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On cosets in Steiner loops

Aleš Drápal, Terry S. Griggs

Abstract. We give a complete answer to the question of when the cosets of a Steiner
subloop W̄ of a Steiner loop V̄ form a partition of V̄ . We also determine when W̄ is
a normal subloop of V̄ .
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1 Introduction

Let L be a loop and M be a subloop of L. For all x ∈ L, the set xM (resp. Mx)
is a left (resp. right) coset of M . If L = G is a group and M = H is a subgroup
then, as is very well known, the cosets form a partition of G, i.e. for x, y ∈ G, either
xH = yH (resp. Hx = Hy) or xH∩yH = ∅ (resp. Hx∩Hy = ∅). However the same
is not true for loops in general and leads to the following definition (see I.2.10 of [8]).

Definition The loop L has a left (resp. right) coset decomposition modulo M if
the set of all left (resp. right) cosets modulo M is a partition of L. We call this the
decomposition property.

Properties of cosets in loops were studied in [6] where on page 180 the authors
remark that “the article should be viewed as a point of departure for a more system-
atic study”. In this paper we will be interested in Steiner loops, a variety of loops
not studied in [6]. Again the decomposition property does not generally hold and
the aim of this paper is to study those situations where it does. We are able to give
a complete description of the structure of such Steiner loops and subloops including
normality.

We recall the basic definitions and results which are appropriate for our purposes.
A Steiner triple system of order v, STS(v), is a pair (V,B) where V is a set of points
of cardinality v and B is a set of triples of V , called blocks, such that every pair of
distinct points is contained in precisely one block. Such systems exist if and only
if v ≡ 1 or 3 (mod 6) [7], see also [2]. Given an STS(v), a Steiner loop is defined
on the set V̄ = V ∪ {e} by the rules ex = xe = x, xx = e, for all x ∈ V̄ , xy = z
if {x, y, z} ∈ B. We say that the Steiner loop is associated with the Steiner triple
system. The process is reversible. Thus there is a one-one correspondence between
all Steiner triple systems and all Steiner loops and the existence spectrum of the
latter is v + 1 ≡ 2 or 4 (mod 6). Note that in this formulation, a Steiner loop of
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order 2 is associated with the STS(1) having no blocks and a Steiner loop of order
4 is associated with the STS(3) having one block and containing all three points.
The latter Steiner loop is isomorphic to the Klein group K4. Algebraically a Steiner
loop can be characterized as a totally symmetric loop. The variety of such loops is
described by the identities xy = yx and x ·yx = y. In every such loop xx = e, where
e is the identity element.

In addition we will need the concept of a 3-group divisible design, 3-GDD. This is
an ordered triple (V,G,B) where V is a set of points of cardinality v, G is a partition
of V into groups and B is a set of triples of V , called blocks, such that every pair
of distinct points is contained in either precisely one group or one block, but not
both. We will only be interested in 3-GDDs which are uniform, i.e. v = gu and V
is partitioned into u groups all of cardinality g. The 3-GDD is said to be of type
gu. Necessary and sufficient conditions for the existence of 3-GDDs of type gu were
determined in [4], see also [3].

First we observe that if W̄ is a subloop of a Steiner loop V̄ , then it does not
follow that the order of W̄ divides the order of V̄ . For example there are 86 701 547
non-isomorphic STS(19)s containing a subsystem STS(7), equivalently Steiner loops
of order 20 containing a subloop of order 8,[5]. An example of a situation where the
order of the subloop does divide the order of the Steiner loop but the decomposition
property does not hold is given by the STS(19) with base set V = {0, 1, . . . , 18} and
block set B generated by the triples {0, 1, 8}, {0, 2, 5}, {0, 4, 13}, under the action of
the mapping i 7→ i + 1 (mod 19). A subloop of order 4 is W̄ = {e, 0, 1, 8} and two
cosets are 2W̄ = {2, 5, 9, 12} and 5W̄ = {5, 2, 14, 3}.

In Section 2, given a Steiner loop W̄ of order w + 1 we give an exhaustive
construction of Steiner loops of order v + 1 for which W̄ is a subloop with the
decomposition property and in Section 3 we determine when W̄ is normal. Finally
in Section 4, we show that if all subloops of order 2 are normal or if all subloops
of order 4 have the decomposition property then the Steiner loop is the elementary
Abelian 2-group associated with a projective Steiner triple system.

2 Cosets

Let S = (V,B) be an STS(v) and V̄ be its associated Steiner loop. Further let
T = (W, C) with W ⊂ V and C ⊂ B be a proper subsystem STS(w) of S and W̄ be
its associated Steiner loop. Let s = (v + 1)/(w + 1). We require s to be integral,
called the index of W̄ in V̄ . Since both v + 1 ≡ 2 or 4 (mod 6) and w + 1 ≡ 2 or 4
(mod 6) it follows that s ≡ 1 or 2 (mod 3). Further 2 ≤ s ≤ (v + 1)/2. It will be
more instructive to deal first with the two cases: (i) s = 2 and (ii) s = (v + 1)/4.
This will then make it easier to describe the more general case (iii) 2 ≤ s ≤ (v+1)/4.
Finally we consider the case (iv) s = (v + 1)/2.

Case (i): s = 2.
Thus v = 2w + 1 and the structure of the STS(v) is given by the following well
known doubling construction (see Lemma 8.1.2 of [1]). Let W = {x1, x2, . . . , xw}
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and V = W ∪{y1, y2, . . . , yw+1} where the xi’s and yi’s are distinct. Consider a one-
factorization of the complete graph Kw+1 on vertices V \ W and let F1,F2, . . . ,Fw

be the one factors. The STS(v) consists of the blocks of the STS(w) on the set W
together with all of the blocks xiFi, 1 ≤ i ≤ w. In the Steiner loop V̄ , the subloop
W̄ = W ∪ {e} and there is one further coset V \ W .

Case (ii): s = (v + 1)/4.
Here w = 3 and the subloop W̄ = {e, a, b, c} where the triple {a, b, c} ∈
B. Choose y ∈ V . Then yW̄ = {y, p, q, r} is a coset where the triples
{a, y, p}, {b, y, q}, {c, y, r} ∈ B. It then follows that pW̄ = qW̄ = rW̄ = yW̄
which implies that further triples {a, q, r}, {b, p, r}, {c, p, q} ∈ B, i.e. the points
{a, b, c, y, p, q, r} form an STS(7). The structure of the STS(v) is now clear. We
must have that v ≡ 3 or 7 (mod 12). Put u = (v − 3)/4. Let Y0 = {a, b, c}
and Yi = {yi, pi, qi, ri}, 1 ≤ i ≤ u. Then V =

⋃u
i=0

Yi. Triples {a, b, c},
{ai, yi, pi}, {bi, yi, qi}, {ci, yi, ri}, {ai, qi, ri}, {bi, pi, ri}, {ci, pi, qi} ∈ B. The remain-
ing blocks are the blocks of a 3-GDD of type 4u on the set V \ {a, b, c} where the
sets Yi, 1 ≤ i ≤ u, form both the groups of the group divisible design and the cosets
of the subloop W̄ . Such 3-GDDs always exist, see [3].

Case (iii): 2 ≤ s ≤ (v + 1)/4.
We are now able to describe this more general case with reference to the two cases
considered above. Let W = Y0 = {x1, x2, . . . , xw} and Yi = {yi,1, yi,2, . . . , yi,w+1}, 1 ≤
i ≤ s − 1. Let V =

⋃s−1

i=0
Yi. For each i, 1 ≤ i ≤ s − 1, let Fi,1,Fi,2, . . . ,Fi,w be the

one factors of a one-factorization of the complete graph Kw+1 on vertex set Yi. The
blocks of the STS(v) are of three types: (i) the blocks of the STS(w), (ii) the triples
xjFi,j , 1 ≤ i ≤ s − 1, 1 ≤ j ≤ w, (iii) the blocks of a 3-GDD of type (w + 1)s−1

on the set
⋃s−1

i=1
Yi where the sets Yi form the groups of the 3-GDD. Such 3-GDDs

always exist, see [3]. The subloop W̄ = W ∪{e} and the sets Yi are the other cosets.

Case (iv): s = (v + 1)/2.
This is the simplest case to describe. The subloop W̄ is of order 2 and comprises
the set {e, x} for any x ∈ V . The other cosets are the pairs of points which occur in
blocks of the STS(v) which contain the point x. Probably more conveniently, this
case can also be regarded as a special case of the general Case (iii) where w = 1.

We can express all of the above by the following theorem.

Theorem 2.1. Let S = (V,B) be a Steiner triple system of order v and T = (W, C)
be a proper subsystem of order w. Then the Steiner loop V̄ associated with S has a
coset decomposition modulo W̄ , the Steiner loop associated with T , if and only if
(i) s = (v + 1)/(w + 1) is an integer, and
(ii) S contains s − 1 subsystems Si = (Vi,Bi), 1 ≤ i ≤ s − 1, of order 2w + 1 where
Vi ∩ Vj = W and Bi ∩ Bj = C, 1 ≤ i < j ≤ s − 1.

The above theorem has an elegant algebraic formulation.
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Corollary 2.2. Let M be a subloop of a finite Steiner loop L. Then L has a coset
decomposition modulo M if and only if L can be covered by subloops of order 2|M |,
any two of which intersect in M .

3 Normality

We begin with a definition.

Definition Let L be a commutative loop and M be a subloop of L. Then M is
normal if its cosets xM = Mx form a partition of L and induce a factor loop.

This means that for any two cosets xM and yM there exists a coset zM such
that for all a ∈ xM and b ∈ yM , ab ∈ zM . The fact that this does not hold in
general for a Steiner loop can be shown by the following easy example.

Example 3.1. Let S be the STS(9) with base set V = {0, 1, . . . , 8} and block set
B consisting of the triples {0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {0, 3, 6}, {1, 4, 7}, {2, 5, 8},
{0, 4, 8}, {1, 5, 6}, {2, 3, 7}, {0, 5, 7}, {1, 3, 8}, {2, 4, 6}. This gives the Steiner loop
with the following Cayley table.

e 0 1 2 3 4 5 6 7 8

e e 0 1 2 3 4 5 6 7 8
0 0 e 2 1 6 8 7 3 5 4
1 1 2 e 0 8 7 6 5 4 3
2 2 1 0 e 7 6 8 4 3 5
3 3 6 8 7 e 5 4 0 2 1
4 4 8 7 6 5 e 3 2 1 0
5 5 7 6 8 4 3 e 1 0 2
6 6 3 5 4 0 2 1 e 8 7
7 7 5 4 3 2 1 0 8 e 6
8 8 4 3 5 1 0 2 7 6 e

Then 2(3{e, 0}) 6= 7{e, 0}.

In order to determine which Steiner subloops are normal we return to the struc-
ture of the STS(v) as described in Case (iii). First note that if x = e, the equation
x(yM) = (xy)M is satisfied trivially. The other cosets are the sets Yi, 1 ≤ i ≤ s−1,
which form the groups of a 3-GDD of type (w +1)s−1. Thus normality is equivalent
to the 3-GDD having the property that if Yi and Yj, i 6= j, are groups of the 3-GDD
then all of the (w + 1)2 products xy, where x ∈ Yi and y ∈ Yj must lie in the
same group. Thus the set of groups themselves define a Steiner triple system and
so s − 1 ≡ 1 or 3 (mod 6). The construction of a 3-GDD which ensures normality
is now clear and can be obtained by a standard design-theoretic technique. Let
Z = (Y,D) be an STS(s − 1). Now inflate each point y ∈ Y by a factor w + 1, i.e.
replace each point by a set of w + 1 points. Then replace each block D ∈ D by a
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3-GDD of type (w + 1)3, equivalently a Latin square of side w + 1, on the inflated
points.

This is perhaps better illustrated by an example.

Example 3.2. Let v = 31 and w = 3, so s = 8.
Then T = (W, C) is an STS(3). Let W = {a, b, c} and C = {abc}. Here and through-
out the example, for simplicity, we will represent blocks by the concatenation of
three points.
Further S = (V,B) is an STS(31) and contains 7 subsystems (Vi,Bi), 1 ≤ i ≤ 7,
whose intersection is T . Let Vi\W = {xi, yi, zi, wi} and Bi = {abc, axiyi, aziwi, bxizi, byiwi,
cxiwi, cyizi}.
To complete the STS(31) choose an STS(7) on base set {1, 2, 3, 4, 5, 6, 7} with block
set say {123, 145, 167, 246, 257, 347, 356} and a Latin square on set {x,y,z,w}, say

x y z w

x x y z w
y w x y z
z z w x y
w y z w x

Now for each block of the STS(7) proceed as follows. We will illustrate using the
block 246. Choose one element, say 2, to be the row, a second element, say 4, to
be the column and the third element, say 6, to be the entry and assign these to the
Latin square to obtain further triples of the STS(31), i.e. x2x4x6, x2y4y6, x2z4z6,
x2w4w6, y2x4w6, y2y4x6, y2z4y6, y2w4z6, z2x4z6, z2y4w6, z2z4x6, z2w4y6, w2x4y6,
w2y4z6, w2z4w6, w2w4x6.
Note that it is permissible to use different Latin squares for each triple but this just
complicates the process.

Again we can express all of the above by a theorem.

Theorem 3.3. Let S = (V,B) be a Steiner triple system of order v and T = (W, C)
be a subsystem of order w. Then the Steiner loop W̄ associated with T is normal in
V̄ , the Steiner loop associated with S, if and only if
(i) s = (v + 1)/(w + 1) ≡ 2 or 4 (mod 6),
(ii) S contains s − 1 subsystems Si = (Vi,Bi), 1 ≤ i ≤ s − 1, of order 2w + 1 where
Vi ∩ Vj = W and Bi ∩ Bj = C, 1 ≤ i < j ≤ s − 1, and
(iii) for each i, j : 1 ≤ i < j ≤ s − 1, there exists k : 1 ≤ k ≤ s − 1 such that for all
blocks {x, y, z} ∈ B if x ∈ Vi \ W and y ∈ Vj \ W then z ∈ Vk \ W .

Finally in this section, it may be worth noting that normality depends critically
on the value of s, the index of the subloop W̄ in the Steiner loop V̄ . We have
already observed that s ≡ 1 or 2 (mod 3). Comparing the statements of Theorem
2.1 and Theorem 3.3 it follows that if s ≡ 1 or 5 (mod 6), then the subloop W̄
cannot be normal. If s = 2, condition (iii) in Theorem 3.3 does not apply and so
the subloop W̄ is always normal. We have the situation described in Case (i) of
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Section 2. If s = 4, condition (iii) in Theorem 3.3 is automatically satisfied and so
in this case too, the subloop W̄ must be normal. For other values of s ≡ 2 or 4
(mod 6), both situations can occur; the subloop W̄ is normal depending on whether
or not condition (iii) holds. Nevertheless, as indicated, we can always construct a
Steiner system S = (V,B) so that condition (iii) is satisfied and thus the subloop W̄
is normal.

4 Small subloops

In this section we will be interested in Steiner subloops of order 2 or 4, i.e.
subloops which contain respectively either a single point or three points of a block
of the associated Steiner triple system. First consider subloops of order 2. It is
immediate from Theorem 2.1 that in every Steiner loop, every subloop of order 2
has the decomposition property. But the subloops need not be normal as was shown
in Example 3.1. This naturally raises the question of when all the subloops of order
2 of a Steiner loop are normal. The answer is easy. A normal subloop of order 2 is
always central. Thus the Steiner loop must be the elementary Abelian 2-group of
order 2n associated with the projective STS(2n − 1) = PG(n − 1, 2), n ≥ 2. This
result can also be proved combinatorially and this we now do since it will be relevant
to when we consider subloops of order 4.

Let S = (V,B) be an STS(v) where v ≡ 3 or 7 (mod 12). Choose x ∈ V so
{e, x} is a Steiner subloop of order 2. Let w = (v − 1)/2, then w ≡ 1 or 3 (mod 6).
The cosets are the pairs Y1 = {y1, z1}, Y2 = {y2, z2}, . . . , Yw = {yw, zw} where
{x, yi, zi} ∈ B, i = 1, 2, . . . , w. If {e, x} is normal then the system S is completed by
choosing an STS(w) on base set {Y1, Y2, . . . , Yw} and replacing each block {Yi, Yj , Yk}
by the triples {yi, yj, yk}, {yi, zj , zk}, {zi, yj , zk}, {zi, zj , yk}. These four triples on six
points are known as a quadrilateral or Pasch configuration. There are w(w− 1)/6 =
(v − 1)(v − 3)/24 blocks in the STS(w) and thus also the same number of Pasch
configurations. So in total, by considering all v points there will be v(v−1)(v−3)/24
Pasch configurations in S. This is the maximum number possible and only occurs
in the projective systems [9].

Turning now to subloops of order 4, observe that any such subloop which has the
decomposition property, tightly controls the structure of the associated Steiner triple
system S. From Theorem 2.1, S must contain (v−3)/4 subsystems of order 7, all of
which intersect in the block associated with the subloop. From [5], of the 86 701 547
non-isomorphic STS(19)s containing a subsystem STS(7), a mere 2 557 contain 4
or more subsystems of order 7. So the vast majority of Steiner loops obtained from
these systems will not contain a subloop of order 4 with the decomposition property.

Example 4.1. Consider the STS(9) in Example 3.1. Let V ′ = {x′ : x ∈ V }.
Construct an STS(19) on base set V ∪ V ′ ∪ {∞} as follows. For each block {x, y, z}
which is a block of the STS(9), let triples {x, y, z}, {x, y′, z′}, {x′, y, z′}, {x′, y′, z} be
blocks of the STS(19). Complete the system with blocks {∞, x, x′} for each x ∈ V .

On the other hand, consider the STS(19) constructed in the above example. It
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contains 12 STS(7)s. Each of the blocks {∞, x, x′}, x ∈ V , is contained in 4 of these
STS(7)s and the subloops {e,∞, x, x′}, x ∈ V , have the decomposition property. All
other blocks are contained in just a single STS(7). Thus we might ask whether there
exist Steiner loops, all of whose subloops of order 4 have the decomposition property.
Again the answer is easy and can be proved both algebraically and combinatorially.
Choose x, y, z ∈ V̄ . If e ∈ {x, y, z} or {x, y, z} ∈ B, then x(yz) = (xy)z trivially.
Otherwise W̄ = {x, y, xy, e} is a subloop of order 4 and W̄ ∪zW̄ is a subloop of order
8. This latter subloop is associative and so is a group, i.e. induced by a projective
Steiner triple system. Combinatorially we can argue as follows. Consider any block
of the associated Steiner triple system. It must be contained in (v − 3)/4 STS(7)s.
Since there are v(v−1)/6 blocks this gives v(v−1)(v−3)/(24×7) different STS(7)s.
Finally each STS(7) contains 7 Pasch configurations so there are v(v−1)(v−3)/24 of
these again the maximum possible and the Steiner loops are the elementary Abelian
groups associated with the projective Steiner triple systems.
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