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A REPUBLICII MOLDOVA. MATEMATICA
Number 1(80), 2016, Pages 64–69
ISSN 1024–7696

Linear groups that are the multiplicative groups

of neofields

Anthony B.Evans

Abstract. A neofield N is a set with two binary operations, addition and multipli-
cation, for which N is a loop under addition with identity 0, the nonzero elements of
N form a group under multiplication, and both left and right distributive laws hold.
Which finite groups can be the multiplicative groups of neofields? It is known that
any finite abelian group can be the multiplicative group of a neofield, but few classes
of finite nonabelian groups have been shown to be multiplicative groups of neofields.
We will show that each of the groups GL(n, q), PGL(n, q), SL(n, q), and PSL(n, q),
q even, q 6= 2, can be the multiplicative group of a neofield.

Mathematics subject classification: 20N05, 12K99.
Keywords and phrases: neofield, linear group, orthomorphism, near orthomor-
phism.

1 Introduction

Neofields were introduced by Paige [7] in 1949. A neofield is a set N with two
binary operations, addition and multiplication, satisfying the following:

1. The elements of N form a loop under addition, with identity 0.

2. The nonzero elements of N form a group under multiplication.

3. The left and right distributive laws hold: a(b+c) = ab+ac and (a+b)c = ac+bc
for all a, b, c ∈ N .

For a neofield N we will use 1 to denote the multiplicative identity. If N is a
neofield, then the additive loop of N is completely determined by its multiplicative
group and its presentation function T : x 7→ 1 + x, as

x + y =











y if x = 0;

x if y = 0;

xT (x−1y) if x, y 6= 0.

In fact, N is completely determined by its multiplicative group and its presentation
function as an easy argument shows that a0 = 0a = 0 for all a ∈ N .

The question that will concern us is, Which finite groups can be multiplicative
groups of neofields? For abelian groups, this question was answered by Paige [7].
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His answer illustrates a divide between neofields in which 1 + 1 = 0 and neofields in
which 1 + 1 6= 0. In fact Johnson [4] showed that a finite group cannot be both the
multiplicative group of a neofield in which 1 + 1 = 0 and the multiplicative group of
a neofield in which 1 + 1 6= 0.

Theorem 1 (Paige, 1949). Any finite abelian group G can be the multiplicative group

of a neofield. G can be the multiplicative group of a neofield in which 1 + 1 = 0 if

and only if G does not contain a unique element of order two; and G can be the

multiplicative group of a neofield in which 1 + 1 6= 0 if and only if G contains a

unique element of order two.

Thus, the question of which finite groups can be multiplicative groups of neofields
reduces to the question, Which finite nonabelian groups can be multiplicative groups
of neofields? Johnson [4] answered this question for dihedral groups.

Theorem 2 (Johnson, 1986). No dihedral group can be the multiplicative group of

a neofield.

In a list of unsolved problems Keedwell [5] posed a closely related problem, For
which finite orders do there exist nonabelian groups that can be multiplicative groups
of neofields?

For a group G, a bijection θ : G → G is an orthomorphism of G if the mapping
δ : x 7→ x−1θ(x) is a bijection: θ is normalized if θ(1) = 1. A near orthomorphism of
G is a bijection θ : G \ {h} → G \ {1}, h 6= 1, for which the mapping δ : g 7→ g−1θ(g)
is a bijection θ : G\{h} → G\{k}, for some k ∈ G, k 6= h−1. A near orthomorphism
θ is normalized if k = 1, in which case h is the exdomain element of θ.

Orthomorphisms and near orthomorphisms of G that commute with all inner
automorphisms of G, i. e., θ(g−1xg) = g−1θ(x)g for all g ∈ G, are particularly useful
in the construction of neofields. Orthomorphisms are used to construct neofields in
which 1+1 = 0, and near orthomorphisms to construct neofields in which 1+1 6= 0.

Theorem 3. Let G be a finite group. There exists a neofield, with multiplicative

group G, in which 1 + 1 = 0 if and only if G admits normalized orthomorphisms

that commute with all inner automorphisms of G.

There exists a neofield, with multiplicative group G, in which 1 + 1 6= 0 if and

only if G admits normalized near orthomorphisms that commute with all inner au-

tomorphisms of G.

Proof. If θ is a normalized orthomorphism of G that commutes with all inner au-
tomorphisms of G and 0 6∈ G, then the function T : G ∪ {0} → G ∪ {0} defined
by

T (x) =











1 if x = 0,

0 if x = 1,

θ(x) if x 6= 0, 1,

is the presentation function of a neofield, with multiplicative group G, in which
1 + 1 = 0.
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If T is the presentation function of a neofield, with multiplicative group G, in
which 1 + 1 = 0, then the mapping θ : G → G defined by

θ(x) =

{

1 if x = 1,

T (x) otherwise,

is a normalized orthomorphism of G that commutes with all inner automorphisms
of G.

A similar proof establishes the relationship between neofields, with multiplicative
group G, in which 1+1 6= 0 and normalized near orthomorphisms of G that commute
with all inner automorphisms of G.

As an example.

Corollary 1. Any group of odd order can be the multiplicative group of a neofield

in which 1 + 1 = 0.

Proof. If G is a group of odd order, then the mapping x 7→ x2 is a normalized
orthomorphism of G that commutes with all inner automorphisms of G. The result
then follows from Theorem 3.

In this paper we will show that, if G is one of GL(n, q), SL(n, q), PGL(n, q)
or PSL(n, q), q even, q 6= 2, then G can be the multiplicative group of a neofield
in which 1 + 1 = 0. We will do this by constructing normalized orthomorphisms
of G that commute with all inner automorphisms of G. We will adapt techniques
that were used in [3] to construct sets of mutually orthogonal latin squares based on
GL(n, q), q even, q 6= 2: a remark in this paper claimed that the orthomorphisms
constructed yield neofields with multipicative group GL(n, q), q even, q 6= 2, in
which 1 + 1 = 0. For more information on neofields and orthomorphisms consult [1]
and [2].

2 The even-odd decomposition

Throughout this paper G will denote a finite group, U the set of 2–elements of
G, and S the set of odd–order elements of G. Note that U ∩S = {1}. We will make
extensive use of the even-odd decomposition, described in the following lemma.

Lemma 1 (even-odd decomposition). Each g ∈ G can be uniquely written as a

product g = us, where us = su, u ∈ U , and s ∈ S.

Proof. See [6], Lemma 2.2.4 with p = 2, for instance.

For this paper we need to define orthomorphisms of U and S. We call a bijection
θ : U → U an orthomorphism of U if the mapping x 7→ x−1θ(x) is also a bijection
U → U : θ is normalized if θ(1) = 1. Orthomorphisms of S are defined similarly.
We are interested in normalized orthomorphisms of U and S that commute with all
inner automorphisms of G.
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We first present a method for constructing orthomorphisms of G from orthomor-
phisms of U and S, using even-odd decompositions. Given two mappings θ : U → U
and φ : S → S, we will define the product of θ and φ (with respect to U and S),
written θ ×J φ, by θ ×J φ(g) = θ(u)φ(s), where g = us is the even-odd decomposi-
tion of g. A product construction of orthomorphisms is described in the following
lemma. Note that CU (s) denotes the centralizer of s in U and CS(u) the centralizer
of u in S.

Lemma 2. Let θ be an orthomorphism of U that acts on CU (s) for each s ∈ S, and

let φ be an orthomorphism of S that acts on CS(u) for each u ∈ U . Then θ ×J φ is

an orthomorphism of G.

Proof. See Lemma 2 in [3].

Theorem 4. Let θ be a normalized orthomorphism of U that acts on CU (s) for each

s ∈ S, and let φ be a normalized orthomorphism of S that acts on CS(u) for each

u ∈ U . If θ and φ commute with all inner automorphisms of G, then there exists a

neofield in which 1 + 1 = 0, with multiplicative group G.

Proof. By Lemma 2, θ ×J φ is a normalized orthomorphism of G. Further θ ×J φ
commutes with all inner automorphisms of G, as, if g = us, u ∈ U , s ∈ S, is
the even-odd decomposition of g and h ∈ G, then h−1gh = (h−1uh)(h−1sh) is the
even-odd decomposition of h−1gh.

Corollary 2. If there exists a normalized orthomorphism of U that acts on CU (s)
for each s ∈ S, and commutes with all inner automorphisms of G, then there exists

a neofield in which 1 + 1 = 0 with multiplicative group G.

Proof. The mapping x 7→ x2 is a normalized orthomorphism of S that acts on CS(u)
for each u ∈ U and commutes with all inner automorphisms of G.

3 The construction

For G one of GL(n, q), SL(n, q), PGL(n, q), or PSL(n, q), q even, q 6= 2, we will
construct normalized orthomorphisms of U that commute with inner automorphisms
of G. It will then follow from Corollary 2 that each of these groups can be the
multiplicative group of a neofield in which 1 + 1 = 0.

Let Mn(q) denote the set of n×n matrices over GF (q), q a power of 2. For each
a ∈ GF (q)∗, the multiplicative group of GF (q), we define the mapping

θa : Mn(q) → Mn(q) by θa(A) = I + a(I + A).

Suppose that G is a subgroup of GL(n, q), q a power of 2. Note that, if Am = I,
m a power of 2, then θa(A)m = I and so θa maps 2-elements to 2-elements. Thus,
if θa(U) ⊆ G, then θa(U) ⊆ U . The next lemmas establish some properties of this
class of mappings.
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Lemma 3. Suppose that G is a subgroup of GL(n, q), q even, q 6= 2. If a ∈ GF (q),
a 6= 0, 1, and θa(U) ⊆ G, then θa |U is an orthomorphism of U which acts on CU (B)
for each B ∈ S.

Proof. See Lemma 4 in [3].

Lemma 4. Suppose that G is a subgroup of GL(n, q), q even, q 6= 2. If a ∈ GF (q),
a 6= 0, 1, and θa(U) ⊆ G, then θa |U commutes with all inner automorphisms of G.

Proof. Routine.

For the linear groups GL(n, q) and SL(n, q), q even, q 6= 2, we give a simple
proof that each of these groups can be the multiplicative group of a neofield in
which 1 + 1 = 0.

Theorem 5. If G is one of GL(n, q) or SL(n, q), q even, q 6= 2, then G can be the

multiplicative group of a neofield in which 1 + 1 = 0.

Proof. Suppose G = GL(n, q), q even, q 6= 2, and a ∈ GF (q)∗, a 6= 1. By Lemmas 3
and 4, θa is an orthomorphism of U that commutes with inner automorphisms of G
and, hence, by Corollary 2, GL(n, q) can be the multiplicative group of a neofield in
which 1 + 1 = 0.

As det is a homomorphism from GL(n, q) to GF (q)∗, a group of odd order, every
element of U has determinant 1. Thus U ⊆ SL(n, q). It follows that SL(n, q) can
be the multiplicative group of a neofield in which 1 + 1 = 0.

In order to extend the result of Theorem 5 to PGL(n, q) and PSL(n, q), q even,
q 6= 2, we need to describe the relationship between the sets of 2-elements and odd-
order elements of PGL(n, q) and PSL(n, q), and those of GL(n, q) and SL(n, q).

Lemma 5. Let G be one of GL(n, q) or SL(n, q), set P = {cI | c ∈ GF (q)∗, cI ∈ G},
let U∗ be the set of 2-elements of G/P and let S∗ be the set of odd-order elements of

G/P . Then U∗ = UP and S∗ = SP . Further, the mapping A 7→ AP is a bijection

U → U∗ and, if A ∈ U and B ∈ S, then AP commutes with BP if and only if A
commutes with B.

Proof. Clearly UP ⊆ U∗. For XP ∈ U∗, X ∈ G, let X = AB, A ∈ U , B ∈ S,
be the even-odd decomposition of X. Let m be a power of 2 for which Am = I
and (XP )m = P and let s be an odd positive integer for which Bs = I. Then
BmP = (XP )m = P , and so Bm ∈ P . As gcd(m, s) = 1, there exists a positive
integer r for which Bmr = B. Then B = Bmr ∈ P r ⊆ P . It follows that U∗ ⊆ UP
and hence U∗ = UP . A similar proof shows that S∗ = SP

For A,B ∈ U , if AP = BP , then A = cB for some c ∈ GF (q)∗. There exists
m, a power of 2, for which Am = Bm = I. Thus I = cmI, and so cm = 1. As the
multiplicative order of c is odd, c = 1. Hence, if A,B ∈ U , then AP = BP if and
only if A = B. It follows that the mapping A 7→ AP is a bijection U → U∗.

Clearly, if A ∈ U commutes with B ∈ S, then AP commutes with BP . If AP
commutes with BP , A ∈ U and B ∈ S, then ABP = BAP . Hence AB = cBA for
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some c ∈ GF (q)∗, and so A = c(BAB−1). Let m be a power of 2 for which Am = I.
Then I = cmI, from which it follows that cm = 1, and, as c is of odd multiplicative
order, it must be that c = 1. Hence A and B commute.

For the linear groups PGL(n, q) and PSL(n, q), q even, q 6= 2, we can now give
a proof that each of these groups can be the multiplicative group of a neofield in
which 1 + 1 = 0.

Theorem 6. If G is one of PGL(n, q) or PSL(n, q), q even, q 6= 2, then G can be

the multiplicative group of a neofield in which 1 + 1 = 0.

Proof. Let G be one of GL(n, q) or SL(n, q), set P = {cI | c ∈ GF (q)∗, cI ∈ G},
let U∗ be the set of 2-elements of G/P , and let S∗ be the set of odd-order elements
of G/P . By Lemma 5, U∗ = UP and, if A,A′ ∈ U , then AP = A′P if and only
if A = A′. It follows that, for any mapping θ : U → U , if we define θ∗ : U∗ → U∗

by θ∗(AP ) = θ(A)P , A ∈ U , then θ∗ is well-defined, and is a bijection if and only
if θ is a bijection. Thus, if θ is an orthomorphism of U , then, as the mapping
AP 7→ (AP )−1θ∗(AP ) = A−1θ(A)P is a bijection, θ∗ is an orthomorphism of U∗.
Hence, if a ∈ GF (q)∗, a 6= 1, then θ∗a is an orthomorphism of U∗. As θa commutes
with inner automorphisms of G, θ∗a commutes with inner automorphisms of G/P .
The result then follows from Corollary 2.

References

[1] Colbourn C. J., Dinitz J. H. (eds). Handbook of combinatorial designs, 2nd ed. Chapman
and Hall, CRC, Florida, 2007.

[2] Evans A.B. Orthomorphism graphs of groups. Lecture Notes in Mathematics, 1535, Springer-
Verlag, Berlin, Heidelberg, 1992.

[3] Evans A.B. Mutually orthogonal latin squares based on general linear groups. Des. Codes
Cryptogr., 2014, 71, 479–492.

[4] Johnson C. P. Complete mappings, neofields, and dihedral groups. J. Miss. Acad. Sci., 1986,
XXXI, 147–152.

[5] Keedwell A. D. Sequenceable groups, generalized complete mappings, neofields and block

designs. Combinatorial mathematics, X (Adelaide, 1982), 49–71, Lecture Notes in Math.,
1036, Springer, Berlin, 1983.

[6] Michler G. Theory of finite simple groups. Cambridge University Press, Cambridge, 2006.

[7] Paige L. J. Neofields. Duke Math. J., 1949, 16, 39–60.

Anthony B.Evans

Wright State University

E-mail: anthony.evans@wright.edu

Received November 23, 2015


