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Determining the Distribution of the Duration

of Stationary Games for Zero-Order Markov Processes

with Final Sequence of States

Alexandru Lazari

Abstract. A zero-order Markov process with final sequence of states represents
a stochastic system with independent transitions that stops its evolution as soon as
given final sequence of states is reached. The transition time of the system is unitary
and the transition probability depends only on the destination state. We consider
the following game. Initially, each player defines his distribution of the states. The
initial distribution of the states is established according to the distribution given by
the first player. After that, the stochastic system passes consecutively to the next
state according to the distribution given by the next player. After the last player, the
first player acts on the system evolution and the game continues in this way until the
given final sequence of states is achieved. Our goal is to study the duration of this
game, knowing the distribution established by each player and the final sequence of
states of the stochastic system. It is proved that the distribution of the duration of
the game is a homogeneous linear recurrent sequence and it is developed a polynomial
algorithm to determine the initial state and the generating vector of this recurrence.
Using the generating function, the main probabilistic characteristics are determined.

Mathematics subject classification: 65C40, 60J22, 90C39, 90C40.
Keywords and phrases: Zero-Order Markov Process, Final Sequence of States,
Duration, Game, Homogeneous Linear Recurrence, Generating Function.

1 Introduction and Problem Formulation

Let L be a discrete stochastic system with finite set of states V , |V | = ω. At
every discrete moment of time t ∈ N the state of the system is v(t) ∈ V . The system
L starts its evolution from the state v with the probability p∗(v), for all v ∈ V ,
where

∑

v∈V

p∗(v) = 1.

Also, the transition from one state u to another state v is performed accor-
ding to the same probability p∗(v) that depends only on the destination state v,
for every u ∈ V and v ∈ V . Additionally we assume that a sequence of states
X = (x1, x2, . . . , xm) ∈ V m is given and the stochastic system stops transitions as
soon as the states x1, x2, . . . , xm are reached consecutively in given order. The time
T when the system stops is called evolution time of the stochastic system L with
given final sequence of states X.

The stochastic system L described above represents a zero-order Markov pro-
cess with final sequence of states X. Several interpretations of these Markov pro-
cesses were analyzed in 1981 by Leo J.Guibas and Andrew M.Odlyzko in [8] and
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G. Zbaganu in 1992 in [7]. Various problems related to such systems have been studi-
ed in [1]–[5]. Also, in these papers, polynomial algorithms for determining the main
probabilistic characteristics (expectation, variance, mean square deviation, n-order
moments) of evolution time of the given stochastic system L were proposed.

Next, in this paper, a generalization of this problem is studied. The following
game is considered. Initially, each player Pℓ defines his distribution of the states
(p∗(ℓ)(v))v∈V , ℓ = 0, r − 1. The initial distribution of the states is established ac-
cording to the distribution (p∗(0)(v))v∈V given by the first player P0. After that, the
stochastic system passes consecutively to the next state according to the distribution
given by the next player. After the last player Pr−1, the first player P0 acts on the
system evolution and the game continues in this way until the given final sequence
of states X is achieved. The player PTmod r, who acts the last on the system, is
considered the winner of the game.

Our goal is to study the duration T of this game, knowing the distribution
p∗(ℓ) = (p∗(ℓ)(v))v∈V established by each player Pℓ, ℓ = 0, r − 1, and the final se-
quence of states X of the stochastic system L. We will prove that the distribution
of the game duration T is a homogeneous linear recurrent sequence ([1],[6]) and a
polynomial algorithm to determine the initial state and the generating vector of
this recurrence will be developed. Having the generating vector and the initial state
of the recurrence, we can use the related algorithm from [1], which was mentioned
above, for determining the main probabilistic characteristics of the game duration.

2 The Main Results

2.1 Determining The Distribution of the Game Duration

In this section we will determine the distribution law of the game duration T .
Initially, we consider the notations

Xk = {xk}, Xk = V \{xk}, π
(ℓ)
k = p∗(ℓ)(xk), w

(ℓ)
k =

k
∏

j=2

π
(ℓ ⊕(−1)⊕j)
j ,

for each k = 1,m and ℓ = 0, r − 1, where c ⊕ d = (c + d) mod r, ∀c, d ∈ Z.

Let a = (an)∞n=0 be the distribution of the game duration T , i.e. an = P(T = n),
n = 0,∞. Since T ≥ m − 1, we have an = 0, n = 0,m − 2. If T = m − 1, then
v(j) = xj+1, j = 0,m − 1, that implies

am−1 = P(T = m − 1) = π
(0)
1 π

(1)
2 . . . π(m⊕(−1))

m = π
(0)
1 w(0)

m .

We consider ∀n ∈ Z. Let be S(V ) = {A | A ⊆ V }. Denote by P
(ℓ)
Φ (n) the

probability that T = n, v(j) ∈ Φj, j = 0, t − 1 and the player Pℓ acts first, for all
Φ = (Φj)

t−1
j=0 ∈ (S(V ))t, t ∈ N and ℓ = 0, r − 1. We introduce the following functions
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on Z, k = 0,m, ℓ = 0, r − 1:

α
(ℓ)
k (n) = P

(ℓ)

(X1,X2,...,Xk−1,Xk)
(n),

β
(ℓ)
k (n) = P

(ℓ)
(X1,X2,...,Xk)(n),

γ
(ℓ)
k (n) = P

(ℓ)
(X2,X3,...,Xk)(n).

(1)

We have

β
(ℓ)
k (n) = P

(ℓ)
(X1,X2,...,Xk)(n) = a(ℓ)

n −

k
∑

j=1

α
(ℓ)
j (n), k = 0,m, ℓ = 0, r − 1, (2)

where a
(ℓ)
n = P

(ℓ)
( ) (n), ℓ = 0, r − 1.

We consider the sets

Ts = {s + 1} ∪ {t ∈ {2, 3, . . . , s} | xt−1+j = xj , j = 1, s + 1 − t}, s = 1,m.

The minimal elements from these sets are

ts = min
k∈Ts

k, s = 1,m. (3)

The value ts represents the auto superposition level of the sequence (x1, x2, . . . , xs),
i. e. ts is the position in the sequence (x1, x2, . . . , xs) starting with which, if we
overlap the same sequence, the superposed elements are equal.

Using the formula (2) for s = 1,m and ℓ = 0, r − 1, we obtain

γ(ℓ)
s (n) = P

(ℓ)
(X2,X3,...,Xs)

(n) =

= π
(ℓ)
2 π

(ℓ ⊕1)
3 . . . π

(ℓ ⊕(ts−3))
ts−1 P

(ℓ ⊕(ts−2))
(Xts ,Xts+1,...,Xs)

(n − ts + 2) =

= w
(ℓ ⊕(−1))
ts−1 β

(ℓ ⊕(ts−2))
s+1−ts

(n − ts + 2) =

= w
(ℓ ⊕(−1))
ts−1



a
(ℓ ⊕(ts−2))
n−ts+2 −

s+1−ts
∑

j=1

α
(ℓ ⊕(ts−2))
j (n − ts + 2)



 . (4)

Particularly, we obtain the relation

γ
(ℓ)
1 (n) = a(ℓ)

n , ℓ = 0, r − 1, n = 0,∞. (5)

The values α
(ℓ)
k (n), k = 1,m, ℓ = 0, r − 1 are determined in the following way:

αℓ
1(n) = P

(ℓ)

(X1)
(n) = (1 − π

(ℓ)
1 )a

(ℓ ⊕1)
n−1 , (6)

α
(ℓ)
k (n) = P

(ℓ)

(X1,X2,...,Xk−1,Xk)
(n) = π

(ℓ)
1 P

(ℓ ⊕1)

(X2,X3,...,Xk−1,Xk)
(n − 1) =
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= π
(ℓ)
1

(

P
(ℓ ⊕1)
(X2,X3,...,Xk−1)(n − 1) − P

(ℓ ⊕1)
(X2,X3,...,Xk)(n − 1)

)

=

= π
(ℓ)
1

(

γ
(ℓ ⊕1)
k−1 (n − 1) − γ

(ℓ ⊕1)
k (n − 1)

)

, k = 2,m. (7)

Next, we obtain the recurrent formula:

a(ℓ)
n =

m
∑

j=1

α
(ℓ)
j (n) = (1 − π

(ℓ)
1 )a

(ℓ ⊕1)
n−1 +

m
∑

j=2

π
(ℓ)
1

(

γ
(ℓ ⊕1)
j−1 (n − 1) − γ

(ℓ ⊕1)
j (n − 1)

)

=

= (1 − π
(ℓ)
1 )a

(ℓ ⊕1)
n−1 + π

(ℓ)
1

(

a
(ℓ ⊕1)
n−1 − γ(ℓ ⊕1)

m (n − 1)
)

=

= a
(ℓ ⊕1)
n−1 − π

(ℓ)
1 γ(ℓ ⊕1)

m (n − 1), ∀n ≥ m, ℓ = 0, r − 1. (8)

According to the relations (4) − (7), using the mathematical induction, we can

prove that there exist the real coefficients u
(i)
jkℓ and v

(i)
jkℓ, j = 1,m, k = 0, j − 1,

ℓ = 0, r − 1, i = 0, r − 1 such that

α
(ℓ)
j (n) =

r−1
∑

i=0

j−1
∑

k=0

u
(i)
jkℓ a

(i)
n−1−k, γ

(ℓ)
j (n − 1) =

r−1
∑

i=0

j−1
∑

k=0

v
(i)
jkℓ a

(i)
n−1−k, ∀n ∈ Z. (9)

From the relations (5) and (6), for i = 0, r − 1 and ℓ = 0, r − 1, we obtain

u
(i)
1,0,ℓ =

{

1 − π
(ℓ)
1 , if i = ℓ ⊕ 1

0, if i 6= ℓ ⊕ 1
(10)

and

v
(i)
1,0,ℓ =

{

1, if i = ℓ

0, if i 6= ℓ
. (11)

Using the representation (9), the formula (4) obtains the form

γ(ℓ)
s (n − 1) = w

(ℓ ⊕(−1))
ts−1



a
(ℓ ⊕(ts−2))
(n−1)−ts+2 −

s+1−ts
∑

j=1

r−1
∑

i=0

j−1
∑

k=0

u
(i)
j,k,ℓ ⊕(ts−2)a

(i)
n−ts−k



 =

= w
(ℓ ⊕(−1))
ts−1



a
(ℓ ⊕(ts−2))
(n−1)−(ts−2) −

r−1
∑

i=0

s−1
∑

k=ts−1

a
(i)
n−1−k

s+1−ts
∑

j=k−ts+2

u
(i)
j, k−ts+1, ℓ ⊕(ts−2)



 =

=

r−1
∑

i=0

s−1
∑

k=0

v
(i)
skℓ a

(i)
n−1−k, s = 1,m, ℓ = 0, r − 1,

where

v
(i)
s,k,ℓ =











































0, if k ≤ ts − 3

0, if

{

k = ts − 2,
i 6= ℓ ⊕ (ts − 2)

w
(ℓ ⊕(−1))
ts−1 , if

{

k = ts − 2,
i = ℓ ⊕ (ts − 2)

−w
(ℓ ⊕(−1))
ts−1

s+1−ts
∑

j=k−ts+2

u
(i)
j, k−ts+1, ℓ ⊕(ts−2), if k ≥ ts − 1

(12)



76 ALEXANDRU LAZARI

s = 1,m, k = 0, s − 1, ℓ = 0, r − 1, i = 0, r − 1, and the formula (7) becomes

α(ℓ)
s (n) = π

(ℓ)
1

(

γ
(ℓ ⊕1)
s−1 (n − 1) − γ(ℓ ⊕1)

s (n − 1)
)

=

= π
(ℓ)
1

(

r−1
∑

i=0

s−2
∑

k=0

v
(i)
s−1, k, ℓ ⊕1a

(i)
n−1−k −

r−1
∑

i=0

s−1
∑

k=0

v
(i)
s, k, ℓ ⊕1a

(i)
n−1−k

)

=

=

r−1
∑

i=0

s−1
∑

k=0

u
(i)
skℓ a

(i)
n−1−k, s = 2,m, ℓ = 0, r − 1,

where

u
(i)
s,k,ℓ =







π
(ℓ)
1

(

v
(i)
s−1, k, ℓ ⊕1 − v

(i)
s, k, ℓ ⊕1

)

, if k ≤ s − 2

−π
(ℓ)
1 v

(i)
s, k, ℓ ⊕1, if k = s − 1

, (13)

s = 2,m, k = 0, s − 1, ℓ = 0, r − 1, i = 0, r − 1. The formula (8) obtains the form

a(ℓ)
n = a

(ℓ ⊕1)
n−1 − π

(ℓ)
1 γ(ℓ ⊕1)

m (n − 1) = a
(ℓ ⊕1)
n−1 − π

(ℓ)
1

r−1
∑

i=0

m−1
∑

k=0

v
(i)
m, k, ℓ ⊕1a

(i)
n−1−k =

=

r−1
∑

i=0

m−1
∑

k=0

q
(ℓ)
ik a

(i)
n−1−k, ∀n ≥ m, ℓ = 0, r − 1, (14)

where

q
(ℓ)
ik =

{

1 − π
(ℓ)
1 v

(ℓ ⊕1)
m, 0, ℓ ⊕1, if i = ℓ ⊕ 1 and k = 0

−π
(ℓ)
1 v

(i)
m, k, ℓ ⊕1, otherwise

. (15)

Next, we consider the column vectors An = ((a
(ℓ)
n )r−1

ℓ=0)T , n = 0,∞. Also, we

define the matrices Q(k) = (q
(ℓ)
ik )ℓ, i=0, r−1, k = 0,m − 1 and we consider the se-

quence Q = (Q(k))m−1
k=0 . From the relation (14), we have the homogeneous linear

recurrence An =
m−1
∑

k=0

Q(k)An−1−k, ∀n ≥ m, i.e. A = (An)∞n=0 ∈ Rol∗[Mr(R)][m]

with generating vector Q ∈ G∗[Mr(R)][m](A). So, the vectorial sequence A is
homogeneous linear recurrent on the matrix field Mr(R) with generating vec-
tor Q. Applying the results obtained in [1], we have A ∈ Rol∗[R][mr] with

characteristic polynomial H(z) = |Ir − zG
[Q]
m (z)| ∈ H∗[R][mr](A), which implies

that a(ℓ) = (a
(ℓ)
n )∞n=0 ∈ Rol∗[R][mr] and H(z) = |Ir − zG

[Q]
m (z)| ∈ H∗[R][mr](a(ℓ)),

ℓ = 0, r − 1. Because the game is started by player P(0), then the distribution a

of the game duration T coincides with a(0), i. e. a = (an)∞n=0 ∈ Rol∗[R][mr] with

characteristic polynomial H(z) = |Ir − zG
[Q]
m (z)| ∈ H∗[R][mr](a).

Next, we will use only the relation a ∈ Rol∗[C][mr], the minimal generating
vector being determined by use of the minimization method based on the matrix
rank, described in [1], that is available also for degenerated homogeneous linear
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recurrences. So, according to this method, we have that the minimal generat-
ing vector q = (q0, q1, . . . , qR−1) ∈ G∗[C][R](a) is obtained from the unique solution
x = (qR−1, qR−2, . . . , q0) of the system

A
[a]
R xT = (f

[a]
R )T , (16)

where

f
[a]
R = (aR, aR+1, . . . , a2R−1), A[a]

n = (ai+j)i,j=0,n−1, ∀n ∈ N
∗ (17)

and R is the rank of the matrix A
[a]
mr.

For this, we need to have only the values ak, k = 0, 2mr − 1. These values are
determined the formula

ak = a
(0)
k , k = 0, 2mr − 1, (18)

using the relations (4) − (8) and the initial conditions

an = a(ℓ)
n = P (ℓ)(n) = 0, ℓ = 0, r − 1, n = 0,m − 2,

α
(ℓ)
k (n) = 0, k = 1,m, n = 0,m − 1, ℓ = 0, r − 1,

a
(ℓ)
m−1 = π

(ℓ)
1 w(ℓ)

m , ℓ = 0, r − 1. (19)

2.2 Describing the developed algorithm

In the previous subsection we theoretically grounded the following algorithm for
determining the main probabilistic characteristics (the distribution (P(T = n))∞n=0,
the expectation E(T ), the variance V(T ), the mean square deviation σ(T ) and the
k-order moments νk(T ), k = 1, 2, . . .) of the game duration T .

Algorithm 1.

Input: X = (x1, x2, . . . , xm) ∈ V m, π
(ℓ)
k , k = 1,m, ℓ = 0, r − 1;

Output: E(T ), V(T ), σ(T ), νk(T ), k = 1, t, t ≥ 2.

1. Determine the values ak, k = 0, 2mr − 1, using the formula (18), the relations
(4) − (8) and the initial conditions (19);

2. Find the minimal generating vector q = (q0, q1, . . . , qR−1) ∈ G∗[R][R](a) by
solving the system (16), taking into account the relation (17);

3. Consider the distribution a = (an)∞n=0 = (P(T = n))∞n=0 of the game duration

T as a homogeneous linear recurrence with the initial state I
[a]
R = (an)R−1

n=0 and
the minimal generating vector q = (qk)

R−1
k=0 , determined at the steps 1 and 2;

4. Determine the expectation E(T ), the variance V(T ), the mean square deviation
σ(T ) and the k-order moments νk(T ), k = 1, t, of the game duration T by using
the corresponding algorithm from [1].
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3 Conclusions

In this paper the stationary games defined on zero-order Markov processes with
final sequence of states were studied and the duration of these games was analyzed.
It was proved that the game duration is a discrete random variable with homoge-
neous linear recurrent distribution. Based on this fact, the generating function is
applied for determining the main probabilistic characteristics of the game duration.
The developed algorithm has polynomial time complexity. Also, the algorithm is
applicable for the case when the set of the states is infinite.
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