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Abstract. The paper introduces a new method for public encryption in which the
enciphering process is performed as generating coefficients of some cubic equation over
finite ring and the deciphering process is solving the equation. Security of the method
is based on difficulty of factoring problem, namely, difficulty of factoring a composite
number n that serves as public key. The private key is the pair of primes p and q

such that n = pq. The deciphering process is performed as solving cubic congruence
modulo n. Finding roots of cubic equations in the fields GF (p) and GF (q) is the
first step of the decryption. We have described a method for solving cubic equations
defined over ground finite fields. The proposed public encryption algorithm has been
applied to design bi-deniable encryption protocol.
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1 Introduction

The public-key encryption algorithm proposed by Rabin [1] uses the public key
represented as the pair of integers n and b < n, where n is a composite number
difficult for factoring; b is an arbitrary integer. To generate an appropriate number
n one has to select a pair of strong [2] primes p and q and then compute the value
n = pq.

Some secret message M < n can be send to the owner of the public key (n, b)
in form of the ciphertext C computed as C = M · (M + b) (mod n). Decryption of
the ciphertext consists in finding roots of the quadratic congruence x2 + bx−C ≡ 0
(mod n). The last can be easily performed using the private key (p, q).

The Rabin cryptosystem is a provably secure public-key cryptosystem, i. e. one
can formally prove that decryption of the ciphertext C without knowing the devisors
of n is as difficult as factoring the value n. Paper [3] extends the class of provably
secure public key cryptosystems based on the difficulty of factoring problem intro-
ducing the encryption formula C = Mk (mod n), where k (k ≥ 2) divides at least
one of numbers p − 1 and q − 1.
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Provable security is an important merit of the mentioned public-key cryptosys-
tems. However for all of those cryptosystems the output of the decryption procedure
is ambiguous, namely, deciphering process outputs several decrypted texts and only
one of them is equal to the encrypted text. The minimum number of the decrypted
texts is equal to three and relates to the case k = 3 [3].

Recently solving the quadratic congruences like x2 − Ax + B ≡ 0 (mod n) was
used in [4] to design the public-key algorithm for encrypting simultaneously two
messages into the ciphertext (A,B). That algorithm was put into the base of the
sender-deniable encryption protocol. In [4] the authors mentioned potential possibil-
ity to construct algorithms for simultaneous encryption of three and four messages
into the cryptogram representing the set of coefficients of the cubic and fourth-power
congruences, respectively. Naturally, decryption in the last two cases consists in solv-
ing congruences like x3−Ax2+Bx−D ≡ 0 (mod n) and x4−Ax3+Bx2−Dx+E ≡ 0
(mod n).

The case of using cubic equations represents special interest since it provides
potential possibility to design public encryption algorithms that are free from ambi-
guity of the decryption process, whereas the quadratic and fourth-power equations
cannot be used for such purpose.

In this paper we consider the design of the public-encryption algorithms based
on using the cubic equation. We consider details of solving cubic equations in the
ground field GF (p) in the case when the equations have solutions (this is defined
by the design of the encryption algorithm). The described method for solving cubic
equations in GF (p) actually determines the decryption algorithm. It is shown that
for a particular design the encryption algorithm processes one input message and
the decryption procedure outputs one decrypted text, i.e. only the input message.

2 A new method for public encryption

Using the public key n one can encrypt simultaneously three different messages
M < n, T < n, and U < n as generating three coefficients A, B, and D of the cubic
equation such that the messages M , T , and U represent three roots of the equation.
Since the last values are to be roots, then the encryption is defined by the condition
(x − M)(x − T )(x − U) = x3 − (M + T + U)x2 + (MT + MU + TU)x − MTU = 0
(mod n).

Thus, such idea of constructing the public encryption scheme leads to the en-
ciphering procedure that consists in computing the following three coefficients that
compose the ciphertext C = (A,B,D):

A = (M + T + U) mod n,
B = (MT + MU + TU) mod n,

D = MTU mod n.

Respectively, deciphering of the cryptogram C is to be performed as solving the
cubic equation

x3 − Ax2 + Bx − D = 0 (mod n). (1)
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Solving equation (1) can be performed by the owner of public key n using his
private key (p, q) that represents two divisors of the modulus n. For this purpose he
is to solve the cubic equation

x3 − Ax2 + Bx − D = 0 (mod p) (2)

and the cubic equation

x3 − Ax2 + Bx − D = 0 (mod q). (3)

Let x1p, x2p, and x3p be roots of equation (2) and x1q, x2q, and x3q be roots of
equation (3). Then nine roots of the equation (1) can be computed solving nine
systems of the congruences of the following form

{

Xij ≡ xip (mod p)
Xij ≡ xjq (mod q),

where i, j ∈ {1, 2, 3}. Three of the computed roots are equal to the sensible messages
M , T and U that have been encrypted. Other six roots represent some random values
and are to be ignored. Thus, solving cubic equations in the ground finite fields is
the central part of the considered public-key encryption scheme.

3 Solving cubic equations in the ground finite field

To find roots of the cubic equation (2) over the ground field GF (p) we propose
to solve the equation (relative to the unknown X ∈ GF (p2))

(1, 0)X3 − (A, 0)X2 + (B, 0)X − (D, 0) = (0, 0) (4)

over the extension field GF (p2) that is defined evidently in the vector form [5] with
the unity element (1, 0) and zero element (0, 0).

Addition and multiplication of two elements (a, b), (c, d) ∈ GF (p2) are defined
with the formulas

(a, b) + (c, d) = ((a + c) mod p, (b + d) mod p) (5)

and
(a, b)(c, d) = ((ac + kbd) mod p, (bc + ad) mod p) , (6)

where k ∈ GF (p) is some specified constant that is equal to a quadratic non-residue,
respectively.

Substitution of the unknown x in (2) by the variable z = x − 3−1A mod p gives
the following equation (like in [6]) that is identical to (2):

z3 + Pz + Q = 0 mod p, (7)

where P = B − A2

3 mod p and Q = AB
3 − 2A3

27 − D mod p.
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Respectively, with analogous variable substitution X = Z+ (3−1 mod p, 0)(A, 0)
one can reduce equation (4) to

Z3 + PZ + Q = (0, 0), (8)

where
P = (P, 0) = (B, 0) − (A,0)2

3 and

Q = (Q, 0) = (A,0)(B,0)
3 − 2(A,0)3

27 − (D, 0).

Since for the given coefficients (A, 0), (B, 0), and (D, 0) the equation (4) has at
least one solution, for example, X = (M mod p, 0), then the equation (8) also has
solution and using the method for solving cubic equations which is described in [6]
one can derive the following formula for roots of equation (8)

Z = (z, 0) = α + β (9)

and the following formula for roots of equation (4)

X = (x, 0) =
(A, 0)

3
+ α + β, (10)

where

α =
3

√

−Q

2
+

√

Q2

4
+

P3

27
; β =

3

√

−Q

2
−

√

Q2

4
+

P3

27
. (11)

For the case under consideration (p > 3) there exist three different cubic roots
α and three different cubic roots β. In formulas (9) and (10) one should select only
pairs of the values α and β which satisfy the condition

αβ = −P

3
. (12)

4 About number of roots of the cubic equation in GF (p)

To consider type and number of roots of the equations (7) and (8) it is useful to
formulate the following preliminary statements.

Lemma 1. Suppose a prime p > 3 and A is a cubic residue in GF (p2). Then there
exist exactly three different cubic roots from A.

Proof. An arbitrary prime p > 3 can be represented as p = 6t ± 1. Respectively
p2 − 1 = 36t2 ± 12t ⇒ 3|p2 − 1, where p2 − 1 is the order of the multiplicative
group of GF (p2). The last group is a finite cyclic one, therefore it contains exactly
two elements ε and ε2 having order 3 that are non-trivial cubic roots from (1, 0) ∈
GF (p2).

If B is a cubic root from A, then εB and ε2B are also cubic roots from A.
Assumption about existence of the fourth cubic root B′ = 3

√
A leads to contradiction

about existence of the third element ε′ = B/B′ 6= (1, 0) having order 3, such that
ε′ 6= ε and ε′ 6= ε2.
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Lemma 2. If the value −Q
2 ±

√

Q2

4 + P3

27 is a cubic residue in GF (p2), then the

value −Q
2 ∓

√

Q2

4 + P3

27 is also a cubic residue.

Proof. We have

(

−Q
2 ±

√

Q2

4 + P3

27

)
p2

−1
3

(

−Q
2 ∓

√

Q2

4 + P3

27

)
p2

−1
3

=

(

−P3

27

)
p2

−1
3

=
(

−P
3

)p2
−1

= (1, 0).

For cubic residue

(

−Q
2 ±

√

Q2

4 + P3

27

)

we have

(

−Q
2 ±

√

Q2

4 + P3

27

)
p2

−1
3

=

(1, 0). Therefore

(

−Q
2 ∓

√

Q2

4 + P3

27

)
p2

−1
3

= (1, 0), i. e. the value
(

−Q
2 ∓

√

Q2

4 + P3

27

)

is a cubic residue in GF (p2).

For some vector V = (v, u) ∈ GF (p2) one can define V = (v,−u) ∈ GF (p2).

Lemma 3. Suppose V = (v, u) ∈ GF (p2) is a cubic residue and R is one of the
cubic roots from V. Then R is one of cubic roots from V.

Proof. Using formula (6) for some element (a, b) ∈ GF (p2) it is easy to get
(

(a, b)
)3

= (a, b)3. For R we have R
3

= R3 = V.

For other two cubic roots from V, i.e. for εR and ε2R, we have
(

εR
)3

= V and
(

ε2R
)3

= V, therefore one can write
3
√

V = 3
√

V.

Lemma 4. Suppose number 3 does not divide p − 1 and ε, ε2 ∈ GF (p2) are two
non-trivial cubic roots from the unity element (1, 0). Then ε = ε2 and ε2 = ε.

Proof. Taking into account Lemma 3 we have ε3 = ε3 = (1, 0) = (1, 0) hence ε is
one of two non-trivial roots from (1, 0) that differs from ε. Therefore ε = ε2 and
ε2 = ε2 = ε.

Lemma 5. Suppose a ∈ GF (p) is a quadratic non-residue. Then for (a, 0) ∈ GF (p2)

we have
√

(a, 0) =
(

0,±
√

k−1a
)

, where k is the quadratic non-residue used to define

the multiplication operation in GF (p2) with formula (6).

Proof. Using formula (6) we get
(

0,±
√

k−1a
)2

= (a, 0).
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In general case computation in (11) should be performed in the field GF (p2),

since the value Q2

4 + P3

27 can be equal to a quadratic non-residue in the field GF (p).
In the case under consideration p > 3, therefore number 3 divides the value

p2 − 1 and there exist three different cubic roots in GF (p2) from each of the values
(

−Q
2 +

√

Q2

4 + P3

27

)

and

(

−Q
2 −

√

Q2

4 + P3

27

)

. Three values α and three values β

define all roots of (8). Types of the lasts depend on the value ∆ = Q2

4 + P3

27 mod p.

4.1 ∆ is a quadratic non-residue in GF (p)

If ∆ is equal to a quadratic non-residue in GF (p), then in formulas (9) and
(10) elements α and β are two-dimension vectors the second coordinate of which
is not equal to zero. Suppose α = K and β = K are cubic roots from α3 =

−Q/2 +
(

0,
√

k−1∆
)

and β3 = −Q/2 −
(

0,
√

k−1∆
)

, respectively. Then α′ = εK

and α′′ = ε2K (β′ = α′ = εK = ε2K and β′′ = α′′ = ε2K = εK) are also cubic roots
from α3 (β3).

There are possible the following two cases.
Case 1. 3 ∤ (p−1). In this case KK = −P/3. Indeed, KK ∈ GF (p), ε ∈ GF (p2),

and P = (P, 0) ∈ GF (p), therefore KK 6= −εP/3. Each of the following three pairs
of the values:

1. α = K and β = K;

2. α′ = εK and β′ = ε2K;

3. α′′ = ε2K and β′′ = εK;

defines one root of each of the equations (7) and (8), since αβ = α′β′ = α′′β′′ =
−P/3. These three roots of (7), i.e. the values α+β, α′+β′ and α′′+β′′, are contained
in GF (p). Indeed, for example, α′ + β′ = εK + ε2K = εK + εK. Correspondingly,
three roots of (8) are also contained in GF (p).

Case 2. 3|(p − 1). In this case ε ∈ GF (p).
Suppose KK = −εP/3. Then each of the following three pairs of the values:

1. α = K and β = ε2K;

2. α′ = ε2K and β′ = K;

3. α′′ = εK and β′′ = εK;

defines one root of the equations (7) and (8), since αβ = α′β′ = α′′β′′ = −P/3. The
first and second roots, i.e. the values α + β = K + ε2K and α′ + β′ = ε2K + K, are
contained in GF (p2). The third root, i.e. the value α′′ +β′′ = εK+εK = ε(K+K),
is contained in GF (p).

Suppose KK = −P/3. Then each of the following three pairs of the values:

1. α = K and β = K.
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2. α′ = εK and β′ = ε2K;

3. α′′ = ε2K and β′′ = εK;

defines one root of the equations (7) and (8), since αβ = α′β′ = α′′β′′ = −P/3.
The first root is equal to α + β = K + K, i.e. it is contained in GF (p). The
second and third roots, i.e. the values α′ + β′ = εK + ε2K = ε

(

K + εK
)

and
α′′ + β′′ = ε2K + εK = ε

(

εK + K
)

, correspondingly, are contained in GF (p2).
Thus, in Case 2 we have one root in GF (p) and two roots in GF (p2).
It should be noted that in this paper there are considered cubic equations over

GF (p) which have solutions, therefore we do not consider the case when the value

−Q/2 +
(

0,
√

k−1∆
)

is a cubic non-residue in GF (p2).

4.2 ∆ is a quadratic residue in GF (p)

If ∆ is equal to a quadratic residue in GF (p), then in formula (11) the values
(

−Q
2 +

√

Q2

4 + P3

27

)

and

(

−Q
2 −

√

Q2

4 + P3

27

)

are elements of GF (p). We consider

the following two subcases.

Case 1. 3|(p − 1). If the number
(

−Q
2 +

√
∆

)

is a cubic residue in GF (p), then

we have three cubic roots from this number and three cubic roots from
(

−Q
2 −

√
∆

)

that are elements of GF (p), hence all three roots of equation (7) and all three roots of

equation (8) are elements of the field GF (p). If
(

−Q
2 −

√
∆

)

is a cubic non-residue

in GF (p), then the vector (
(

−Q
2 +

√
∆

)

, 0) is a cubic non-residue in GF (p2), since

((

−Q
2 +

√
∆

)

, 0
)

p2
−1
3

=

(

(

−Q
2 +

√
∆

)
p−1
3

(p+1)
, 0

)

=

(εp+1, 0) 6= (1, 0),

where ε is one of two non-trivial cubic roots from 1 in GF (p), and equations (7) and
(8) have no solutions. However the last situation is out of the consideration of the
cubic equations having a solution.

Case 2. 3 ∤ (p − 1). In GF (p) there exists one cubic root from
(

−Q
2 +

√
∆

)

and one cubic root from
(

−Q
2 −

√
∆

)

. Let K =
3

√

−Q
2 +

√

Q2

4 + P 3

27 and K̃ =

3

√

−Q
2 −

√

Q2

4 + P 3

27 . In GF (p2) there exists two additional cubic roots from each of

the values

(

−Q
2 +

√

Q2

4 + P3

27

)

(the roots Kε and Kε2, where ε, ε2 ∈ GF (p2) are

non-trivial cubic roots from the unity element (1, 0)) and

(

−Q
2 −

√

Q2

4 + P3

27

)

(the

roots K̃ε and K̃ε2). We have KK̃ = −P/3 mod p = P/3 and one root of (7) is
equal to K + K̃ mod p ∈ GF (p).
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We have also KεK̃ε2 = −P/3 and Kε2K̃ε = −P/3 that gives two roots of (7)
Kε + K̃ε2 and Kε2 + K̃ε that are elements of GF (p2) with the second coordinate
different from zero.

4.3 ∆ = 0

We consider the following two cases.

Case 1. 3|(p − 1). If −Q/2 is a cubic residue in GF (p), then in GF (p) there
exists three cubic roots from −Q/2. Suppose these three roots are the values K,
K ′ = eK, and K ′′ = e2K, where e, e2 ∈ GF (p) and are non-trivial cubic roots from
1. Then, taking into account that K2 = −P/3, we have the following three roots
of (7): 2K, K ′ + K ′′, and K ′′ + K ′ that are elements of GF (p), the last two roots
being equal.

If −Q/2 is a cubic non-residue in GF (p), then the vector (−Q/2, 0) is a cubic
non-residue in GF (p2), since

(−Q/2, 0)
p2

−1
3 =

(

(−Q/2)
p−1
3

(p+1) , 0
)

=
(

ep+1, 0
)

6= (1, 0),

where e ∈ GF (p) is a cubic root from 1, and there are no solutions for (7) and (8),
therefore the last situation is out of the consideration of the cubic equations over
GF (p) which have solutions.

Case 2. 3 ∤ (p − 1). In GF (p) there exists one cubic root from −Q/2. Let
K = 3

√

−Q/2 mod p. In GF (p2) there exists two additional cubic roots from −Q/2,
namely, the roots K ′ = Kε and K ′′ = Kε2, where ε, ε2 ∈ GF (p2) are non-trivial
cubic roots from the unity element (1, 0). Taking into account that K2 = −P/3, we
have the following three roots of equation (7): 2K ∈ GF (p), (K ′+K ′′), (K ′′ +K ′) ∈
GF (p2), the last two being equal.

Table 1. Number and type of roots of cubic equation (7) with condition that this
equation has a solution.

∆ is a quadratic ∆ is a quadratic ∆ = 0
non-residue in GF (p) residue in GF(p) Q2/4 = −P 3/27 mod p

3 ∤ (p − 1) 3|(p − 1) 3|(p − 1) 3 ∤ (p − 1) 3|(p − 1) 3 ∤ (p − 1)

Three One root Three One root Three One root in
different in GF (p) different in GF (p) roots GF (p) and

roots and two roots and two contained two equal
contained different contained different in GF (p) roots
in GF (p) roots in GF (p) roots two of them in GF (p2)

in GF (p2) in GF (p2) being equal
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5 Public encryption cryptoscheme free from the decryption
ambiguity

To avoid the decryption ambiguity one can put the cubic equation that relates to
the Case 2 from Subsections 4.1 and 4.2 into the base of public encryption algorithm.
To encrypt the message M one is to generate random numbers T and U such that the
value T 2/4−U is quadratic non-residue modulo p and modulo q and then compute
the cryptogram in form of the coefficients of the following cubic equation

(x − M)(x2 + Tx + U) = x3 − (M + T )x2 + (U − TM)x − MU = 0 mod n.

Thus, the enciphering procedure that consists in computing the following three co-
efficients that compose the ciphertext C = (A,B,D):

A = M + T mod n,

B = U − TM mod n,

D = MU mod n.

(13)

The first step of the public encryption, i.e. finding a value that is equal to a non-
residue modn, cannot be surely performed without knowing prime divisors of n.
Therefore a non-residue N is to be generated by owner of the public key, i.e. he
generates his public key as the pair of numbers n and N . Using such public key the
encryption of the message M is to be performed as follows:

1. Generate a random number T and compute the value U = T 2/4 − N mod n.
2. Compute the cryptogram C = (A,B,D) using formulas (13).
Decryption of the cryptogram C consists in finding the roots of the equation (1)

which are contained in Zn. Each of the equations (2) and (3) has a unique solution
in GF (p) and GF (q), respectively. Therefore there exists only one root of equation
(1) that can be computed solving the following system of two congruences

{

M ≡ Mp mod p

M ≡ Mq mod q,
(14)

where Mp ∈ GF (p) and Mq ∈ GF (q) are roots of equations (2) and (3), respectively.
In correspondence with the Chinese remainder theorem the solution of the system
(14) is

M =
[

Mpq
(

q−1 mod p
)

+ Mqp
(

p−1 mod q
)]

mod pq.

One of steps of the decryption procedure is finding cubic roots in the field of the
two-dimension vectors defined over the ground finite field. Next section considers
this case.

6 Finding cubic roots in GF (p2)

Since 3|p2 − 1, there exist three cubic roots from a cubic residue Y in GF (p2).
In the case p2 = 7 mod 9 it is rather simple to compute one cubic root J = Y1/3
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using the following formula

J = Y
p2+2

3 .

Proof that this formula works is as follows

J3 = (Y)
p2+2

3 = Y (Y)
p2

−1
3 = Y.

Thus, to find a cubic root (if it exists) in the case 3|(p2−1) it is sufficient to perform
one exponentiation operation. Two other roots can be computed multiplying the
last by the non-trivial roots from the unity element (1, 0). For some arbitrary prime
p finding cubic roots in GF (p2) can be performed with method like that described
in [7] for finding cubic roots in GF (p), where 3|(p − 1).

7 Bi-deniable hybrid-encryption protocol secure against active
coercer

The public encryption algorithm proposed in Section 5 can be used for designing
bi-deniable encryption protocol as follows. The idea is to include in the protocol
the entity authentication stage that provides protection against active attackers, in-
cluding the case of active coercer, and possibility to implement the hidden exchange
of single-use public keys [9, 10]. The single-use public keys are used to agree the
single-use shared key with which the secret message is derived from the ciphertext
directed from sender to receiver. While using the private keys of the sender and
receiver and all values sent via communication channel, after the secret communi-
cation terminates the coercive attacker is able only to disclose a fake message from
the ciphertext.

Suppose yA = gxA mod p′ and yB = gxB mod p′, where p′ is a sufficiently large
prime and g is a primitive element modulo p′, are public keys of the sender and
receiver, correspondingly, that are to be used in frame of the ElGamal’s signature
scheme [11]. The values xA and xB are their private keys. Additionally the receiver
has other public key (n,N) that is to be used in frame of the public encryption
scheme described in Section 5.

The following protocol, where Alice is the sender of secret message S < n and
Bob is receiver, presents the bi-deniable hybrid encryption scheme.

1. Alice generates a uniformly random value kA < p ′−1 and computes the value
RA = gkA mod p ′ and her signature SignA(RA) to RA. Then she sends the values
SignA(RA) and RA to Bob.

2. Bob verifies the signature SignA(RA). If the signature is invalid he terminates
the communication session. Otherwise he generates a uniformly random value kB <
p ′ − 1 and computes the value RB = gkB mod p ′, his signatures SignB(RB) to RB

and his signature SignB(RA) to RA. Then he sends the values RB , SignB(RB), and
SignB(RA) to Alice.

3. Alice verifies the signatures SignB(RB) and SignB(RA). If at least one of
the signatures is invalid she terminates the communication session. Otherwise she
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generates a fake message M < n and encrypts simultaneously two messages S and
M as follows:

3.1. Compute the common key related to the public keys yA and yB : ZAB =
yxA

B mod p ′.

3.2. Compute the common single-use key related to the single-use public keys
RA and RB : WAB = RkA

B mod p ′.

3.3. Compute the values T = WABS mod n and U = T 2/4−N mod n. Then, us-
ing the public-encryption algorithm described in Section 5, compute the cryptogram
C = (A,B,D) and send C to Bob.

Bob discloses the secret message using the following algorithm.

Decryption algorithm.

1. Using his private key (p, q) Bob finds the root M of equation (1) with coeffi-
cients A, B, and D taken from the cryptogram C.

2. Then Bob computes the secret message S as follows:

2.1. Compute the common single-use key related to the single-use public keys
RA and RB : WAB = RkB

A mod p ′.

2.2. Compute the value T = (A − M) mod n.

2.3. Compute the secret message S = TWAB
−1 mod n.

Dishonest decryption algorithm:

Using Bob’s private key (p, q) the coercer computes the root M from the equation
(1) with coefficients taken from the cryptogram.

The coercer is able to compute the value T = A − M mod n, however he is not
able to distinguish the values RA, RB , and T from uniformly random values and to
disclose the secret message S (until he solves the discrete logarithm problem modulo
p ′), even if he is provided with private keys xA and xB .

8 Conclusion

We considered a method for computing the roots of cubic equation over the
ground finite field GF (p) in the case when the equation definitely has solutions.
This case takes place in the public encryption scheme characterized in simultaneous
encryption of three messages [8]. This scheme includes the decryption procedure
that is ambiguous. Using the obtained results related to analysis of number and
type of the roots of the cubic equations we have proposed a new method for public
encryption based on solving the cubic equations, which is free from ambiguity of
the decryption procedure. The proposed method has been used to design a new
bi-deniable encryption protocol that is sufficiently practical.
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