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Cubic differential systems with two affine real
non-parallel invariant straight lines of maximal
multiplicity
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Abstract. In this article we classify all differential real cubic systems possessing
two affine real non-parallel invariant straight lines of maximal multiplicity. We show
that the maximal multiplicity of each of these lines is at most three. The maximal
sequences of multiplicities: m(3,3;1), m(3,2;2), m(3,1;3), m(2,2;3), m(2,1;3),
Moo (1, 1;3) are determined. The normal forms and the corresponding perturbations
of the cubic systems which realize these cases are given.
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1 Introduction and the statement of main results

We consider the real polynomial system of differential equations

dx

d
S =Py, L=Q(y), sdPQ) =1 ()

and the vector field

0 0

associated to system (1).

Denote n = max {deg (P),deg (Q)}. If n = 3 then system (1) is called cubic.

A curve f(x,y) =0, f € C[z,y] is said to be an invariant algebraic curve of (1)
if there exists a polynomial K; € C[z,y], deg(K¢) < n — 1 such that the identity
X(f) = f(z,y)K¢(x,y) holds. We will be interested in invariant algebraic curves of
degree one, that is invariant straight lines ax + 8y +~v =0, (o, 3) # (0,0).

Definition 1 (see [5]). An invariant algebraic curve f of degree d for the vector
field X has algebraic multiplicity m when m is the greatest positive integer such that
the m-th power of f divides F4(X), where

(%1 (%) (¥
Ba) = det | ®
X)) XNwg) L XNy
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and v1,vg, ..., vy is a basis of Cy[x, y].

We note that this definition of multiplicity can be applied to the infinite line
Z =0 in the case when this line is not full of singular points.

Definition 2 (see [5]). An invariant algebraic curve f = 0 of degree d of the vector
field X has geometric multiplicity m if m is the largest integer for which there exists
a sequence of vector fields (X;);>o of bounded degree, converging to hX, for some
polynomial h, not divisible by f, such that each X, has m distinct invariant algebraic
curves, fr1 =0,..., frm = 0, of degree at most d, which converge to f = 0 as r goes
to infinity. If we set h = 1 in the definition above, then we say that the curve has
strong geometric multiplicity m.

In [5] it is proved that the notions of algebraic and geometric multiplicity are
equivalent.

By present a great number of works have been dedicated to the investigation of
polynomial differential systems with invariant straight lines.

The problem of estimating the number of invariant straight lines which a poly-
nomial differential system can have was considered in [1]; the problem of coexistence
of the invariant straight lines and limit cycles was examined in {[16] : n = 2}, {[9],
n = 3}, [8]; the problem of coexistence of the invariant straight lines in cubic systems
and singular points of center type was studied in [6], [7], [17].

The classification of all cubic systems with the maximum number of invariant
straight lines, including the line at infinity, and taking into account their multiplic-
ities, is given in [10].

In [1] it was proved that the cubic system (1) can have at most eight affine
invariant straight lines. The cubic systems with exactly eight and exactly seven
distinct affine invariant straight lines have been studied in [10], [11], with invariant
straight lines of total geometric (parallel) multiplicity eight (seven) - in [2], [3], [4]
([18]), and with six real invariant straight lines along two (three) directions - in [13],
[14]. The cubic systems with degenerate infinity and invariant straight lines of total
parallel multiplicity six were investigated in [15]. In [19] it was shown that in the
class of cubic differential systems the maximal multiplicity of an affine real straight
line (of the line at infinity) is seven.

In this paper the cubic systems with two affine real non-parallel invariant straight
lines of maximal multiplicity are classified.

Denote by CSL;, ((CSIL;(T)) the class of cubic systems with exactly k distinct
(with exactly 2 real non-parallel) affine invariant straight lines.

Definition 3. We say that (p1, g2, ..., ftk; o), Where p; € N* j = 1,... k, o0,
pi > piv1,J = 1,...,k —1,is a sequence of multiplicities of invariant straight lines
in the class CSLj, if in CSL}, there exists a system with invariant affine straight
lines [y, ..., I which have respectively the multiplicities 1, po, ..., ux and the line at
infinity has the multiplicity fioo.

Definition 4. The sequence of multiplicities (u1, fi2, ..., fig; thoo) is called maximal
with respect to the component j,j € {1,2,...,k, 00} if (p1, 2, ..o, 5 + 1, ooy e fhoo)
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is not a sequence of multiplicities of invariant straight lines in the class CSL;.
We will denote this sequence by m;(u1, f2, ..., fk; hoo)- The sequence of the type
mj (1, 12, -, Hk; Hoo) is called partially maximal. If the sequence (p1, pi2, ..., thi; fhoo)
is maximal with respect to all components, then it is called maximal (or totally
maximal) and is denoted by m(p1, p2, ...y fik; foo)-

Our main results are the following:

Main Theorem Any cubic system having two affine non-parallel real invariant
straight lines of the (partially) mazimal multiplicity m(u1, po; too) (Moo (115 1425 foo))
via an affine transformation and time rescaling can be written as one of the following
forms:

m(3,3;1) 1) z=2% g=y®+ay+by?),b#0;
m(3,2;2) 2.1) &=az3, y=y%a#0;
22) i=ux (aﬂﬁ +y), 9=v°, a#0;
m(3,1;3) 31) &=a%(ax+by), Y=y, a#0;
32) #=ux(ay+b), y=vy@*+ay+b), b#0;
m(2,2;3) 4) w:x, y=y(l+bzy), b#0;
Meo(2,1;3) | 5.1) =2%(a+br+cy), 9=y, c(a®+0b%)#0;
52) ==z, y=y(l+ax+br®+cry), ab®+c?)#£0;
5.3) i =ax(1+ax+bx®+cxy), y=vy, c(a®+b*) #0;
54) z=z(1+ay), y=y(l+bxr+ay+cx?), abc#O0;
moo(1,1;3) | 6.1) =2, y=uyla+bx+cy+dz?+ery+ fy?),
0+ +f2)(d2+6 +f2)(a +02+d%)((a—1)* +¢* + f?)-

(
((a =12+ +d?)((a —1)% 4 (c2d — bee + b2 f)?) # 0;
= (a+by) v =ylc+dr+ey+2?), a(c®+e*)((a—
¢)* 4+ (b—e)?) #0;
6.3) i =xz(a+by+cry+y?), y=—y(d+ex+ 22 + cxy),

(

Y

ad(c® + € + (a+d)?)((a + d)? + (bc — €)?) # 0;
6.4) & =xz(a+by+cry+dy?), y = ay(l+bx + cx® + dxy),
aa(c? +d?)(a —a) # 0.

2 The proof of the Main Theorem

2.1 The maximal algebraic multiplicity of the affine invariant
straight lines

The goal of this section is to determine the maximal algebraic multiplicity of
the invariant straight lines for the cubic systems with two affine real non-parallel
invariant straight lines.

We consider the cubic differential system

{ T = PO +P1(:E7y) +P2(33‘,y) +P3(33‘,y) = P(:Evy)7
y= Qo+ Qi(z,y) + Qa2(z,y) + Qs(z,y) = Q(z,9),

where Py = Y ajz'y? and Q= Y. bia'y’, ai,bi; €R, k=0,3.
i+j=k i+j=k
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Suppose that

yP3($7y) - $Q3(ﬂj‘,y) §é 07 ng(Pv Q) = 17 (4)

i.e. at infinity the system (3) has at most four distinct singular points and the
right-hand sides of (3) do not have common divisors of degree greater than 0.

Let the system (3) have two real non-parallel invariant straight lines Iy, ls. By
an affine transformation we can make them to be described by equations x = 0 and
y = 0, respectively. Then, the system (3) looks as

{ T = x(alo + a0 + a1y + a30x2 + a1y + a12y2), (5)
¥ = y(bor + b11@ + bozy + ba12? + brazy + bosy?).

We denote by p; the multiplicity of the line x = 0, by po the multiplicity of the
line y = 0 and by p the multiplicity of the line at infinity.

Applying Definition 1, first we determine the maximal algebraic multiplicity of
the line x = 0, secondly the maximal algebraic multiplicity of the line y = 0 and the
third step consists in the determination of the maximal algebraic multiplicity of the
line at infinity Z = 0.

2.1.1 The maximal algebraic multiplicity of the line x = 0

In this subsection, we compute the maximal algebraic multiplicity of the invariant
straight line z = 0 of the system (5). For this purpose, we calculate the determinant
E1(X) from Definition 1. For (5) the determinant E;(X) is a polynomial in z and y
of degree 8. To determine the maximal algebraic multiplicity of the line x = 0, we
write it in the form:

Ei(X) = 2(A1(y) + Aa(y)x + As(y)a? + Asa(y)z® + As(y)a* 6)
+As(y)a® + Az (y)z® + As(y)z").

Thus for system (5) we have Ai(y) = —yA11(y)A12(y), where A11(y) = bo1 +
bo2y + bosy? and A12(y) = a3y, — a1obo1 + 2a10a11y — 2a10bo2y + atyy? + 2a10a12y* +
a12b01y? — a11bozy? — 3aiobozy® + 2a11a12y> — 2a11bo3y® + ayy* — ar2bosy®.

The algebraic multiplicity pq of the invariant straight line x = 0 is at least two
if the identity A;(y) = 0 holds. From conditions (4) the polynomial A;;(y) is not
identically zero, i.e. |bo1| 4 |bo2| + |bos| # 0, therefore it is necessary that Ajo(y) be
identically zero. The identity Aj2(y) = 0 holds if one of the following six sets of
conditions is satisfied:

ayp = ay = ayz = 0;

(
a1 = a2 = boa = bz = 0,bo1 = a1, aip # 0; (8
(

ajo = a1z = bpz = 0,bp2 = a1, a1 # 0;

)
)
)
aiz = bog = 0,bo1 = aio, bo2 = a1, arpan # 0; (10)
aip = 0,bo1 = a11(bo2 — a11)/ai2, boz = a2, a1z # 0; (11)

)

bo1 = a10,bo2 = a11,bo3 = a2, aparz # 0. (12
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Lemma 1. For cubic differential system {(5), (4)} the algebraic multiplicity uy of
the invariant straight line x = 0 is at least two if and only if one of the following six
sets of conditions (7), (8), (9), (10), (11), (12) is satisfied.

We will examine each of the cases (7), (8), (9), (10), (11) and (12) separately.

1) Conditions (7).

The algebraic multiplicity is at least three (u; > 3) if the identity A2(y) = 0
holds. Here we have As(y) = yAii(abor + 2a20bo2y + a21boay?® + 3azobozy? +
2a21bo3y%). The identity As(y) = 0 holds if one of the following two series of condi-
tions is satisfied:

agp) — a1 = 0; (13)

az = boz = boz = 0,a21 # 0. (14)
Under the conditions {(4), (7), (13)}, the cubic system (5) looks as

i =asz®, ¥ =y(bor + bz + bo2y + ba12? + brawy + bozy?),

15
a30(|bo1| + [bo2| + |boz|) # 0. (15)

For this system Asz(y) = azoyA11(y)(bor + 2bo2y + 3bosy?) Z 0, so in this case the
multiplicity of the invariant straight line x = 0 is three.
If the conditions {(4), (7), (14)} occur, then the system (5) looks as:

i = 2?(azor + any), U= y(bor + bi1x + boa? + braxy), azazobor #0.  (16)

The algebraic multiplicity of the line x = 0 can not be greater than three, because
As(y) = bory(asobor — az1(2a21 — bi2)y?) # 0.

2) Conditions (8):
Ag(y) = —a%oy(Q(ago — bll) + 3(&21 — blg)y) =0=

bi1 = a20,b12 = a2 (17)

= A3(y) = —3a3y(az0 — ba1)y # 0, therefore y; can not be greater than three.
In the conditions {(4), (8), (17)} the system (5) takes the form

= x(ay0 + agox + a30x2 + ag xy),

. 18
U = y(aio + a2z + b1 2% + as1xy), aip(bar — asp) # 0. (18)

3) Conditions (9).
The identity Az(y) = y(azobd; — ar1(arrago + 2az1bo1 — aribyr — borbia)y? —
2a%1 (a21—b12)y?) = 0 holds if one of the following two series of conditions is satisfied:

az =0, by1 = ag1bo1/ai1, biz = as; (19)

bo1 = 0, b1 = ago, b1z = a21, az # 0. (20)
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Under the conditions {(9), (19)} we write the system (5) as

i = x(any + aspr? + ag11y),

. 21
= y(a1bor + an1borz + a3y + annbaz® + ajnanzy)/a1r, b — asg # 0. (1)

Here A3(y) = y(azob3; —ai1asobo1y—2a3, (azo—ba1)y?) # 0, therefore the multiplicity
(1 can not be greater than three.

If the conditions {(9), (20)} are satisfied then the cubic system (5) obtains the
following form

i = z(ax0z + a11y + azpr® + azzy),

. 22
v = y(agz + a1y + ba1z? + a11y + anzy), arrage(ba — asg) # 0. (22)

The algebraic multiplicity of the line 2 = 0, for the system (22), can not be greater
than three, because A3z(y) = 2a%; (b1 — azo)y® Z 0.

4) Conditions (10):

As(y) = —y(a10 +a11y)(2a10(ag0 — b11) + (ar11a20 + 3a10a21 — ar1bi1 — 3ai0b12)y +
2a11(az1 — b12)y?) =0 = {b11 = ago,bi2 = an} = Az(y) = y(bar — aso)(a1o +
a11y)(3a10 + 2a11y) Z 0, so u1 = 3. The cubic system (5) looks as

& = x(aip + agr + any + azor? + as1xy),
U = y(aio + a2z + any + bnz? + anxy), aparr(bar — azo) # 0.

5) Conditions (11).

The identity Ag(y) = y(a11 + a12y)(a11a20(a11 - b02)2 + 2&12&20(&11 - b02)2y +
a12(3a? a1 — 3ar1a12a20 + 2a12a20bo2 — 4ai1a21bo2 + az by +2a11a12b11 — a12bo2bir —
a%lblg + a11b02b12)y2 — 2&11&%2(6121 — blg)y3 — ai’z(am — blg)y4)/a%2 =0 holds if one
of the following four series of conditions is satisfied:

(23)

azo = 0,bo2 = 2a11,b12 = az; (24)
ago = 0,b11 = az1(boz — a11)/a12, b12 = az1, boz # 2a11; (25)
ain = 0,a20 # 0,bo2 = 0,b12 = aoi; (26)
ain # 0,a20 # 0,bo2 = a11,b11 = ago, b1z = ag1. (27)
a) The conditions {(11), (24)} lead us to the system
& = z(any + azor? + ao1xy + a12y?), ¥ = y(ai; + 2a11012y (28)

+a12bn 2? + ar2a012y + aloy?)/arz, ba — asy # 0,

for which Ag(y) = y(a‘lllago + 2a‘i’1a12a30y + alg(a%lalgbgl — a%lagl + 2a11a12a91b11 —
afabty)y? — 2a11a3y(as0 — bar)y® — afy(azo — bar)y?)/aly # 0, so 1 = 3.

b) Under the conditions (25) we have A3(y) = y(a11 + a12y)(ai1aso(a11 — bo2)? +

a12a30(3a11—2bo2) (a11—boz2)y —ais(3a11 —boz) (azo—b21 )y* —ay(azo—ba1)y?®) /aiy # O,
therefore in this case p; = 3. The cubic system (5) has the form

i = z(any + azor® + anzy + ar2y®), = y(ai1(boz — arn)+
az1(boz — a11)T + a12bo2y + a12ba12? + apanzy + alyy?)/are, (29)
(ba1 — aso)(boz — 2a11) # 0.
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¢) When conditions {(11), (26)} hold we have A3(y) = —a12y>(2a3, — 3aobi1 +
b%l + a12a30y? — a12b21y?) # 0 and one obtains the following system

i = x(a0 + asox? + agzy + ainy?),

y =y(bniz + byx? + anwy + a12y?), azoarz(bar — asgo) # 0. (30)
The multiplicity p1 is equal to three.
d) The conditions {(11), (27)} lead us to the system
i = z(agr + any + azoz® + ag1zy + a12y?), (31)

¥ = y(agz + a11y + ba12% 4+ az1zy + a12y?), ar1ai2az0(bar — asz) # 0.

For system (31) we have Az(y) = (b1 — a3zo)(a11 + a12y)(2a11 + aoy)y® #Z 0 and
therefore p; = 3.

6) Conditions (12):

As(y) = —y(a10+any+ai2y?)(2a10a20 — 2a10b11 +ar1a20y + 3ar0ay — aribiiy —
3a10b12y+2a11a21y? — 2a11b12y° + a12a01y> — a12b12y®) =0 = {b11 = az, bi2 = az1}
= As(y) = y(bar — aso)(a10 + a1y + a12y?)(3a10 + 2a11y + a12y?) # 0. Therefore
p1 = 3. In this case the cubic system (5) looks as

& = x(a10 + agx + a11y + az0z® + anzy + a9y?),

. 32
v = y(aio + a2 + any + ba1z? + anrxy + a12y?), arpa12(bar — as) # 0. (82)

In this way we have proved the following two lemmas.

Lemma 2. Let the cubic system {(3), (4)} have two affine real non-parallel invariant
straight lines. Then the maximal algebraic multiplicity of one of these lines is at most
three.

Lemma 3. For cubic differential system {(5), (4)} the algebraic multiplicity of the
mmwariant straight line x = 0 is three if and only if it has one of the following forms:
(15), (16), (18), (21), (22), (23), (28), (29), (30), (31), (32).

2.1.2 The maximal algebraic multiplicity of the line y = 0

In this subsection for the systems, enumerated in Lemma 3, we determine the
maximal algebraic multiplicity of the line y = 0. For this purpose, we write the
determinant F(X) from Definition 1 in the form:

Ey(X) = y(Bi(x) + Ba(2)y + B3(2)y® + Ba(w)y® + Bs(x)y"*

+Bg(2)y® + Br(x)y® + Bs(z)y"). (33)

The algebraic multiplicity po of the invariant straight line y = 0 is at least two
if the identity Bj(z) = 0 holds.

Taking into account the condition (4), for each of the systems (16), (18), (22),
(23), (31), (32), the polynomial Bj(x) is not identically zero, therefore ug = 1.
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In the case of system (15) the identity Bi(z) = 0, where By (x) = agox3(b3; +
2[)01[)11% — 3&30b01$2 + b%lxz + 2b015211’2 — 2&30[)111’3 + 2b11b211’3 — a30b21x4 + b%1x4)
holds if one of the following two series of conditions is satisfied

bo1 = b11 = b1 = 0; (34)

bo1 = b11 = 0,b21 = aso. (35)
The conditions (34) imply Ba(x) = —a3,x°(3bo2 + 2b12z) =0 =

b02 = b1 = 0. (36)

Under the conditions (34) and (36) the multiplicity is u2 = 3. The cubic system (15)
has the form @ = asga?, ¥ = bosy>, asobpz # 0. This system is an element of the
class CSL} and for it we have m(3,3,1,1;1) (see [10]).

The conditions (35) = Ba(z) = a3yb122% = 0 = bja = 0 = Bs(z) = azez3(2b3, +
a30603m2) # 0, therefore the multiplicity is uo = 3 and the system (15) takes the
form

i = agr®,  § = y(boay + azox® + bo3y?), azoboz # 0. (37)

For the system (21) we have Bi(z) = azoz3(a?,b3; + 2a11a21b3;7 — bo1 (3a3,a30 —
a%lbm — 2&%1521)1'2 — 2&11@211)01(&30 — b21)x3 — a%lbgl (ag() — bgl))/a%l and {Bl (a;) =
0, (4)} =

bor = ba1 =0, ajjaziazg # 0 (38)
= Bsy(z) = —adyx®(3a11 + 2a212) £ 0, po = 2.

In the case of system (28) we have By (x) = azoz3(at;+2a3 a12b112—a12(3a3;azo—
algb% — 2&%1b21)l‘2 — 2&%21311(&30 — b21)$3 — a%2b21(a30 — b21)$4)/a%2 =0=

aj; = byp = ba; =0, (39)
= Bs(x) = —2a21a§0x6 =0=agy =0= Bs(x) = —3a12a§0x5 #£ 0, pg = 3. The
system (28) looks as:

@ = z(az0r” + a12y®), ¥ =a12y®, asoaiz # 0. (40)

For the system (29) we get By(z) = a30$3(a%1(a11 —bo2)? +2a11a91 (ar; —bo2)?x+

(a11 — bo)(a11a3, + 3ar1a12a30 — a3;boz — 2a11a12b21)2? + 2a12a21 (a11 — boz)(aso —
ba1)z® — a2yba1 (asp — ba1)x*) /a2,. The identity Bi(z) = 0 holds if at least one of the
following two sets of conditions is satisfied:

ai; = ag = by =0, (41)

bo2 = a11,b21 = 0,a11 # 0. (42)

When conditions (41) ((42)) hold the polynomial By(x) = —3a3ybo2x® (Ba(x) =
—a§0x5(3a11 + 2a917)) is not identically zero, therefore g = 2.
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Consider now the system (30). We have: Bj(z) = —2*(ag + azoz)(azobi — b3, +
2a30b11x — 2b11bo1x + a30b21x2 — b%1x2) =0=

b1 =0, b2 =0 (43)

= Bs(z) = —ag12* (a0 +aszox)(az+2a30z) =0 = a1 = 0= B3(z) = —a122(a+
asox)(2ag0 + 3aspz) Z 0, uo = 3. The cubic system (30) looks as:

@ = z(agz + azor? + a12y?), Y= a2y®, aizazazy # 0. (44)

The transformation X = y,Y = x reduces (40) and (44) to a system of the form
(37).

Lemma 4. For cubic differential system {(5), (4)} the algebraic multiplicity of the
invariant straight lines © = 0 and y = 0 are respectively pu1 = 3 and pe > 2 if and
only if it has one of the forms: 1) {(15), (34)}, 2) {(15), (35)}, 3) {(21), (38)},

4) {(28), (39)}, 9) {(29), (41)}, 6) {(29), (42)}, 7) {(30), (43)}.

Lemma 5. In the class of cubic systems {(5), (4)} € (CS]L;(T) the algebraic multi-

plicity of the invariant straight lines x = 0 and y = 0 is three if and only if it has
the form (37).

2.2 Classification of cubic differential systems with two affine real
non-parallel invariant straight lines and the line at infinity of
maximal algebraic multiplicity

In this section for cubic system {(5), (4)}€ (CSIL;(T) we establish the partially
maximal sequences of multiplicities of the type meo (1, 112; fhoo)-

We fix up € {1,2,3} and pe € {1,2,3}, u1 > po and we will determine the
maximal multiplicity of the line at infinity such that the sequence (1, p2; ftoo ) should
be maximal in the third component. We will investigate the cases:

1. m(3,3; hoo)y 20 Moo(3,25 hoo)s 3 Moo(3, 15 oo )y 4 Moo (2,25 fhoo ) s
5. Moo(2, 15 foo)s 6. Moo(L, 15 fioo)-

We consider the cubic system {(5), (4)}€ (CSIL;(T,) and its associated homoge-
neous system

T = x(CLlQZ2 + CLQQJZZ + allyZ + a30x2 + a1y + algyz), (45)
y = y(bo1 Z% + bz Z + booyZ + bo1z* + biazy + bosy?).
For (45) we write F1(X) in the form
El(X) = CO(:Ev y) + Cl($> y)Z + 02(:E7 y)Z2 + 03(:E7 y)23 + 04(:E7 y)Z4 (46)

+C5(‘T7y)Z5 + Cﬁ(x7y)Z6 + C7($,y)Z7 + CS(‘Tay)ZE;a

where Cj(z,y),j = 0,8 are polynomials in z and y.
The algebraic multiplicity of the line at infinity is poo € N* if pioo is the maximal
number such that Z#~=1) divides F(X).
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2.2.1 Case m(3,3; ttoo)

To investigate the maximal algebraic multiplicity of the line at infinity for the
system (37) (see Lemma 5), we consider the homogenized system

&= azr®,  §=yboayZ + azor® + bozy?), asoboz # 0. (47)

For (47) we have Cy(z,y) = azobozx>y>(azox? + 3bo3y?) Z 0, therefore the alge-
braic multiplicity of the line at infinity is one and in the class (CSIL;(T) we have the
maximal sequence m(3,3;1).

Lemma 6. Via an affine transformation and time rescaling any cubic system having
two non-parallel real invariant straight lines of the maximal multiplicity m(3,3;1),
can be brought to the form

it=a3 y=ylay+2°+by?), b#0. (48)

2.2.2 Case Moo(3,2; o)

According to Lemma 4, the cubic system {(5), (4)} admits the invariant straight
lines x = 0 and y = 0 of the multiplicities three and two respectively if the cubic
system has one of the following seven forms:

1) {(15), 34)},  2){(15), (35)},  3) {(21), (38)},  4) {(28), (39)},

5) {(29), (41}, 6) {(29), (42)},  7) {(30), (43)}-

Case 1) {(15), (34)}. Under the condition (34) the cubic system (15) looks as
& =asox”, =y (boz + br2x + bosy), aso(|boz| + [bos|) # 0. (49)

For homogeneous system associated to the system (49) we have Cy(z,y) =
—a30x3y2(2b12x + 3b03y)(a30x2 — blgazy — bogy2) =0= b03 = b12 =0= Cl(x,y) =
—3ayboaz®y?* # 0, therefore the multiplicity of the line at infinity is two. The system
(49) takes the form & = asox>, § = bpay?, bozazo # 0, and after the time rescaling
we can write it as

i=as’, y=y9> a#0 (50)

(see system 2.1) of the Main Theorem).
From the above it follows for system (50) that m(3,2;2) = m(3,2;2).
In the Cases 2), 4), 5), 6), 7) we have respectively

i =agor®, §=y(asox? + bo2y + biawy + bosy?), aso(bgy + bls + biy) # 0,
00(117, y) = a30$3y2(b1233 + bogy)(a303§2 + 2biozy + 3b03y2) Z0, poo = 1;

i = z(azoz® + anzy + a12y?), ¥ = y*(anz + ar2y), azazy # 0,
Co(z,y) = —azor®y?(2as1a302> + a3, 2%y + 3a12a302%y + 2a12a212y>
+a%2y3) Z0, poo =1

i = z(azor? + a12y?), ¥ = y*(a12y + boz), a12as0 # 0,
Co(z,y) = —a12a3073y3 (3az07? + a12y*) Z 0, pioo = 1
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& = z(azor? + any + asizy + ar2y?), Y= y*(a11 + anz + aiy),
arzazo # 0, Co(w,y) = —azox®y*(2az1a302> + a3,y + 3ar2a302?y
+2a10a912y* + a3oy®) # 0, pioo = 1

& = z(agr + az0z’® + anzy + a12y?), v = y*(anz + a12y),
ar2agoazy # 0, Co(z,y) = —azor®y?(2a21a302® + ad 2?y+
3a12a307°%y + 2a12a212y? + alyy®) £ 0, pieo = 1.

Case 3) {(21), (38)}. In this case Cy(z,y) = —as1a302°y?(2a30z + ag1y) = 0 =
ag =0 = Cy(z,y) = —3a11a3)2°y* £ 0, poo = 2. The system {(21), (38)} obtains
the form & = x(a11y + azox?), § = a11y?, ai1azp # 0, and after time rescaling we
can write it as

i=xzy+az?), y=9% a#0 (51)

(see system 2.2) of the Main Theorem).
For system (51) we have mqo(3,2;2) = m(3,2;2).

Lemma 7. Any cubic system of the class (CS]L;(T,) with invariant straight lines of

the mazimal multiplicity m(3,2;2) via an affine transformation and time rescaling
can be written in form (50) or (51).

2.2.3 Case Moo(3,1; o)

The following cubic systems: (15), (16), (18), (21), (22), (23), (28), (29), (30),
(31), (32) possess the invariant straight lines z = 0 and y = 0 of the multiplicity
w1 = 3 and pg = 1, respectively (see Lemma 3). Proceeding as in the previous case
and taking into account the condition (4), we will examine each system separately.

System (15). For this system we have Cy(z,y) = —azoz>yCo1(z,y)Coa(x,y),
where C()l(x,y) = a30x2 — bglx2 — blgazy — bogyz, CQQ = (b211’2 + 2[)12xy + 3bogy2).
If Co1(z,y) = 0, then the infinity is degenerate for (15). Let Copi(x,y) # 0, i.e.
|a30 — b21| + |b12| + |b03| # 0, and 002($,y) = 0. Then, byg = b2 = by = 0 =
Ci(z,y) = —a3yz’y(2b112+3bgay) = 0= bz = b1y = 0= Ca(x,y) = —3adbo1x°y %
0, oo = 3. Under the above conditions the system (15) takes the form

& = agpar®, Y = bo1y, azobo1 # 0. (52)

System (16). In this case: {(4), Co(z,y) = —zy((aso — ba1)x + (a1 —
b12)y) (asoba12? + 2azobizzy + a21bi2y?®) = 0} = {|aso — ba1| + |az1 — biz| # 0, bay =
b12 = 0} = C’l(x,y) = —b11:174y(a30:17 + a21y)(2a30$ + a21y) =0= b11 =0=

Co(z,y) = —bo12®y(asor + a21y)(3aszor + 2a21y) Z 0, pioo = 3. The system (16) has
the form

i = 2*(azor + any), ¥ =bory, azobor # 0. (53)

Note that the system (52) is a particular case of the system (53), and after time
rescaling the last system can be written in the form

i=aaz+by), Y=y, a A0 (54)
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(see system 3.1) of Main Theorem). The system (54) has not the third affine invariant
straight line because F;(X) = —2%y(—a + 3a?z? + 5abxy + 2b%y?). The conic f =
—a + 3a®z? + babry + 2b%y? = 0 is reducible in Clz,y] only if b = 0, i.e. f =
a(—1+ 3ax?), but f = 0 is not invariant for {(54), b = 0}. For system (54) we get
Meo(3,1;3) = m(3,1;3).

Remark 1. For the homogeneous systems associated to (18) (respectively, (21), (22),
(23)) the polynomial Cy(x,y) has the form Co(z,y) = (b1 — aso)z’y(asoborx?® +
2a01a30TY + a%1y2) and for these systems identity Co(z,y) = 0 holds if one of the
following two series of conditions is satisfied:

A) a1 = b21 =0 and B) a1 = asp = 0.

System (18). In conditions A) (B)) we have Ci(z,y) = —2agaZyx’y = 0
(Ci(z,y) = axb32% = 0) = az = 0 = Ca(z,y) = —3ai0a3pz’y # 0 (Ca(z,y) =
a10b3;7%y # 0), fieo = 3. We obtain the following two systems:

i = z(azor® + a10), Y= awy, awazp # 0; (55)
& =awr, §=y(baz®+aw), abx #0. (56)

The system (55) has four affine invariant straight lines: [} =z, lo =y, l3a = o+
\/—a10/aso which, together with the line at infinity, form a sequence of multiplicities
(3,1,1,1;3).

System (21). Assume the conditions B) hold, then the system (21) is degen-
erate, i.e. deg(ged(P, Q)) > 0 (see (4)). Let agp # 0. Then, A) = Ci(x,y) =
—3a11a§0:175y2 Z0, oo = 2.

System (22). When the set of conditions A) (B)) is satisfied, then Ci(x,y) =
azb3,2% # 0 (C1(z,y) = —a3yz’y(2a20z + 3a11y) Z0), fiee = 2.

System (23). Under the conditions A) we have Ci(z,y) = —a3,r’y(2a0x +
3a11y) #Z 0, 50 feo = 2. In the case of conditions B): Cy(z,y) = agb3 2% =0 =
aso = 0, Co(x,7y) = bor23y(a1obarz? + 2a%1y2) Z 0, floo = 3. The system (23) takes
the form

@ = x(any +aw), ¥ =y(baur®+any+aw), aaribyn #0. (57)

It is easy to show that for the systems (28), (29), (30), (31), (32) the algebraic
multiplicity of the line at infinity is one.

Note that systems (56) and (57) may be combined in one system which after an
affine transformation and time rescaling can be writing in the form

i =wz(ay+0b), y=y@@®+ay+b), b#0 (58)
(see system 3.2) of the Main Theorem). For system (58) only the lines x = 0 and
y = 0 are affine invariant straight lines as E;(X) = 23y(3b + 5aby + bx? + 2a%y?)
and the algebraic curve 3b? + 5aby + bx? + 2a?y? = 0 is not invariant for (58). For
system (58) we have moo(3,1;3) = m(3,1;3).
Lemma 8. Any cubic system of the class CSL

X
2(r
the mazimal multiplicity m(3,1;3) via an affine transformation and time rescaling

can be written in the form (54) or (58).

) with invariant straight lines of
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2.2.4 Case Moo(2,2; o)

In Section 2.2.2 we have obtained the canonical forms of the systems (see Lemma
7) which have the maximal sequence m(3,2;2). For each of these systems the affine
invariant straight line x = 0 (y = 0) has the algebraic multiplicity three (two)
and the line at infinity [, has multiplicity two. The Poincaré transformation z =
1/x, uw = y/x sends: the line x = 0 into the line at infinity of the phase plane Ozu,
the line at infinity of the phase plane Oxy into the line z = 0, the line y = 0 into
the line u = 0, and preserves the multiplicities. This transformation reduces the
systems (50) and (51) to the cubic systems, respectively

Z=—az, U= —u(a— zu); (59
z2=—z(a+zu), U= —au. (60

Putting in (59) ((60)) z = z,u = y,t = —7/a,a = —=1/b (2 = y,u = x,t =
—7/a,a = 1/b) we obtain the system

=z, y=y(l+bxry), b#O. (61)

Lemma 9. Any cubic system of the class (CS]L;(T) with straight lines of the maximal

multiplicity m(2,2;3) via an affine transformation and time rescaling can be written
in the form (61).

2.2.5 Case Moo(2,1; o)

We will examine the sets of conditions (7)—(12) under which the cubic system
(5) admits the invariant straight lines x = 0 and y = 0 of multiplicities pu; = 2 and
wa = 1, respectively.

1) Conditions (7).

When for cubic system (5) the conditions (7) hold we have Cy(x,y) = —22yCo1(z,y)-
Coz(z,y), where Coi(z,y) = ((aso — ba1)x* + (ag1 — biz)wy — bosy?), Coz(x,y) =
(azoba12® + 2az0b122?y + (3agobos + azibi2)zy? + 2a21b03y°).

Taking into account conditions (4) the polynomial Cy;(z,y) can not be identi-
cally zero, so we will require for Cpe(x,y) to be identically zero. In this case the
multiplicity is peo > 2 if one of the following three series of conditions is satisfied

aszp — ag] — O; (62)
azg = b1z = bp3 = 0, a1 # 0; (63)
ba1 = biz = bp3 = 0, azp # 0. (64)

The conditions {(62), (4)} give us Cy(z,y) = agx?y(barz? + biaxy + bozy?)(ba1x? +
20122y + 3bo3y?) Z 0, fioo = 2.

For conditions {(63), (4)} we get Ci(z,y) = z3y(ab3;z> + (ag1boaba —
a%lbll)xyz — 2a§1b02y3) =0= b()g = b11 = bgl =0= Cg(x,y) = —2a%1b01x3y3 5_'5 O,
loo = 3. The system {(5), (4)} has the form

i =2(a +a21y), Y =>boy, axazbo # 0. (65)
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In the case of conditions {(64), (4)} we have: Cy(z,y) = —23y(azoz + a21y) -
(2az0b112* + 3asobopzy + agibiixy + 2a21b02y*) = 0 = by = boy = 0 = Ca(x,y) =
—borz3y(azox + ao1y)(3az0x + 2a21y) # 0, pieo = 3. We obtain the following cubic
System

& = 2*(agor + ag1y +az0), Y =boy, asoazbor # 0. (66)

After time rescaling ¢t = 7/by; the systems (65) and (66) can be combined into

the system
=2 a+br+ey), §=y, cla®+b*)#0. (67)
(see the system 5.1) of Main Theorem).

2) Conditions (8).

Taking into account (4) the polynomial Co(x,y) = —xty((azo — ba1)z + (ag —
b12)y)(azob212? +2az0b1ozy +az bioy?) is identically zero if one of the following three
series of conditions is fulfilled: agp = ag1 = 0, i.e. (62), and

asp = b2 = 0,a21 # 0; (68)

b21 = b12 = 0, aso 75 0. (69)

Under the conditions (62) we have: {(4); C1(z,y) = asoz?y(ba1x + b1oy) (b1 +
2b12y) = 0} = {(4); a0 = 0} = Ca(z,y) = ar02®y(bnz + bray) (b + 2b12y) # 0,
oo = 3. The cubic system looks as

T =aypr, Y= y(am + b1z + 5211172 + b12:17y), alo(bgl + 5%2) 75 0. (70)

The conditions (68) give us C1(x,y) = x*y(azbs;x? —a2,b11y*). The multiplicity
is 1 =2, pp = 1 and piee > 3, if b1y = ago = 0,021 # 0 or by1 = bay = 0,a0 # 0.
Thus, we have the following two systems, respectively

T = 33((110 + a2133y), Y= y(am + b21332), aigboiagy # 0; (71)

& = x(aio + agr + ag12y), Y= ay, aipaoaz 7 0. (72)

For {(71),(4)} ({(72),(4)}) the polynomial Cy(z,y) = a1oz3y(barz — az1y)(barz +
2a21y) (Ca(z,y) = —2a10a3,23y?) is not identically zero, therefore pio, = 3.

For conditions (69): Ci(z,y) = —biaty(azer + ag1y)(2a30z + as1y) = 0
b11 = O; {bll = O, (4)} = Cg(a;,y) = —aloaz?’y(agox + agly)(3a30x + 2a21y) 75
Poo =3 =

=
0

)

@ = x(ai0 + axr + azor”® + agizy), ¥ =aiy, aipazas # 0. (73)

The system {(70), bi1 = 0, ba1bia # 0} (respectively, (71) and {(73), ago =
0, aspaz1 # 0}) has the affine straight lines Iy = x, ly = y, I3 = boyx + b2y (re-
spectively, I3 = ba1z — a1y and I3 = agoxr + az1y) and it realizes the sequence of
multiplicities (2, 1, 1; 3). If for differential system (70): b1; = boy =0 (b1 = b12 = 0),
then py = 3 > 2 (u2 = 2 > 1). Let ajoby1(b3; +b35) # 0, then, after the time rescaling
and change of notation of the coefficients, we can write (70) in the form

t=xz, §=y(l+ax+bx®+cxy), ad®+c*)#0 (74)
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(see the system 5.2) of Main Theorem).
After time rescaling and change of notation of the coefficients, the systems (72)
and (73) can be combined into the system

i=x(1+ax+bz*+cxy), y=vy, c(a®+0b*)#0. (75)

(see the system 5.3) of Main Theorem).

3) Conditions (9).

Taking into account (4) the polynomial Co(x,y) = —xty((azo — ba1)z + (ag —
b12)y)(azoba12? + 2a30b12wy + az1biay?) is identically zero if one of the conditions
(62), (68), (69) is satisfied.

When the conditions {(62), (4)} ({(68), (4)} and {(69), (4)}) hold we ob-
tain C1(z,y) = z3y(barz + biay)(ageba1x?® + 2as0b12zy + a11b12y?) # 0 (respec-
tively, Ci(x,y) = x?’y(agob%l:zt?’ - a%1b11$y2 + 2a11a91ba12y® — 2a11a%1y3) % 0 and
Ci(x,y) = —23y(azoz + a21y)(2a30b112? + 3ai1asoxy + azbiizy + 2a11a21y%) # 0),
Poo = 2.

4) Conditions (10).

In this case we get Co(x,y) = —ax*y((asg — ba1)x + (ao1 — bi2)y)(azebarz? +
2a30b12wy + az1b12y?) and Cy(x,y) is identically zero if at least one of the conditions
(62), (68), (69) is satisfied.

For conditions (62) we find {(4), Ci(z,y) = 23y(barx + biay)(agbaiz?® +
2a20b122y + a11b12y%) = 0} = {(4), ag = bz = 0} = Co(z,y) = bnzy(arobnz? +
2a2,9y%) £ 0, jieo = 3. The cubic system looks as

i =x(any +a), U =ybnr®+bi1z+any+ap), aipaiiby #0. (76)

If b1; = 0, then the invariant straight line x = 0 of (76) has multiplicity 1 = 3. Let
b11 # 0. Via rescaling the time and change of notation of coefficients, the system
(76) can be reduced to the system

t=x(1+ay), y=y(l+bx+ay+cx?), abc#0 (77)

(see the system 5.4) of Main Theorem).

In the cases (68) and (69) we have respectively Cy(z,y) = z3y(agbd x> —
a3 br1wy? + 2a11a21b212y* — 2a11a3,y3) # 0 and Cy(x,y) = —23y(azer + a21y) -
(2a30b1122 + (3a11as0 + az1b11)xy + 2a11a21%2) # 0, thus e can not be greater than
two.

5) Conditions (11) and Conditions (12). Taking into account (4), in each of
this conditions, we have Co(z,y) = —2%y((aso — b21)x + (a1 — b12)y)(azebarz? +
2a30b1223Y + (3a12a30 + a21b12 — a12b21)72y* + 2a12a012y> + ayt) £ 0, pe = 1.

X

Lemma 10. Any cubic system of the class (CSILz(T,) with straight lines of the partially

mazimal multiplicity moo (2, 1;3) via an affine transformation and time rescaling can
be written in one of the following four forms (67), (70), (75) and (77).
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2.2.6 Case Mmoo(1,1; too)
We consider the homogenized system associated to the system (5)

{ T = x(a1022 + CLQOIIZ’Z + allyZ + a30x2 + a1y + algyz), (78)

U =y(bo1Z? + b112Z + booyZ + bo12? + biaxy + bosy?).

For (78) we have Cy(z,y) = —2yCo1(z,y)Co2(x,y), where Co1 (z,y) = (azo—ba1 )z +
(ag1 — bi2)zy + (a12 — bo3)y?® and Coa(z,y) = (asobarz* + 2azobraz’y + (3asobos +
as1b12 — a12b21)$2y2 + 2&21[)03%2;3 + a12503y4). If Co1 = 0, then the system (78) has
degenerate infinity. Let Cp; # 0. The identity Cpa(x,y) = 0 holds if at least one of
the following four series of conditions is fulfilled

asg = ag1 = ajz = 0; (79)

azo = ag1 = ba1 = bpz = 0, a2 # 0; (80)
azo = boz = 0,b12 = ai2b21/as; (81)
ba1 = bi2 = bp3 = 0,a39 # 0. (82)

1) Conditions {(79), (4)}: Ci(z,y) = —zyCoi(z,y)(azobana® + 2az0bi2z’y +
3azobosry® + arnbiary?® + 2a11bosy’®) = 0 =

asp) — ail1 = 0 (83)

or
aso = b1 = boz = 0,a11 # 0. (84)
For conditions {(83), (4)} we have the system

i =apz, Y =1y(bor+ b1z + boay + ba1x? + biazy + bosy?),

85
a10(b3; + by + bi3) (b5, + bGa + b33) # 0 (85)

for which Co(z,y) = —a102yCo(z,y)(ba12? + 2b12xy + 3bo3y?) # 0, jico = 3, and
for conditions {(84), (4)} the cubic system looks as

i = x(aro+any), §=ybor+biiz+Dboay+bax?), aiparib (b, +b3y) #0. (86)

For (86) we find Co(x,y) = ba123y(aigborxz?® + a%1y2 + a11bpay?) # 0, peo = 3. Via
rescaling the time an change of notation of coefficients, (85) can be reduced to the
system

T =z, y:y(a+b$+cy+d:n2+exy+fy2), (a2—|—c2—|—f2)(d2+e2+f2) #0 (87)

(see the system 6.1) of Main Theorem).

In 6.1) the condition (a®+ b2+ d?)((a — 1)? + (c*d — bee + b? f)?) # 0 means that
the system (87) has only the following two affine invariant straight lines x =0, y = 0
and the condition ((a — 1)2 + ¢ + f2)((a — 1) + b 4+ d?) # 0 means that each of
these affine straight lines has the algebraic multiplicity one.
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2) Conditions {(80), (4)}. The polynomial Cy(z,y) = zy>(2a20b22> — b12(a12a20
+a12b11 — aybi2)zy — a%2602y3) is identically zero if one of the following two series

of conditions is satisfied
bo2 = b12 = 0; (88)

ag = bo2 = 0,b11 = aiibiz/aiz, b1z # 0. (89)

The conditions {(88), (4)} and {(89), (4)} lead us, respectively, to the following
two systems

z(a1oy® + agow + a1y + aro), Y = y(briz + bo1), aizbor(aly + adg) #0, (90)

&=
Co(z,y) = —arpzy®(bri(ago + b11)a? + a12bo1y?) # 0, fice = 3;

i = a2y’ +any+aw), ¥ = y(arzbiozy+aiibiaz+aizbor)/a12, aobizbor # 0, (91)
Co(z,y) = —2y>(—2a100297% + a12b01b127Y + a29b01y?) Z 0, foo = 3.

Via an affine transformation of coordinates and time rescaling (90) can be re-
duced to the system

t=x(a+by), y=ylc+dr+ey+a?), a(@+e’)#0 (92)

(see system 6.2) of the Main Theorem). In 6.2) the inequality (a —c)? 4 (b—e)? # 0
means that p; = 1.
Note that (86) modulo time rescaling is a particular case of the system (92).

3) Conditions {(81), (4)}. In this case the polynomial C}(z,y) = —zy(aa1z +
a12y)(—az0a21b3, % — 2a12a20b3, 2%y + (a3, b11 + a12a20a21b21 — a11a3,ba1 — a3, bozbar +
algaglbllbgl — a11a12b31)$2y2 + 2a§’1602xy3 + a12a51502y4)/a%1 is identically zero if
one of the following three series of conditions is satisfied:

bi1 = boz = ba1 = 0, az # 0; (93)
az0 = boz = 0,a12 = —a3; /bas; (94)
agzo = bpa = 0,b11 = ai1b21 /a9 . (95)

The conditions (93), (94), (95) give us, respectively, the systems:
& = w(a10+agr+any+anry+any’), § = boy, boi(aio+azy)(ad +ais) # 0 (96)
with Co(x,y) = —borzy>(ane + a12y) (2021 + a12y) # 0;

i = z(a10ba1 + a11b21y + a21barzy — a3, y?) /b, 97)
9 = y(bor + bi1x + bo1z? — a1 xy), aipbor # 0

with Ca(z,y) = zy(aiobyz* — 2a10a21b3, 7%y + a3 b?,ba12%y? + arpa bl 2%y —
a2, bo1b3, 72y% — 2a11a91b11b322y? + a2, b3, 2%y? + 2a3,bo1ba1 vy — aj boryt) /b3, # O;

i = x(a10 + a1y + a1 zy + aipy?),

. 98
y = y(agbor + a11b217 + ag ba1x® + arzborzy)/an (98)
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with 02(3}, y) = —xy(aglx + a12y)(—a10a21b%1l‘3 — a10a31b21x2y — 2(110&12()%111723/ +
2a§1b01xy2 + aipa21bo1barxy® + algaglbmy?’)/a%l # 0. Thus, in the case of conditions
{(81), (4)} the multiplicity po is three.

Via an affine transformation of coordinates and time rescaling (96) can be re-
duced to the system (85). If ag; = 0, then the system (97) is modulo time rescaling
a particular case of the system (92). Let ag; # 0. Then, after the time rescaling
t — —byit/a3;, the system (97) has the form

i =x(a+by+cxy+9?), = —y(d+ ex + 2® + cxy), ad #0, (99)

where a = —alobgl/agl,b = —anbgl/a%l,c = —b21/a21,d = b01b21/a%1);e =
bi1ba1/a3;) (see the system 6.3) of the Main Theorem). In 6.3) the condition
A+e?+(a+d)?#0 ((a+d)?+ (be —e)? # 0) means that ps = 1 (only # = 0 and
y = 0 are affine invariant straight lines for 6.3)).

If by = 0, then the system (98) modulo affine transformation and time rescal-
ing is a particular case of the system (87). Let by; # 0. The time rescaling
t — bayt/(az21bo1) reduces (98) to the following system

i =x(a+ by + cxy + dy®), § = ay(l + bz + cz® + dzy), aa(c® +d?) #0, (100)

where a = a1oba1/(a21bo1), b = a11b21/(a21bo1), ¢ = ba1 /bo1, d = a12b21/(a21bo1), o =
ba1 /a2 (see the system 6.4) of the Main Theorem). In 6.4) the inequality a —a # 0
means that the differential system has only the affine invariant straight lines x = 0
and y = 0.

4) Conditions {(82), (4)}:

Ci(z,y) = —zylazor? + anzy + a12y?)(2asobiiz® + (3azoboz + a21bir)x?y +
2a21b02xy2 + algbogyg) =0=> b11 = b02 =0= Cg(a:,y) = —b01a;y(a30x2 + a7y +
a12y?)(3azox? + 2a217y + a12y?) Z 0 = peo = 3. The cubic system looks as:

i = x(aip + a2z + any + azpz® + ag1xvy + apy?), v = bory,

101
asobot(ay + a3y + ady) # 0. (101)

Modulo affine transformation the system (101) is a particular case of the system
(85).

X

Lemma 11. Any cubic system of the class (CSILz(T,) with straight lines of the partially

mazximal multiplicity moo(1,1;3) via an affine transformation and time rescaling can
be written in one of the following four forms (87), (92), (99) and (100).

The proof of the Main Theorem follows from Lemmas 8-11.

2.3 Geometric multiplicity

In this section for the normal forms given in Main Theorem we construct the
corresponding perturbed cubic systems which show that for invariant straight lines
(x =0,y =0 and Z = 0) the algebraic and geometric multiplicities coincide.
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1) m(3,3;1): =23 §=y@®+ay+by?),b#0.

The perturbed cubic system is

i = z(z — ae + 2bxe®)(z + ae + 2bze?), = y(2® + ay + by? + a®e® + 3bx’e® +
4abye?® + +4b%y2e® + abet + dab?yet + 4b3yPet — 4b322e0), b £ 0.

The invariant straight lines are 1y = x, lo = vy, I3 = x — ae + 2bxe?, Iy =
r+ae+2bxe?, 5 =y — ze+ ae + 2bye? — 2bxed, lg = y + xe + ae® + 2bye? + 2bxed.

If € — 0, then the invariant straight lines l1,1l3,l4 — [1 and I, 15,1l — [o.

2.1) m(3,2;2): i=ax®, y=y*a#0.

The perturbed cubic system is & = ax(x —e¢)(z+e€), y=y(ly—e)(ey+1),a#0.

The invariant straight lines are Iy =z, lso =y, ls=xz—€, Iy =x+ €, l5 =y —¢,
lg =ey+ 1.

If € — 0, then the invariant straight lines l,l3,ly — Il1; ls,l5 — o and lg — lx.

2.2) m(3,2;2): i=x(ax®+y), y=19% a#0.

The perturbed cubic system is © = x(ax® +y+e—ae?), 7§ =y(y+e)(1+aye® —
aed),a # 0.

The invariant straight lines are Iy = x,lo =y, ls =z —ye, g = x+ye, s = y—e,
l = aye® — ae® + 1.

If € — 0, then the invariant straight lines l,l3,ly — l1; ls,l5 — o and lg — [

3.1) m(3,1;3): & =2a%(ax+by), =y, a#0.

The perturbed cubic system is

i = x(ax? +bry —ae® +4ax%® 4 4abrye® +20%y% €% — 4a’e* + 4ax?e* 4+ 4a’bayet +
ab?y?et — 4a3€%), = y(—1 + bye — 2ae®)(1 + bye + 2ae?), a # 0.

The invariant straight lines are Iy = x, ly = vy, I3 = x — € + 2axe® + bye® —
2a€e3, 1y = x + € + 2axe? + bye? + 2ae3, Is = bye — 2ae® — 1, lg = bye + 2ae® + 1.

If € — 0, then invariant straight lines l1,13,l4 — [1 and I5,lg — lx.

3.2) m(3,1;3): &=ux(ay+b), y=y@>+ay+b), b#D0.

The perturbed cubic system is

i = —x(—b—ay — 4b%€% + br?e® — dabye® — 2a’y?e® — 4b3e* + 4b% 2%t — dab?yet —
a’by’e* + 4b322€5), = y(b+ 22 + ay + 4b%€? + 3bx%e? + dabye® + a®y?e® + 4b3e* +
4ab?yet + a’by?et — 4b32%€%), b #£ 0.

The invariant straight lines are 1y = x, ly = y, Iy = x — aye + 2bxe?, Iy =
T+ aye + 2bxe?, I5 = we — 2be% — aye® + 2bxe® — 1, lg = xe + 2be® + aye® + 2bxe® + 1.

If € — 0, then invariant straight lines l1,l3,l4 — [1 and I5,lg — lx.

4) m(2,2;3): ==z, y=vy(l+bzxy), b#D0.

The perturbed cubic system is i = —z(ve — 1)(ze + 1), 9 = y(1 + bry + by?e —
y2et), b#0.

The invariant straight lines are Iy = x, ly =y, I3 = x + ey, Iy = by + xe® —
yed, Is = xe+ 1, lg = e — 1.

Ife — 0, then ll,l3 — ll; l2,l4 — lg and 15,16 — loo
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5.1) meo(2,153): & =2%(a+bx+cy), =y, cla®+b?) #0.

The perturbed cubic system is & = x(a+bx +cy)(z+¢€), y=—y(—1+ey)(l+
ey), c(a®+b%) #£0.

The invariant straight lines are ly = x,lo =y, ls=x+¢€, Iy =ey—1, 15 = ey+1.

Ife — 0, then ll,l3 — l1 and l4,l5 — loo.

5.2) moo(2,1;3): @ ==x, §=y(l+azx+br?+cry), ab®+c2) #£0.

The perturbed cubic system is

b= —z(=1+ze)(1 +z€), v = y(l+ ax+bx®+ cry + aye + brye + cy?ec —
22€%), a(b?® + ) #£0.

The invariant straight lines are Iy = x, lo =y, l3 = v+ ey, l4 = ex + 1,
l5 =exr— 1.

Ife — 0, then ll,l3 — l1 and l4,l5 — loo.

5.3) moo(2,1;3): @ =a(l+azx+bz® +cxy), y=y, cla®+b*) #£0;

The perturbed cubic system is

i = 2(1 + ax + ba? + cxy + aye + brye + cy’e — y2e?), = —y(—1+ye)(1 +
ye), c(a® 4+ b%) # 0.

The invariant straight lines are Iy = x, ls =y, I3 = v+ ey, Iy = ey + 1,
l5 = €Yy — 1.

Ife — O, then ll,lg — ll and l4,l5 — loo.

5.4) moo(2,1;3): & =x(1+ay), ¥=y(l+bxr+ay+ cr?), abc#0.

The perturbed cubic system is

& =21 +xe)(1 +ay —we), 7 =y(c+ bz + 3x? + ac’y + 2bce + 2b%cxe +
2bc? a2 e+ abeye — 2ac? vye + b?€? 4+ dee? +b3we? + 4bere® + b2 ex?e? + 3c2x? e + dacye® —
abcrye? 4+ 2a’cy?e? + 4be® 4+ 4b2xe® + 2bcx?e® + 2abyed + ab’zye® — 2acrye® + 4e* +
4bret — b2x?e! + daye® + dabryet — 4ba?ed + daxye® — 42%€%) /(c + be + 2¢?)%, ¢ #£ 0.

The invariant straight lines are Iy = x, ly =y, I3 = —cx — bre + aye — 2x€,
Iy =xe+1, 15 = c+ be — cxe + 262 — bre® + 2aye® — 2xe’.

Ife — O, then ll,lg — ll and l4,l5 — loo.

6.1) moo(1,1;3): & =2, §=ylat+br+cy+dr’+exy+ fy?), (a*+c*+ f2)(d*+
2+ f2)(a?+b*+d?)((a—1)2+c*+ ) ((a—1)?+b%+d?) ((a—1)*+(c2d—bce+b? )?) # 0;

The perturbed cubic system is & = x(ex +1)(ex —1), 7 = y(a+br+cy+dr?+
exy + fy?).

The invariant straight lines are 1 =x, la =y, l3=€ex+1, [y =ex — 1.

If e — 0, then 3,14 — .

6.2) moo(1,1;3): @ =z(a+by), ¥ =ylc+dr+ey+az?), a(c®+e?)((a——c)*+
(b—e)?) #0.

The perturbed cubic system is

&= —2(l+ze)(—a—by+ze), 7 =vy(a’c+a’dx+a’z?+a’ey+2a*cde—a’re+
aSze+ 2atd?we + 2a*dz?e + 20t deye — a*brye — atexye + 2a°ce® 4 2a3c?e? 4 aded?e? —
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2adre? 4 4aPdre® + 2aPcdze® + a3 dPxe® + aPx?e? + 2a3cx?e? + add?x?e? + 2aPeye? +
2a3ceye? + add?eye® — albdrye® + a*bdrye? — 2a3dexye® 4+ albey’e® + atbey?e? +
2a*cde® + 2a%c2de® — 2a°xe® + 2a8xe® — 2a3cxe® + 2atcxe® — aPdPxed + 3atdPaed +
2acd?xe® + 2a%cdx?e® + 2atdeye® + 2a’cdeye® — atbrye’ + a’brye® + 2a3bexye® +
abd’xye® — 2atexye® — 2a’cexrye® — a’d?exye® + a’bdey®e® + albdey’e® + aPeet +
2a3c?et + acdet — 2atdret + 3a°dret — 2acdxet + 4adcdre + ac’dret — aPxet +
ac?r?et—add? 2% et +aPeyet +2a3 ceyet + acteyet +2at bdryet + abedryet +3a’bedryet —
2a3dexye — 2acdexyet — ab’cy?e* — 2a?b?cy?et — a3b?cy?et + adbey?et + atbey?et +
abcey®e* + a’beey?et — aPxe® + abxe® — 2a3cxed® + 2atcxe® — ac’xe® + a’ctred —
20*dz2e® — 2acdz®e® + aPbaye® + a’bexye® + 3adberye® + blrye® + 2abclrye® —

5
atexye® —2a’cexye® —ctexye® —a’ 128 —2a3ca?e® —ac?x?e%) [ (a(a®+ade+a e +ce?)?).

The invariant straight lines are 1 = x, lo = y, I3 = ve + 1, Iy = a3 + a’de —
a’xe + a*e® + ace? — adxe® + abye® + a’bye® — a’xed — cxed.
If e — 0, then I3,y — .

6.3) mo(1,1;3): & = x(a+ by + cxy + y?), ¥ = —y(d + ex + *2* + cay),
ad(® 4+ e? 4 (a+ d)?)((a + d)? + (bc — €)?) £ 0.

The perturbed cubic system is

& = z(a + by + cry + y? — bexye + exye — a’e® — ab’e® + 2abcxe® — 2aexe? —
ac’z?e® — abye? — bPye? — acrye? — 2bexye® — aye® — b*y?e® — a’be’ — 2a’cxe® +
2abexe® + 2abc? % €3 — 2acex®e® — ab’ye® — 2aexye’ + bPexye® — aby?e® — 2abexe* +
2a2exet — a’Pa?et + ab’cPa?et + 2abcex? e 4 2abexyet — a’bcPax?e® + 2a’cex’e® +
a’exyed), v = y(—d — ex — c2x? — cxy — acxe + b*cxe + 2bc2x%e — 2cex’e +
bexye — exye + ade? + b2de® + bcxe? — 2bedre® + bPexe® + 2dexe® — 2ac’z?e? +
b 222 4 2dx?e? 4 2bcex?e? — acxye® + 2b% caye® 4 2cdrye® + dy?e? + abde® — a’cxe® +
2acdre® + 2abexe® — 2bdexe® 4+ abc?x?e® — 2bc?da? € + 2cdex?€® — 2bedrye’ + b2exye® +
2dexye® — a’beret 4 2abedret + a?exet — 2adexe —a’cPax?et + ab’ et 4+ ac’da?et —
b2c2dz?et + 2abcex?et — 2bcdex®et — 2b%cdrye* + 2aberye* — 2bdexye* — ady?e* —
bldy?e* — a’bc?x?e® + abc?dx’e® + 2a’cex’e® — 2acdex?e® + a’exye® — 2adexye® —
abdy?ed).

The invariant straight lines are Iy = x, lo = y, I3 = 1+ cxe +ye, Iy =
—1+ cxe+ye+ ae® +b%e® — 2bcxe® + 2exe?® + abed + acxe® — b cae® — 2bexe® — aye® —
b2ye + abcxet — 2aexe — abyet.

If e — 0, then I3,y — .

6.4) m(1,1;3): @ = z(a+by +cry+dy?), ¥ = ay(l+bx+ cx? +dry), ca(c® +

d*)(a —a) #0.

The perturbed cubic system is

&= —x(—a— by — cxy — dy? — azyae® + ax’a’e® — 2xya’e?), = —ya(-1—
br — cx? — dzy — axye® + y2e? + ax’ae® — 2wyae® — 22a’e?).

The invariant straight lines are 1 = x, lo = vy, I3 = 1 — ye + zae, Iy =
—1 —ye+ zae.

If ¢ — 0, then the lines I3,14 — oc.
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