆) is quantum left distributive. Consider an
element x ⊗ y ⊗ z of Q ⊗ Q ⊗ Q. Then

xLL ⊗ xLRyL ⊗ xR(yRz) (4.5)

=
(

xL ⊗ yL ⊗ xR(yRz)
)

G
12

= (x ⊗ yL ⊗ yRz)G13
G

12

= (x ⊗ y ⊗ z)G23
G

13
G

12

= (x ⊗ y ⊗ z)G12
G

13
G

23

= (xL ⊗ xRy ⊗ z)G13
G

23

= (xLL ⊗ xRy ⊗ xLRz)G23

= xLL ⊗ (xRy)L ⊗ (xRy)R(xLRz) . (4.6)

Since (Q,∇,∆) is a bimagma, (2.3) implies that the maps L and R are endo-
morphisms of the right quasigroup (Q,∇). Since the respective middle factors of
(4.5) and (4.6) agree, one has xLRyL = xRLyL. Canceling yL in the right quasi-
group (Q,∇) then yields xLR = xRL, so the commutation condition LR = RL

holds. Since the respective final factors of (4.5) and (4.6) agree, the identity (4.2)
is satisfied. The surjectivity of R : Q → Q then implies that (4.4) is satisfied.

The chiral dual of Theorem 4.5 is formulated as follows.

Corollary 4.6. Let (Q,∇,∆) be a bimagma in (Set,×,⊤), with comultiplication
∆: Q → Q⊗Q;x 7→ xL ⊗xR. Suppose that the following conditions are satisfied:

(a) The magma (Q,∇) is a left quasigroup;

(b) The first comultiplication component L : Q → Q is surjective.

Then the bimagma (Q,∇,∆) is quantum right distributive if and only if LR = RL

and the identity

(zy)x = (zxR)(yxL) (4.7)

is satisfied.

Extracting details from the necessity proof in Theorem 4.5 yields the following.

Corollary 4.7. Let (Q,∇,∆) be a bimagma in (Set,×,⊤), with comultiplication
∆: Q → Q ⊗ Q;x 7→ xL ⊗ xR satisfying LR = RL.

(a) Suppose that the second comultiplication component R : Q → Q is surjective.
Then the identity (4.4) is satisfied if the bimagma (Q,∇,∆) is quantum left
distributive.

(b) Suppose that the first comultiplication component L : Q → Q is surjective.
Then the identity (4.7) is satisfied if the bimagma (Q,∇,∆) is quantum
right distributive.
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5 Principal isotopy

Definition 5.1. Consider a symmetric monoidal category (V,⊗,1). Let (A,∇i)
be a magma in (V,⊗,1), for i = 1, 2. Then an automorphism φ of the object
A ⊗ A of V is a principal magma isotopy

φ : (A,∇1) ; (A,∇2)

in (V,⊗,1) if the diagram

Q

A ⊗ A

∇2

<<xxxxxxxxx

φ
// A ⊗ A

∇1

bbFFFFFFFFF

(5.1)

commutes in V.

Remark 5.2. Suppose that (Q,∇i : x ⊗ y 7→ x ◦i y) are magmas on an object
Q of (Set,×,⊤) for i = 1, 2. Then if f ⊗ g : (Q,∇1) ; (Q,∇2) is a principal
isotopy in (Set,×,⊤) for automorphisms f, g of Q, one has

x ◦2 y = xf ◦1 yg (5.2)

for x, y ∈ Q, as usual for a classical principal isotopy [2, p.13], [9, p.5].

Definition 5.3. Consider a symmetric monoidal category (V,⊗,1). Let
(A,∇i,∆i) be a bimagma in (V,⊗,1), for i = 1, 2. Then an automorphism
φ of the object A ⊗ A of V is a principal bimagma isotopy

φ : (A,∇1,∆1) ; (A,∇2,∆2)

in (V,⊗,1) if the decagon diagram

A

A⊗2
φ

//

∆2⊗∆2

��

∇2

55kkkkkkkkkkkkkkkkk

A⊗2

∆1⊗∆1

��

∇1

iiSSSSSSSSSSSSSSSSS

A⊗4

τ⊗τ

��

A⊗4

1A⊗τ⊗1A

""FFF
FF

FFF
A⊗4

A⊗4
φ⊗2

// A⊗4

τ⊗τ
<<xxxxxxxx

A⊗4
φ⊗2

// A⊗4

1A⊗τ⊗1A

OO

(5.3)

commutes in V. Here, the superfix ⊗r is used for the r-th tensor power of an
object or morphism in V. The lower part of the decagon diagram is called the
nonagon diagram or enneagon diagram.
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Remark 5.4. Note that the upper triangle in the decagon diagram is just the
diagram (5.1). Thus a principal bimagma isotopy

φ : (A,∇1,∆1) ; (A,∇2,∆2)

includes a principal magma isotopy φ : (A,∇1) ; (A,∇2).

Proposition 5.5. Suppose that (Q,∇i,∆i : x 7→ xLi ⊗ xRi), for i = 1, 2, are
bimagmas in (Set,×,⊤), with permutations f : Q → Q and g : Q → Q. Then the
validity of the equations

L2gf = fL1 , L2g
2 = gL1 , R2f

2 = fR1 , R2fg = gR1 (5.4)

is equivalent to the commuting of the enneagon diagram (5.3) for a principal
bimagma isotopy

f ⊗ g : (Q,∇1,∆1) ; (Q,∇2,∆2)

composed from f : Q → Q and g : Q → Q.

Proof. For an element x of Q, the commuting of the enneagon diagram (5.3) gives

x ⊗ y � f⊗g //
_

∆2⊗∆2

��

xf ⊗ yg
_

∆1⊗∆1

��
xL2 ⊗ yR2 ⊗ xL2 ⊗ yR2

_

τ⊗τ

��

xfL1 ⊗ xfR1 ⊗ ygL1 ⊗ ygR1
_

1Q⊗τ⊗1Q

��
yR2 ⊗ xL2 ⊗ yR2 ⊗ xL2

_

(f⊗g)⊗2

��

xfL1 ⊗ ygL1 ⊗ xfR1 ⊗ ygR1

yR2f ⊗ xL2g ⊗ yR2f ⊗ xL2g
_

τ⊗τ

��

xL2gf ⊗ xL2g
2 ⊗ yR2f

2 ⊗ yR2fg

xL2g ⊗ yR2f ⊗ xL2g ⊗ yR2f
�

1Q⊗τ⊗1Q

// xL2g ⊗ xL2g ⊗ yR2f ⊗ yR2f
_

(f⊗g)⊗2

OO

which is equivalent to the equations

L2gf = fL1 , L2g
2 = gL1 , R2f

2 = fR1 , R2fg = gR1

holding in the endomorphism monoid of the set Q.

Corollary 5.6. Consider a magma (Q,∇1 : x ⊗ y 7→ x · y) in (Set,×,⊤), with
commuting automorphisms f and g.

(a) There is a bimagma

(Q,∇1 : x ⊗ y 7→ x · y,∆1 : x 7→ x ⊗ x)

in (Set,×,⊤).
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(b) There is a bimagma

(Q,∇2 : x ⊗ y 7→ xf · yg,∆2 : x 7→ xg−1 ⊗ xf−1)

in (Set,×,⊤).

(c) There is a principal bimagma isotopy

f ⊗ g : (Q,∇1,∆1) ; (Q,∇2,∆2) .

Proof. (a) Trivially, (2.3) holds for L = R = 1.

(b) Applying (2.3) to (Q,∇2,∆2), note that

(xg−1⊗yg−1)∇2 ⊗ (xf−1 ⊗ yf−1)∇2

= (xg−1f · yg−1g) ⊗ (xf−1f · yf−1g)

= (xf · yg)g−1 ⊗ (xf · yg)f−1

= (x ⊗ y)∇2g
−1 ⊗ (x ⊗ y)∇2f

−1

for x, y in Q, so that (Q,∇2,∆2) is a bimagma.

(c) With L1 = R1 = 1Q and L2 = g−1, R2 = f−1, the equations (5.4) hold.

Remark 5.7. In Corollary 5.6(b), duality interchanges and inverts the respective
components f, g of the magma isotopy to yield the corresponding components
g−1, f−1 of the comultiplication.

6 Isotopy of quantum distributive structures

This section investigates the preservation of quantum distributivity under
principal isotopy. The conditions assembled in the hypotheses of its theorems are
seen to appear naturally in the following section, within the context of Belousov’s
Theorem.

Theorem 6.1. Suppose that (Q,∇i : x ⊗ y 7→ x ◦i y,∆i : x 7→ xLi ⊗ xRi) are
bimagmas on an object Q of (Set,×,⊤) for i = 1, 2, such that the following
conditions are satisfied:

(a) The comultiplication component R1 : Q → Q is surjective;

(b) The comultiplication components Li and Ri commute for i = 1, 2;

(c) The bimagma (Q,∇1,∆1) is quantum left distributive;

(d) There is a principal magma isotopy

f ⊗ g : (Q,∇1) ; (Q,∇2)

whose components f, g are commuting automorphisms of (Q,∇1);
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(e) The equations L2gf = fL1 and R2f
2 = fR1 hold.

Then (Q,∇2,∆2) is quantum left distributive.

Proof. By the conditions (a)–(c), Corollary 4.7 implies that the identity (4.4)
holds in (Q,∇1,∆1). For x, y, z ∈ Q, one then has

x ◦2 (y ◦2 z) = xf ◦1 (y ◦2 z)g = xf ◦1 (yf ◦1 zg)g

= xf ◦1 (yfg ◦1 zg2
)

= (xfR1 ◦1 yfg) ◦1 (xfL1 ◦1 zg2
) (6.1)

and

(xR2 ◦2 y) ◦2 (xL2 ◦2 z) = (xR2f ◦1 yg) ◦2 (xL2f ◦1 zg)

= (xR2f ◦1 yg)f ◦1 (xL2f ◦1 zg)g

= (xR2f2
◦1 ygf ) ◦1 (xL2fg ◦1 zg2

) (6.2)

by (5.2), the identity (4.4) in (Q,∇1,∆1), and condition (d) saying that the
principal isotopy components f and g are automorphisms of (Q,∇1). Now the
commutation condition in (d) and the equations of (e) imply the equality of
(6.1) and (6.2). Thus the identities (4.4) and (4.2) hold in (Q,∇2,∆2). By the
condition (b) for i = 2, Proposition 4.4 implies that (Q,∇2,∆2) is quantum left
distributive.

The chiral dual of Theorem 6.1 may be formulated as follows.

Corollary 6.2. Suppose that (Q,∇i : x ⊗ y 7→ x ◦i y,∆i : x 7→ xLi ⊗ xRi) are
bimagmas on an object Q of (Set,×,⊤) for i = 1, 2, such that the following
conditions are satisfied:

(a) The comultiplication component L1 : Q → Q is surjective;

(b) The comultiplication components Li and Ri commute for i = 1, 2;

(c) The bimagma (Q,∇1,∆1) is quantum right distributive;

(d) There is a principal magma isotopy

f ⊗ g : (Q,∇1) ; (Q,∇2)

whose components f, g are commuting automorphisms of (Q,∇1);

(e) The equations L2g
2 = gL1 and R2fg = gR1 hold.

Then (Q,∇2,∆2) is quantum right distributive.
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Remark 6.3. The equations of Theorem 6.1(e) may be written as

∆2(g ⊗ f)(f ⊗ f) = f∆1

within the symmetric monoidal category (Set,×,⊤). Similarly, the chirally dual
equations of Corollary 6.2(e) may be written as

∆2(g ⊗ f)(g ⊗ g) = g∆1

within (Set,×,⊤). According to Proposition 5.5, the enneagon diagram elegantly
captures the conjunction of all four equations, using the isotopy f ⊗ g. On the
other hand, there does not appear to be an equally elegant or natural way to
capture the respective pairs of individual equations that appear in the theorem
and corollary separately.

The diverse conditions of Theorem 6.1 and Corollary 6.2 are simplified and
unified in the context of quantum quasigroups within the symmetric monoidal
category of finite sets and cartesian products.

Theorem 6.4. Suppose that (Q,∇i : x ⊗ y 7→ x ◦i y,∆i : x 7→ xLi ⊗ xRi) are
quantum quasigroups on an object Q of (FinSet,×,⊤) for i = 1, 2, such that the
following conditions are satisfied:

(a) The comultiplication components Li and Ri commute for i = 1, 2;

(b) The quantum quasigroup (Q,∇1,∆1) is quantum distributive;

(c) There is a principal bimagma isotopy

f ⊗ g : (Q,∇1,∆1) ; (Q,∇2,∆2)

whose components f, g are commuting automorphisms of (Q,∇1).

Then (Q,∇2,∆2) is quantum distributive.

Proof. The bimagmas (Q,∇i,∆i), for i = 1, 2, satisfy the conditions (a)–(e) of
Theorem 6.1 and Corollary 6.2:

(a) The mappings R1 and L1 are bijective, by Theorem 3.4(b);

(b) This is condition (a) of the current theorem;

(c) This is condition (b) of the current theorem;

(d) By Remark 5.4, this is part of condition (c) of the current theorem;

(e) The equations

L2gf = fL1 , L2g
2 = gL1 , R2f

2 = fR1 , R2fg = gR1

hold by Proposition 5.5, given condition (c) of the current theorem.

Then by Theorem 6.1, (Q,∇2,∆2) is quantum left distributive. By Corollary 6.2,
it is quantum right distributive.
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7 Belousov’s Theorem and quantum distributivity

If e is an element of a magma (Q, ·), one has the left multiplication

L(e) : Q → Q;x 7→ e · x

and right multiplication

R(e) : Q → Q;x 7→ x · e .

If (Q, ·) is a left quasigroup, L(e) is bijective. Similarly, if (Q, ·) is a right quasi-
group, R(e) is bijective.

Lemma 7.1. Let e be an element of a distributive quasigroup (Q, ·).

(a) The left and right multiplications L(e) and R(e) are automorphisms of (Q, ·)
[2, p.131];

(b) The element e is idempotent: ee = e [2, p.131];

(c) The multiplications L(e) and R(e) commute [2, (8.3)].

Proof. (a) By distributivity, one has

e(xy) = (ex)(ey) and (xy)e = (xe)(ye)

for elements x, y of Q.

(b) Note that e(ee) = (ee)(ee), so e = ee.

(c) Let x be an element of Q. Then xL(e)R(e) = (ex)e = (ee)(xe) = e(xe) =
xR(e)L(e) by respective application of (a) and (b).

Theorem 7.2. Suppose that (Q,∇1) is a distributive quasigroup with an element
e. Set f = R(e)−1 and g = L(e)−1. Let (Q,∇2) be the commutative Moufang
loop with multiplication

∇2 : Q ⊗ Q → Q;x ⊗ y 7→ (xf ⊗ yg)∇1 (7.1)

given by Belousov’s Theorem [1, Teorema 1], [2, Teorema 8.1]. Then with the
comultiplication

∆2 : Q → Q ⊗ Q;x 7→ xL(e) ⊗ xR(e) , (7.2)

there is a quantum distributive quantum quasigroup (Q,∇2,∆2) in the symmetric
monoidal category (Set,×,⊤).

Proof. Lemma 7.1(a) implies that the respective components L(e) and R(e) of
the comultiplication (7.2) are automorphisms of (Q,∇1). Lemma 7.1(c) yields

(x ⊗ y)∇2L(e) = (xf ⊗ yg)∇1L(e) =
(

xfL(e) ⊗ ygL(e)
)

∇1
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=
(

xL(e)f ⊗ yL(e)g
)

∇1 = (xL(e) ⊗ yL(e))∇2

and

(x ⊗ y)∇2R(e) = (xf ⊗ yg)∇1R(e) =
(

xfR(e) ⊗ ygR(e)
)

∇1

=
(

xR(e)f ⊗ yR(e)g
)

∇1 = (xR(e) ⊗ yR(e))∇2 ,

so that L(e) and R(e) are automorphisms of (Q,∇2). Corollary 3.6 then implies
that (Q,∇2,∆2) is a quantum quasigroup in (Set,×,⊤).

Define ∆1 : Q → Q⊗Q;x 7→ x⊗x. Corollary 3.6 implies that (Q,∇1,∆1) is a
quantum quasigroup in (Set,×,⊤). Then the bimagmas (Q,∇i,∆i), for i = 1, 2,
satisfy the conditions (a)–(e) of Theorem 6.1 and Corollary 6.2:

(a) The identity mapping R1 = L1 = 1Q is surjective;

(b) Note R2L2 = R(e)L(e) = L(e)R(e) = L2R2 by Lemma 7.1(c), while of
course R1L1 = L1R1 = 1Q;

(c) Apply Proposition 4.3 and its chiral dual;

(d) The definition (7.1) yields a principal magma isotopy f⊗g; by Lemma 7.1(c),
its components commute;

(e) The equations

L2gf = f = fL1 , R2f
2 = f = fR1 ,

L2g
2 = g = gL1 , R2fg = g = gR1

hold since L2 = g−1, R2 = f−1, and L1 = R1 = 1Q.

By Theorem 6.1, (Q,∇2,∆2) is quantum left distributive, while by Corollary 6.2,
it is quantum right distributive.

Corollary 7.3. In the context of Theorem 7.2, with

∆1 : Q → Q ⊗ Q;x 7→ x ⊗ x ,

there is a principal bimagma isotopy

f ⊗ g : (Q,∇1,∆1) ; (Q,∇2,∆2) .

Proof. Apply Corollary 5.6.

Remark 7.4. The left composite morphism of (Q,∇1,∆1) is

x ⊗ y 7→ x ⊗ xy ,

while the left composite morphism of (Q,∇2,∆2) is

x ⊗ y 7→ xe ⊗ x · yL(e)−1 .

These two distinct automorphisms of Q ⊗ Q give solutions of the QYBE in
(Set,×,⊤). For each commutative, unital ring S, Proposition 4.2 shows that
applying the free S-module functor then yields solutions of the QYBE in the
module category (S,⊗, S).
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