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Abstract. We consider 48 parastrophically uncancellable quadratic functional equa-
tions with four object variables and two quasigroup operations in two classes: balanced
non–Belousov (consists of 16 equations) and non–balanced non–gemini (consists of 32
equations). A linear representation of a group (Abelian group) for a pair of quasigroup
operations satisfying one of these parastrophically uncancellable quadratic equations
is obtained. As a consequence of these results, a linear representation for every ope-
ration of a binary algebra satisfying one of these hyperidentities is obtained.
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1 Introduction

A binary quasigroup is usually defined to be a groupoid (B; f) such that for any
a, b ∈ B there are unique solutions x and y to the following equations:

f(a, x) = b and f(y, a) = b.

The basic properties of quasigroups were given in books [3, 8, 9, 24]. We remind the
reader of those properties we shall use in the paper.

If (B; f) is quasigroup we say that f is a quasigroup operation. A loop is a
quasigroup with unit (e) such that

f(e, x) = f(x, e) = x.

Groups are associative quasigroups, i. e. they satisfy:

f(f(x, y), z) = f(x, f(y, z))

and they necessarily contain a unit. A quasigroup is commutative if

f(x, y) = f(y, x). (1.1)
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Commutative groups are also known as Abelian groups.
A triple (α, β, γ) of bijections from a set B onto a set C is called an isotopy of

a groupoid (B; f) onto a groupoid (C; g) provided

γf(x, y) = g(αx, βy)

for all x, y ∈ B. (C; g) is then called an isotope of (B; f), and groupoids (B; f)
and (C; g) are said to be isotopic to each other. An isotopy of (B; f) onto (B; f) is
called an autotopy of (B; f). Let α and β be permutations of B and let ι denote the
identity map on B. Then (α, β, ι) is a principal isotopy of a groupoid (B; f) onto a
groupoid (B; g) means that (α, β, ι) is an isotopy of (B; f) onto (B; g). Isotopy is a
generalization of isomorphism. Isotopic image of a quasigroup is again a quasigroup.
A loop isotopic to a group is isomorphic to it. Every quasigroup is isotopic to some
loop, i. e., it is a loop isotope.

If (B; +) is a group, then the bijection α : B → B is called a holomorphism of
(B; +) if

α(x+ y−1 + z) = αx+ (αy)−1 + αz. (1.2)

The set of all holomorphisms of (B; +) is denoted by Hol(B; +). It is a group under
the composition of mappings: (α · β)x = β(αx), for every x ∈ B. Note that this
concept is equivalent to the concept of quasiautomorphism of groups, by [3].

A binary quasigroup (B; f) is linear over a group (Abelian group) if

f(x, y) = ϕx+ a+ ψy,

where (B; +) is a group (Abelian group), ϕ and ψ are automorphisms of (B; +) and
a ∈ B is a fixed element. A quasigroup linear over an Abelian group is also called a
T -quasigroup.

Quasigroups are important algebraic (combinatorial, geometric) structures which
arise in various areas of mathematics and other disciplines. We mention just a few
of their applications: in combinatorics (as latin squares, see [9]), in geometry (as
nets/webs, see [4]), in statistics (see [11]), in special theory of relativity (see [27]),
in coding theory and cryptography [25].

2 Preliminaries

We use (object) variables x, y, z, u, v, w (perhaps with indices) and operation
symbols (i. e. functional variables) f, g, h (also with indices). We assume that all
operation symbols represent quasigroup operations.

The set of all variables which appear in a term t is called the content of t and
is denoted by var(t). A variable x is linear variable in a term t when it occurs just
once in t. A variable x is quadratic variable in a term t when it occurs twice in t.
The sets of all linear and quadratic variables of term t are denoted by var1(t) and
var2(t), respectively.
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A functional equation is an equality s = t, where s and t are terms with symbols
of unknown operations occurring in at least one of them.

Definition 1. A functional equation s = t is quadratic if every (object) variable
occurs exactly twice in s = t. It is balanced if every (object) variable appears exactly
once in s and once in t.

Definition 2. A variable x from a quadratic equation s = t is linear if x occurrs
once in s and once in t; it is left (right) quadratic if it occurrs twice in s (t) and
quadratic if it is either left or right quadratic.

Definition 3. A balanced equation s = t is Belousov if for every subterm p of s (t)
there is a subterm q of t (s) such that p and q have exactly the same variables.

Definition 4. A quadratic quasigroup equation is gemini iff it is a theorem of TS-
loops (= Steiner loops), i. e., consequence of the identities of the variety of TS-loops.

Definition 5. Functional equation s = t is generalized if every operation symbol
from s = t occurrs there just once.

Definition 6. Let x be a variable occurring in a quadratic equation s = t. The
function Lh (Rh) of the left (right) height of the variable x in the equation s = t is
given by:

− If x /∈ var(t), then Lh(x, t) (Rh(x, t)) is not defined,

− Lh(x, x) = 0 (Rh(x, x) = 0),

− If t = f(t1, t2) and both occurrences of x are in t1 then Lh(x, t) = 1 +
Lh(x, t1) (Rh(x, t) = 1 + Rh(x, t1)),

− If t = f(t1, t2) and both occurrences of x are in t2 then Lh(x, t) = 1 +
Lh(x, t2) (Rh(x, t) = 1 + Rh(x, t2)),

− If t = f(t1, t2) and x occurrs in both t1 and t2 then Lh(x, t) = 1+Lh(x, t1) (Rh(x, t) =
1 + Rh(x, t2)),

− Lh(x, s = t) =

{

Lh(x, s) if x ∈ var(s),

Lh(x, t) otherwise,

− Rh(x, s = t) =

{

Rh(x, t) if x ∈ var(t),

Rh(x, s) otherwise.

Definition 7. Let s = t be a quadratic equation. It is a level equation iff
Lh(x, s = t) = Rh(y, s = t) for all variables x, y of s = t.
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Example 1. The following are various functional equations:

(commutativity) f(x, y) = f(y, x), (2.1)

(associativity) f(f(x, y), z) = f(x, f(y, z)), (2.2)

(mediality) f(f(x, y), f(u, v)) = f(f(x, u), f(y, v)), (2.3)

(paramediality) f(f(x, y), f(u, v)) = f(f(v, y), f(u, x)), (2.4)

(distributivity) f(x, f(y, z)) = f(f(x, y), f(x, z)), (2.5)

(transitivity) f(f(x, y), f(y, z)) = f(x, z), (2.6)

(intermediality) f(f(x, y), f(y, u)) = f(f(x, v), f(v, u)), (2.7)

(extramediality) f(f(x, y), f(u, x)) = f(f(v, y), f(u, v)), (2.8)

(4-palindromic identity) f(f(x, y), f(u, v)) = f(f(v, u), f(y, x)), (2.9)

(idempotency) f(x, x) = x, (2.10)

(trivial) f(x, y) = f(x, y), (2.11)

f(x, f(y, z)) = f(f(z, y), x). (2.12)

Associativity, (para)mediality, 4-palindromic, trivial identity and (2.12) are bal-
anced, transitivity, intermediality and extramediality are quadratic but not balanced
and idempotency and (left) distributivity are not even quadratic. Commutativity,
trivial, 4-palindromic and (2.12) are gemini functional equations and since they are
balanced, they are Belousov equations as well. The equations (2.2) − (2.8) are non-
gemini and non-Belousov. Commutativity, mediality, paramediality, intermediality,
extramediality, 4–palindromic and trivial identity are level equations.

Every quasigroup satisfying (para)medial identity is called (para)medial quasi-
group. Every quasigroup satisfying 4-palindromic identity is called 4-palindromic
quasigroup.

Theorem 1 (Toyoda [26]). If (B; f) is a medial quasigroup then there exists an
Abelian group (B; +) such that f(x, y) = ϕ(x) + c+ ψ(y), where ϕ,ψ ∈ Aut(B; +),
ϕψ = ψϕ and c ∈ B.

Theorem 2 (Němec, Kepka [23]). If (B; f) is a paramedial quasigroup then there
exists an Abelian group (B; +) such that f(x, y) = ϕ(x) + c + ψ(y), where ϕ,ψ ∈
Aut(B; +), ϕϕ = ψψ and c ∈ B.

More generaly, considering the following equations with two functional variables,
we can define the notion of (para)medial pair of operations:

f1(f2(x, y), f2(u, v)) = f2(f1(x, u), f1(y, v)), (2.13)

f1(f2(x, y), f2(u, v)) = f2(f1(v, y), f1(u, x)). (2.14)

Definition 8. A pair (f1, f2) of binary operations is called (para)medial pair of
operations if the algebra (B; f1, f2) satisfies the equation (2.13) ((2.14)).
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Definition 9. A binary algebra B = (B;F ) is called (para)medial algebra if
every pair of operations of the algebra B is (para)medial (or, the algebra B

satisfies (para)medial hyperidentity).

The following theorem generalizes above results by Toyoda and Němec, Kepka:

Theorem 3 (Nazari, Movsisyan [22], Ehsani, Movsisyan [10]). Let the set B form
a quasigroup under the binary operations f1 and f2. If the pair of binary operations
(f1, f2) is (para)medial, then there exists a binary operation ′+′ under which B forms
an Abelian group and for arbitrary elements x, y ∈ B we have:

fi(x, y) = ϕi(x) + ψi(y) + ci,

where cis are fixed elements of B, and ϕi, ψi ∈ Aut(B; +) for i = 1, 2, such that:

ϕ1ψ2 = ψ2ϕ1, ϕ2ψ1 = ψ1ϕ2, ψ1ψ2 = ψ2ψ1 and ϕ1ϕ2 = ϕ2ϕ1 should be satisfied by
the medial pair of operations,

ϕ1ϕ2 = ψ2ψ1, ϕ2ϕ1 = ψ1ψ2, ϕ1ψ2 = ϕ2ψ1 and ψ1ϕ2 = ψ2ϕ1 should be satisfied by
the paramedial pair of operations.

The group (B; +), is unique up to isomorphisms.

The following results will be frequently utilized.

Theorem 4 (Aczél, Belousov, Hosszú [1], see also [2]). Let the set B form a quasi-
group under six operations Ai(x, y) (for i = 1, . . . , 6). If these operations satisfy the
following equation:

A1(A2(x, y), A3(u, v)) = A4(A5(x, u), A6(y, v)), (2.15)

for all elements x, y, u and v of the set B then there exists an operation ′+′ under
which B forms an abelian group isotopic to all these six quasigroups. And there exist
eight permutations α, β, γ, δ, ǫ, ψ, ϕ, χ of B such that:

A1(x, y) = δx+ ϕy,

A2(x, y) = δ−1(αx+ βy),

A3(x, y) = ϕ−1(χx+ γy),

A4(x, y) = ψx+ ǫy,

A5(x, y) = ψ−1(αx+ χy),

A6(x, y) = ǫ−1(βx+ γy).

Theorem 5 (Krapež [14]). If the set B forms a quasigroup under four operations
Ai(x, y) (for i = 1, . . . , 4) and if these operations satisfy the equation of generalized
transitivity:

A1(A2(x, y), A3(y, z)) = A4(x, z),
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for all elements x, y, z ∈ B, then there exists an operation ′+′ under which B forms
a group isotopic to all these quasigroups and there exist permutaions α, β, γ, δ, ǫ,
ψ, ϕ, χ of B such that

A1(x, y) = αx+ βy,

A2(x, y) = α−1(αγx+ αδy),

A3(x, y) = β−1(βǫx+ βψy),

A4(x, y) = ϕx+ χy.

Theorem 6 (Krapež [13], Belousov [5]). A quasigroup satisfying a balanced but not
Belousov equation is isotopic to a group.

Theorem 7 (Krapež, Taylor [16]). A quasigroup satisfying a quadratic but not
gemini equation is isotopic to a group.

3 Parastrophically uncancellable quadratic equations with two

function variables

We consider parastrophically uncancellable quadratic quasigroup equations of
the form:

f1(f2(x1, x2), f2(x3, x4)) = f2(f1(x5, x6), f1(x7, x8)) (Eq)

where xi ∈ {x, y, u, v}, for i = 1, . . . , 8. Therefore, the equation (Eq) is quadratic
level quasigroup equation with four (object) variables each appearing twice in the
equation and with two function variables each appearing three times in the equation.
There are 48 such equations and we attempt to solve them all.

There is a correspondence between generalized quadratic quasigroup equations
and connected cubic graphs, namely Krstić graphs. Two such equations are paras-
trophically equivalent iff they have the same (i.e. isomorphic) Krstić graphs. Fur-
thermore, an equation is parastrophically uncancellable iff the corresponding Krstić
graph is 3–connected. For more detailed account of this correspondence see [16,17]
and [18].

For everyone of the 48 equations (Eq) there is a corresponding generalized equa-
tion:

f1(f3(x1, x2), f4(x3, x4)) = f2(f5(x5, x6), f6(x7, x8)) (GEq)

(where xi ∈ {x, y, u, v}, for i = 1, . . . , 8) with the appropriate Krstić graph. This
Krstić graph will be assumed to be the Krstić graph of (Eq) as well. All these
equations can be partitioned into two classes, depending on their Krstić graphs, as
follows:

– 16 balanced (and non-Belousov) equations with the Krstić graph K3,3,

– 32 non–balanced non-gemini equations with the Krstić graph P3.
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K3,3 P3

To characterize a pair of quasigroup operations which satisfies a non–Belousov
balanced functional equation, we need the notion of Lbranch (Rbranch) and the
following properties of holomorphisms which were proved for Muofang loops in [19].

Definition 10. Let t be a term and x a variable. We define:

• If x /∈ var(t), then Lbranch(x, t) (Rbranch(x, t)) is not defined,

• Lbranch(x, x) = Λ (Rbranch(x, x) = Λ) (Λ is the empty word),

• If t = fi(t1, t2) and both occurrences of x are in t1, then Lbranch(x, t) =
αi Lbranch(x, t1) (Rbranch(x, t) = αi Rbranch(x, t1)),

• If t = fi(t1, t2) and both occurrences of x are in t2, then Lbranch(x, t) =
βi Lbranch(x, t2) (Rbranch(x, t) = βi Rbranch(x, t2)),

• If t = fi(t1, t2) and x occurrs in both t1 and t2, then Lbranch(x, t) =
αi Lbranch(x, t1) (Rbranch(x, t) = βi Rbranch(x, t2)),

• Lbranch(x, s = t) =

{

Lbranch(x, s) if x ∈ var(s),

Lbranch(x, t) otherwise

• Rbranch(x, s = t) =

{

Rbranch(x, t) if x ∈ var(t),

Rbranch(x, s) otherwise

Lemma 1. Let the identity:

α1(x+ y) = α2(x) + α3(y)

be satisfied for bijections α1, α2, α3 on the group (B; +). Then α1, α2, α3 ∈
Hol(B; +).

Lemma 2. Every holomorphism α of the group (B; +) has the following forms:

αx = ϕ1x+ k1, αx = k2 + ϕ2x,

where ϕ1, ϕ2 ∈ Aut(B; +) and k1, k2 ∈ B.
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4 Equations with Krstić graph K3,3

The class of non–gemini balanced (and therefore non–Belousov) quadratic func-
tional equations consists of the following 16 equations with four object variables
x, y, u, v and two quasigroup operations f1, f2:

f1(f2(x, y), f2(u, v)) = f2(f1(x, u), f1(y, v)) (4.1)

f1(f2(x, y), f2(u, v)) = f2(f1(x, u), f1(v, y)) (4.2)

f1(f2(x, y), f2(u, v)) = f2(f1(x, v), f1(y, u)) (4.3)

f1(f2(x, y), f2(u, v)) = f2(f1(x, v), f1(u, y)) (4.4)

f1(f2(x, y), f2(u, v)) = f2(f1(y, u), f1(x, v)) (4.5)

f1(f2(x, y), f2(u, v)) = f2(f1(y, u), f1(v, x)) (4.6)

f1(f2(x, y), f2(u, v)) = f2(f1(y, v), f1(x, u)) (4.7)

f1(f2(x, y), f2(u, v)) = f2(f1(y, v), f1(u, x)) (4.8)

f1(f2(x, y), f2(u, v)) = f2(f1(u, x), f1(y, v)) (4.9)

f1(f2(x, y), f2(u, v)) = f2(f1(u, x), f1(v, y)) (4.10)

f1(f2(x, y), f2(u, v)) = f2(f1(u, y), f1(x, v)) (4.11)

f1(f2(x, y), f2(u, v)) = f2(f1(u, y), f1(v, x)) (4.12)

f1(f2(x, y), f2(u, v)) = f2(f1(v, x), f1(y, u)) (4.13)

f1(f2(x, y), f2(u, v)) = f2(f1(v, x), f1(u, y)) (4.14)

f1(f2(x, y), f2(u, v)) = f2(f1(v, y), f1(x, u)) (4.15)

f1(f2(x, y), f2(u, v)) = f2(f1(v, y), f1(u, x)) (4.16)

The following result generalizes, on the one hand Theorem 3, and on the other,
the results from and immediately after Example 7 in [12].

Theorem 8. Let the balanced non–Belousov quasigroup equations (4.j) (j = 1,. . . ,16)
have the Krstić graph K3,3. A general solution of any of (4.j) is given by:

fi(x, y) = αix+ ci + βiy (i = 1, 2) (4.17)

where:

• (B; +) is an arbitrary Abelian group,

• c1, c2 are arbitrary elements of B such that f1(c2, c2) = f2(c1, c1),

• αi, βi (i = 1, 2) are arbitrary automorphisms of + such that:

Lbranch(z, (4.j)) = Rbranch(z, (4.j)) (4.18)

for all variables z of the equation (4.j).

The group (B; +) is unique up to isomorphism.
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Proof. (1) To show that the pair (f1, f2) of operations is a solution of (4.j), just
replace fi(x, y) in (4.j) using (4.17) and all conditions (4.18).

(2) An equation (4.j) is an instance of the appropriate generalized equation (GEq)
with the Krstić graph K3,3. Therefore, all operations of (GEq) are isotopic to an
Abelian group + and the main operations f1, f2 can be chosen to be principally
isotopic to it (see [17]):

fi(x, y) = λix+ ̺iy (i = 1, 2).

Replace this in (Eq) to get:

λ1f2(x1, x2) + ̺1f2(x3, x4) = λ2f1(x5, x6) + ̺2f1(x7, x8). (4.19)

Since variables x1, x2 are separated on the right hand side of equation (4.19), re-
placing x3 and x4 by 0, we get:

λ1(λ2x1 + ̺2x2) + d = σx1 + τx2

for d = ̺1(λ20 + ̺20) and appropriate σ, τ depending on n. Therefore:

λ1(z + w) = σλ−1
2 z + Tτ̺−1

2 w

(where Tx = x− d) and λ1 ∈ Hol(B; +).
Analogously we get ̺1, λ2, ̺2 ∈ Hol(B; +).
Using Lemma 2 we easily get (4.17) for i = 1, 2 where αi, βi are automorphisms

of (B; +).
Replace f1 and f2 in (4.j):

α1(α2x1 + c2 + β2x2) + c1 + β1(α2x3 + c2 + β2x4) =

= α2(α1x5 + c1 + β1x6) + c2 + β2(α1x7 + c1 + β1x8).

Replacing x1 = x2 = x3 = x4 = 0, we get:

α1c2 + c1 + β1c2 = α2c1 + c2 + β2c1,

i. e. f1(c2, c2) = f2(c1, c1).
For x2 = x3 = x4 = 0, we get:

Lbranch(x1, (4.j)) = α1α2x1 = γδx1 = Rbranch(x1, (4.j))

for some γ, δ ∈ {α1, β1, α2, β2} depending on j.
Analogously:

Lbranch(xi, (4.j)) = Rbranch(xi, (4.j))

for i = 2, 3, 4.
The uniqueness of the group (B; +) follows from the Albert Theorem (see [6]):

If two groups are isotopic, then they are isomorphic.
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5 Equations with Krstić graph P3

There exist 32 parastrophically uncancellable non-gemini and non-balanced
quadratic functional equations with four object variables and two operations:

f1(f2(x, y), f2(x, u)) = f2(f1(y, v), f1(u, v)) (5.1)

f1(f2(x, y), f2(x, u)) = f2(f1(y, v), f1(v, u)) (5.2)

f1(f2(x, y), f2(x, u)) = f2(f1(u, v), f1(y, v)) (5.3)

f1(f2(x, y), f2(x, u)) = f2(f1(u, v), f1(v, y)) (5.4)

f1(f2(x, y), f2(x, u)) = f2(f1(v, y), f1(u, v)) (5.5)

f1(f2(x, y), f2(x, u)) = f2(f1(v, y), f1(v, u)) (5.6)

f1(f2(x, y), f2(x, u)) = f2(f1(v, u), f1(y, v)) (5.7)

f1(f2(x, y), f2(x, u)) = f2(f1(v, u), f1(v, y)) (5.8)

f1(f2(x, y), f2(y, u)) = f2(f1(x, v), f1(u, v)) (5.9)

f1(f2(x, y), f2(y, u)) = f2(f1(x, v), f1(v, u)) (5.10)

f1(f2(x, y), f2(y, u)) = f2(f1(u, v), f1(x, v)) (5.11)

f1(f2(x, y), f2(y, u)) = f2(f1(u, v), f1(v, x)) (5.12)

f1(f2(x, y), f2(y, u)) = f2(f1(v, x), f1(u, v)) (5.13)

f1(f2(x, y), f2(y, u)) = f2(f1(v, x), f1(v, u)) (5.14)

f1(f2(x, y), f2(y, u)) = f2(f1(v, u), f1(x, v)) (5.15)

f1(f2(x, y), f2(y, u)) = f2(f1(v, u), f1(v, x)) (5.16)

f1(f2(x, y), f2(u, x)) = f2(f1(y, v), f1(u, v)) (5.17)

f1(f2(x, y), f2(u, x)) = f2(f1(y, v), f1(v, u)) (5.18)

f1(f2(x, y), f2(u, x)) = f2(f1(u, v), f1(y, v)) (5.19)

f1(f2(x, y), f2(u, x)) = f2(f1(u, v), f1(v, y)) (5.20)

f1(f2(x, y), f2(u, x)) = f2(f1(v, y), f1(u, v)) (5.21)

f1(f2(x, y), f2(u, x)) = f2(f1(v, y), f1(v, u)) (5.22)

f1(f2(x, y), f2(u, x)) = f2(f1(v, u), f1(y, v)) (5.23)

f1(f2(x, y), f2(u, x)) = f2(f1(v, u), f1(v, y)) (5.24)

f1(f2(x, y), f2(u, y)) = f2(f1(x, v), f1(u, v)) (5.25)

f1(f2(x, y), f2(u, y)) = f2(f1(x, v), f1(v, u)) (5.26)

f1(f2(x, y), f2(u, y)) = f2(f1(u, v), f1(x, v)) (5.27)

f1(f2(x, y), f2(u, y)) = f2(f1(u, v), f1(v, x)) (5.28)

f1(f2(x, y), f2(u, y)) = f2(f1(v, x), f1(u, v)) (5.29)

f1(f2(x, y), f2(u, y)) = f2(f1(v, x), f1(v, u)) (5.30)

f1(f2(x, y), f2(u, y)) = f2(f1(v, u), f1(x, v)) (5.31)

f1(f2(x, y), f2(u, y)) = f2(f1(v, u), f1(v, x)) (5.32)
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The next theorem gives a general solution of the equation (5.10) which generalizes
the intermedial equation (see equation (4.36) and Theorem 8.4 of [15] for the original
definition of intermedial equation).

Lemma 3. A general solution of the equation (5.10) is given by:

fi(x, y) = αix+ ci + βiy (i = 1, 2) (5.33)

where:

• (B; +) is an arbitrary group,

• c1, c2 are arbitrary elements of B such that f1(c2, c2) = f2(c1, c1),

• αi, βi (i = 1, 2) are arbitrary automorphisms of + such that:

Lbranch(z, (5.10)) = Rbranch(z, (5.10)) (5.34)

for z ∈ {x, u} and

Lbranch(wi, (5.10))wi + ci + Rbranch(wi, (5.10))wi = ci (5.35)

for i ∈ {1, 2}, w1 = y and w2 = v.

The group (B; +) is unique up to isomorphism.

Proof. (1) To show that the pair (f1, f2) of operations is a solution of (5.10), just
replace fi(x, y) in (5.10) using (5.33) and all conditions (5.34), (5.35).

(2) The equation (5.10) is an instance of the generalized intermedial equation:

f1(h1(x, y), h2(y, u)) = f2(h3(x, v), h4(v, u)). (GI)

Choose v = a for some a ∈ B and define γx = h1(x, a), δu = h2(a, u) and
g(x, u) = f2(γx, δu). We get:

f1(h1(x, y), h2(y, u)) = g(x, u) (GT)

which is the generalized transitivity equation. By Theorem 5 all operations of this
equation are isotopic to a group + and the main operations f1, g can be chosen to
be principally isotopic to it:

f1(x, y) = λ1x+ ̺1y, g(x, y) = λ3x+ ̺3y.

It follows that f2(x, y) = λ3γ
−1x + ̺3δ

−1y = λ2x + ̺2y for appropriate λ2, ̺2.
Replacing this in (5.10) we get:

λ1(λ2x+ ̺2y) + ̺1(λ2y + ̺2u) = λ2(λ1x+ ̺1v) + ̺2(λ1v + ̺1u). (5.36)

If we choose ̺2u = ̺1v = 0 and define d = ̺2(λ1̺
−1
1 0 + ̺1̺

−1
2 0) we get:

λ1(λ2x+ ̺2y) + ̺1λ2y = λ2λ1x+ d
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which implies that λ1 ∈ Hol(B; +).
Analogously we get ̺1, λ2, ̺2 ∈ Hol(B; +).
Using Lemma 2 we easily get (5.33) for i = 1, 2 where αi, βi are automorphisms

of (B; +).
Replace f1 and f2 in (5.10):

α1(α2x+ c2 + β2y) + c1 + β1(α2y + c2 + β2u) =

= α2(α1x+ c1 + β1v) + c2 + β2(α1v + c1 + β1u).

Putting x = y = u = v = 0, we get:

α1c2 + c1 + β1c2 = α2c1 + c2 + β2c1,

i. e. f1(c2, c2) = f2(c1, c1).
For y = u = v = 0 we get:

Lbranch(x, (5.10)) = α1α2 = α2α1 = Rbranch(x, (5.10)).

Analogously:

Lbranch(u, (5.10)) = Rbranch(u, (5.10)),

Lbranch(y, (5.10))y + c1 + Rbranch(u, (5.10))y = α1β2y + c1 + β1α2y = c1,

Lbranch(v, (5.10))v + c2 + Rbranch(v, (5.10))v = α2β1v + c2 + β2α1v = c2.

The uniqueness of the group (B; +) follows from the Albert Theorem.

Lemma 4. A general solution of the equation (5.j) (j = 1, 2, 5, 6, 9, 13, 14, 17, 18,
21, 22, 25, 26, 29, 30) is given by:

fi(x, y) = αix+ ci + βiy (i = 1, 2) (5.37)

where:

• (B; +) is an arbitrary Abelian group,

• c1, c2 are arbitrary elements of B such that f1(c2, c2) = f2(c1, c1),

• αi, βi (i = 1, 2) are arbitrary automorphisms of + such that:

Lbranch(z, (5.j)) = Rbranch(z, (5, j)) (5.38)

for all linear variables z of (5.j) and

Lbranch(w, (5.j))w + Rbranch(w, (5.j))w = 0 (5.39)

for all quadratic variables w from the equation.

The group (B; +) is unique up to isomorphism.
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Proof. (1) To show that the pair (f1, f2) of operations is a solution of (5.j), just
replace fi(x, y) in (5.j) using (5.37) and all conditions (5.38), (5.39).

(2) The crucial property of all 15 equations (5.j) is that, by applying duality
to some of non–main operations of the generalized version of (5.j), they may be
transformed into equation (GI):

f1(h1(x, y), h2(y, u)) = f2(h3(x, v), h4(v, u))

which, by the proof of Lemma 3, has a solution:

fi(x, y) = αix+ ci + βiy (i = 1, 2)

where (B; +) is a group and αi, βi are automorphisms of +.

Replacing f1, f2 in (5.j), we get:

α1(α2x1 + c2 + β2x2) + c1 + β1(α2x3 + c2 + β2x4) =

= α2(α1x5 + c1 + β1x6) + c2 + β2(α1x7 + c1 + β1x8).
(5.40)

Just as in the proof of Lemma 3, we conclude that f1(c2, c2) = f2(c1, c1). Let us
define c = f1(c2, c2).

To prove the properties from the statement of the lemma, we need to discuss
the arrangement x1 . . . x4 = x5 . . . x8 of variables in the equation (5.40). It is easy
to see:

• The order of first (i. e. left) appearances of variables is always xyuv.

• x1 = x.

• Since P3 has no loops, x2 = y.

• Either x or y is quadratic, but not both.

• Variable u is always linear.

• Variable v is always quadratic.

• Arrangement xyyu = xvvu is not allowed.

There are two possibilities: x is either linear or quadratic.

a) Variable x is linear (and y is quadratic).
Again, there are two possibilities: Either x3 = y or x3 = u.

a1) x3 = y (and x4 = u).
Yet again, there are two possibilities: Either x5 = x or x5 = v.
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a11) The arrangement of variables is xyyu = xvuv.
We have equation (5.9). Replacing x = y = 0 in (5.40), we get:

c+ β1β2u = α2c1 + α2β1v + c2 + β2α1u+ β2c1 + β2β1v. (5.41)

For v = 0 we get:

β2c1 + β1β2u = β2α1u+ β2c1 (5.42)

and for u = 0:

c− β2β1v = α2c1 + α2β1v + c2 + β2c1. (5.43)

Applying (5.42) and (5.43) to (5.41), we conclude:

c+ β1β2u− β2β1v = c− β2β1v + β1β2u

which is, after cancellation from the left, equivalent to commutativity
of +. Therefore (B; +) is an Abelian group.

a12) The arrangement of variables is xyyu = vx(uv or vu).
Replacement y = u = 0 leads to:

α1α2x+ c = α2α1v + α2c1 + α2β1x+ c2 + t(v) (5.44)

where

t(v) =

{

β2α1v + β2c1 if x7 = v,

β2c1 + β2β1v if x7 = u.

Note that in both cases t(0) = β2c1. Putting x = 0, we get:

t(v) = −c2 − α2c1 − α2α1v + c (5.45)

while replacement v = 0 leads to:

α1α2x+ α2c1 = α2c1 + α2β1x. (5.46)

Using (5.45) and (5.46) in (5.44), we conclude:

α1α2x+ c = α2α1v + α1α2x− α2α1v + c

which implies that the group (B; +) is Abelian.

a2) x3 = u (and x4 = y).
The arrangement of variables is xyuy = (xv or vx)(uv or vu). Replace-
ment x = v = 0 in (5.j) yields:

α1c2 + α1β2y + c1 + β1α2u+ β1c2 + β1β2y = t(u) (5.47)

where

t(u) =

{

α2c1 + c2 + β2α1u+ β2c1 if x7 = u,

c+ β2β1u if x7 = v.
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Note that in both cases t(0) = c. Putting y = 0 in (5.47), we get:

α1c2 + c1 + β1α2u+ β1c2 = t(u) (5.48)

while replacement u = 0 yields:

α1c2 + α1β2y + c1 = c− β1β2y − β1c2. (5.49)

Feeding (5.48) and (5.49) in (5.47), we get:

c− β1β2y − β1c2 + β1α2u+ β1c2 = α1c2 + c1 + β1α2u+ β1c2 − β1β2y

which implies commutativity of +.

b) Variable x is quadratic (and y is linear).
The arrangement of variables is xy(xu or ux) = (yv or vy)(uv or vu). Let
u = v = 0. We have:

α1α2x+ α1c2 + α1β2y + c1 + s(x) = t(y) (5.50)

where:

s(x) =

{

β1α2x+ β1c2 if x3 = x,

β1c2 + β1β2x if x3 = u,

t(y) =

{

α2α1y + c if x5 = y,

α2c1 + α2β1y + c2 + β2c1 if x5 = v.

Note that s(0) = β1c2 and t(0) = c. Specifying x = 0, we get:

α1c2 + α1β2y + c1 + β1c2 = t(y) (5.51)

while y = 0 yields:

c1 + s(x) = −α1c2 − α1α2x+ c. (5.52)

Feeding (5.51) and (5.52) into (5.50), we get:

α1α2x+ α1c2 + α1β2y − α1c2 − α1α2x+ α1c2 = α1c2 + α1β2y

which implies that the group (B; +) is Abelian.

Because of commutativity of + and the condition for c, the equation (5.j) reduces
to:

α1α2x1 + α1β2x2 + β1α2x3 + β1β2x4 =

= α2α1x5 + α2β1x6 + β2α1x7 + β2β1x8),

which is equivalent to the system:

Lbranch(z, (5.j)) = Rbranch(z, (5, j))

Lbranch(w, (5.j))w + Rbranch(w, (5.j))w = 0

for all linear variables z and all quadratic variables w.
The uniqueness of the group (B; +) follows from the Albert Theorem.
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Lemma 5. A general solution of the equation (5.23) is given by:

{

f1(x, y) = α1x+ c1 + β1y

f2(x, y) = β2y + c2 + α2x
(23)

where:

• (B; +) is an arbitrary group,

• c1, c2 are arbitrary elements of B such that f1(c2, c2) = f2(c1, c1),

• αi, βi (i = 1, 2) are arbitrary automorphisms of + such that:

Lbranch(z, (5.23)) = Rbranch(z, (5.23)) (5.53)

for z ∈ {y, u},

Lbranch(x, (5.23))x + c1 + Rbranch(x, (5.23))x = c1 (5.54)

,

Rbranch(v, (5.23))v + c2 + Lbranch(v, (5.23))v = c2. (5.55)

The group (B; +) is unique up to isomorphism.

Proof. (1) To show that the pair (f1, f2) of operations is a solution of (5.23), just
replace fi(x, y) in (5.23) using (23) and all conditions (5.53)–(5.55).

(2) Define new quasigroup f3 to be the dual quasigroup of f2, i. e. f3(x, y) =
f2(y, x). The equation (5.23) transforms into equation (5.10) with a general solution
given by Lemma 3:

{

f1(x, y) = α1x+ c1 + β1y

f3(x, y) = α3x+ c3 + β3y
(23*)

where:

• (B; +) is an arbitrary group,

• c1, c3 are arbitrary elements of B such that f1(c3, c3) = f3(c1, c1),

• αi, βi (i = 1, 3) are arbitrary automorphisms of + such that:

α1α3 = α3α1

β1β3 = β3β1

α1β3x+ c1 + β1β3x = c1

α3β1v + c3 + β3α1v = c3.
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Define: α2 = β3, β2 = α3 and c2 = c3 and replace in (23*) to get:
f2(x, y) = f3(y, x) = α3y + c2 + β3x = β2y + c2 + α2x, and

α1β2 = β2α1

β1α2 = α2β1

α1α2x+ c1 + β1α2x = c1

β2β1v + c2 + α2α1v = c2,

which is:

Lbranch(z, (5.23)) = Rbranch(z, (5.23))

for z ∈ {y, u}, and

Lbranch(x, (5.23))x + c1 + Rbranch(x, (5.23))x = c1,

Rbranch(v, (5.23))v + c2 + Lbranch(v, (5.23))v = c2.

Trivially, f1(c2, c2) = f2(c1, c1).

The uniqueness of the group (B; +) follows from the Albert Theorem.

Lemma 6. A general solution of the equation (5.k) (k = 3, 4, 7, 8, 11, 12, 15, 16,
19, 20, 24, 27, 28, 31, 32) is given by:

fi(x, y) = αix+ ci + βiy (i = 1, 2) (5.56)

where:

• (B; +) is an arbitrary Abelian group,

• c1, c2 are arbitrary elements of B such that f1(c2, c2) = f2(c1, c1),

• αi, βi (i = 1, 2) are arbitrary automorphisms of + such that:

Lbranch(z, (5.k)) = Rbranch(z, (5, k)) (5.57)

for all linear variables z of (5.j) and

Lbranch(w, (5.k))w + Rbranch(w, (5.k))w = 0 (5.58)

for all quadratic variables w from the equation.

The group (B; +) is unique up to isomorphism.
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Proof. (1) To show that the pair (f1, f2) of operations is a solution of (5.k), just
replace fi(x, y) in (5.k) using (5.56) and all conditions (5.57), (5.58).

(2) Let us prove that the solution given in the lemma is general in the case k = 3.
The equation (5.3) has arrangement of variables equal to xyxu = uvyv. Let us

replace the operation f2 in (5.3) by the dual operation f3(x, y) = f∗2 (x, y) = f2(y, x).
We get the equation

f1(f3(y, x), f3(u, x)) = f3(f1(y, v), f1(u, v))

with the arrangement of variables equal to yxux = yvuv. Normalizing (i.e. applying
the permutation (xy) to variables) we get the equation (5.25) with a general solution
given in Lemma 4:

fi(x, y) = αix+ ci + βiy (i = 1, 3) (5.59)

where:

• (B; +) is an arbitrary group,

• c1, c3 are arbitrary elements of B such that f1(c3, c3) = f3(c1, c1),

• αi, βi (i = 1, 3) are arbitrary automorphisms of + such that:

Lbranch(z, (5.25)) = Rbranch(z, (5.25)) (5.60)

for all linear variables z of (5.25) and

Lbranch(w, (5.25))w + Rbranch(w, (5.25))w = 0 (5.61)

for all quadratic variables w from the equation.

Conditions (5.60) and (5.61) evaluate to:

α1α3 = α3α1

β1α3 = β3α1

α1β3x+ β1β3x = 0

α3β1v + β3β1v = 0.

Define: α2 = β3, β2 = α3, c2 = c3 and replace in (5.59) to get:
f2(x, y) = f3(y, x) = α3y + c3 + β3x = β2y + c2 + α2x = α2x+ c2 + β2y, and

α1β2 = β2α1

β1β2 = α2α1

α1α2x+ β1α2x = 0

β2β1v + α2β1v = 0,



ALGEBRAS WITH PARASTROPHICALLY UNCANCELLABLE QUASIGROUP EQS 59

which is:

Lbranch(z, (5, 3)) = Rbranch(z, (5, 3))

for z ∈ {y, u}, and

Lbranch(w, (5.3))w + Rbranch(x, (5.3))w = 0,

for w ∈ {x, v}.

Trivially, f1(c2, c2) = f2(c1, c1).

Analogously, we can transform (5.4) into (5.29), (5.7) into (5.26), (5.8) into
(5.30), (5.11) into (5.17), (5.12) into (5.21), (5.15) into (5.18), (5.16) into (5.22),
(5.19) into (5.9), (5.20) into (5.13), (5.24) into (5.14), (5.27) into (5.1), (5.28) into
(5.5), (5.31) into (5.2), (5.32) into (5.6) and prove appropriate relationships between
αi, βi, ci (i = 1, 2) for these equations, using results given in Lemma 4.

Definition 11. Let ∂ : B −→ B be the natural antiautomorphism of the group
(B; +) with itself so that ∂(x+ y) = y + x.

It is easy to see that for all natural numbers n, ∂(x1 + x2 + · · · + xn) = xn +
xn−1 + · · · x1. In particular ∂(x+ y + z) = z + y + x. Also, for all even (odd) j and
all terms t: ∂j(t) = t (∂j(t) = ∂(t)).

We may now combine Lemmas 3 and 5 into:

Theorem 9. A general solution of the equation (5.j) (j = 10,23) is given by:

{

f1(x, y) = α1x+ c1 + β1y

f2(x, y) = ∂j(α2x+ c2 + β2y)

where:

• (B; +) is an arbitrary group,

• c1, c2 are arbitrary elements of B such that f1(c2, c2) = f2(c1, c1),

• αi, βi (i = 1, 2) are arbitrary automorphisms of + such that:

Lbranch(z, (5.j)) = Rbranch(z, (5.j))

for all linear variables z of the equation (5.j) and

Lbranch(wi, (5.j))wi + ci + Rbranch(wi, (5.j))wi = ci

for i ∈ {1, 2}, where w1 is the left quadratic variable while w2 is the right
quadratic variable of (5.j).

The group (B; +) is unique up to isomorphism.

Likewise, Theorem 8 and Lemmas 4 and 6 can be combined into:
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Theorem 10. A general solution of the equation (m.jm) (m = 4, 5; 1 ≤ j4 ≤
16; 1 ≤ j5 ≤ 32; j5 6= 10, 23) is given by:

fi(x, y) = αix+ ci + βiy (i = 1, 2)

where:

• (B; +) is an arbitrary Abelian group,

• c1, c2 are arbitrary elements of B such that f1(c2, c2) = f2(c1, c1),

• αi, βi (i = 1, 2) are arbitrary automorphisms of + such that:

Lbranch(z, (m.jm)) = Rbranch(z, (m.jm))

for all linear variables z of (m.jm) and

Lbranch(w, (m.jm))w + Rbranch(w, (m.jm))w = 0

for all quadratic variables w from the equation.

The group (B; +) is unique up to isomorphism.

6 Algebras with Parastrophically Uncancellable Quadratic

Hyperidentities

By [20, 21], a hyperidentity (or ∀(∀)-identity) is a second-order formula of the
following form:

∀f1, . . . , fk∀x1, . . . , xn (w1 = w2),

where w1, w2 are words (terms) in the alphabet of function variables f1, . . . , fk and
object variables x1, . . . , xn. However hyperidentities are usually presented without
universal quantifiers: w1 = w2. The hyperidentity w1 = w2 is said to be satisfied
in the algebra (B;F ) if this equality holds whenever every function variable fi is
replaced by an arbitrary operation of the corresponding arity from F and every
object variable xi is replaced by an arbitrary element of B.

Now, as a consequence of the results of the previous section, we can establish
the following representation of a binary algebra satisfying one of the non-gemini
hyperidentities.

Theorem 11. Let (B;F ) be a binary algebra with quasigroup operations which sat-
isfy one of the non–gemini hyperidentities (m.jm) (m = 4, 5; 1 ≤ j4 ≤ 16; 1 ≤ j5 ≤
32). Then there exists an Abelian group (B; +) such that every operation fi ∈ F is
represented by:

fi(x, y) = αi(x) + ci + βi(y),

where:
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• ci (i = 1, . . . , |F |) are arbitrary elements of B such that fl(ck, ck) = fk(cl, cl)
for 1 6 l, k 6 |F |,

• αi, βi (i = 1, . . . , |F |) are arbitrary automorphisms of + such that:

Lbranch(z, (m.jm)) = Rbranch(z, (m.jm))

for all linear variables z of (m.jm) and

Lbranch(w, (m.jm))w + Rbranch(w, (m.jm))w = 0

for all quadratic variables w from the equation.

Proof. Let us consider the pair (f1, f1) of operations satisfying equation (m.jm) (for
m = 4 or 5; j4 is some of 1, 2, . . . , 16 while j5 is some of 1, 2, . . . , 32). Then

f1(x, y) = α1(x) + c1 + β1(y)

where + is a group and α1, β1 its automorphisms. In the case of equation (5.10)
((5.23)) the group + is commutative by Theorem 1 (Theorem 2). In all other cases
+ is commutative by Theorem 10.

For any i ∈ F, i 6= 1, the pair (f1, fi) also satisfies (m.jm), hence both are
principally isotopic to a group (perhaps other than +). Anyway, fi is also principally
isotopic to + and by Theorem 9 or 10

fi(x, y) = αi(x) + ci + βi(y)

where ci ∈ B and αi, βi ∈ Aut(B; +) such that

Lbranch(z, (m.jm)) = Rbranch(z, (m.jm))

for all linear variables z of (m.jm) and

Lbranch(w, (m.jm))w + Rbranch(w, (m.jm))w = 0

for all quadratic variables w from the equation.

The rest of the proof is easy.
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