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of bounded turning functions
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Abstract. In this paper we obtain the best possible upper bound to the third Hankel
determinants for the functions belonging to the class of reciprocal of bounded turning
functions using Toeplitz determinants.
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1 Introduction

Let A denote the class of all functions f(z) of the form

f(z) = z +

∞∑

n=2

anzn (1)

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting of
univalent functions. For a univalent function in the class A, it is well known that the
nth coefficient is bounded by n. The bounds for the coefficients of univalent func-
tions give information about their geometric properties. In particular, the growth
and distortion properties of a normalized univalent function are determined by the
bound of its second coefficient. The Hankel determinant of f for q ≥ 1 and n ≥ 1
was defined by Pommerenke [12] as

Hq(n) =

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

.

This determinant has been considered by many authors in the literature. For exam-
ple, Noor [10] determined the rate of growth of Hq(n) as n → ∞ for the functions
in S with bounded boundary. Ehrenborg [4] studied the Hankel determinant of
exponential polynomials. The Hankel transform of an integer sequence and some
of its properties were discussed by Layman in [7]. One can easily observe that the
Fekete-Szego functional is H2(1). Fekete-Szego then further generalized the estimate
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|a3 −µa2
2| with µ real and f ∈ S. R. M. Ali [1] found sharp bounds for the first four

coefficients and sharp estimate for the Fekete-Szego functional |γ3 − tγ2
2 |, where t is

real, for the inverse function of f defined as

f−1(w) = w +

∞∑

n=2

γnwn,

when it belongs to the class of strongly starlike functions of order α (0 < α ≤ 1)

denoted by S̃T (α). In the recent years several authors have investigated bounds for
the Hankel determinant of functions belonging to various subclasses of univalent and
multivalent analytic functions. In particular for q = 2, n = 1, a1 = 1 and q = 2,
n = 2, a1 = 1, the Hankel determinant simplifies respectively to

H2(1) =
a1 a2

a2 a3

= a3 − a2
2 and H2(2) =

a2 a3

a3 a4

= a2a4 − a2
3.

For our discussion in this paper, we consider the Hankel determinant in the case of
q = 3 and n = 1, denoted by H3(1), given by

H3(1) =
a1 a2 a3

a2 a3 a4

a3 a4 a5

. (2)

For f ∈ A, a1 = 1, so we have

H3(1) = a3(a2a4 − a2
3) − a4(a4 − a2a3) + a5(a3 − a2

2)

and by applying triangle inequality, we obtain

|H3(1)| ≤ |a3||a2a4 − a2
3| + |a4||a2a3 − a4| + |a5||a3 − a2

2|. (3)

The sharp upper bound to the second Hankel functional H2(2) for the subclass RT

of S, consisting of functions whose derivative has a positive real part, studied by
Mac Gregor [9] was obtained by Janteng [6]. It was known that if f ∈ RT then
|ak| ≤ 2

k
, for k ∈ {2, 3, ....}. Also the sharp upper bound for the functional |a3 − a2

2|
was 2

3
, stated in [2], for the class RT. Further, the best possible sharp upper bound for

the functional |a2a3−a4| was obtained by Babalola [2] and hence the sharp inequality
for |H3(1)|, for the class RT. The sharp upper bound to |H3(1)| for the class of inverse
of a function whose derivative has a real part was obtained by D. Vamshee Krishna
et al. [14].

Motivated by the above mentioned results obtained by different authors in this
direction and the results by Babalola [2], in the present paper, we seek an upper
bound to the second Hankel determinant, |t2t3−t4| and an upper bound to the third
Hankel determinant, for certain subclass of analytic functions defined as follows.
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Definition 1. A function f(z) ∈ A is said to be function whose reciprocal deriva-
tive has a positive real part (also called reciprocal of bounded turning function),

denoted by f ∈ R̃T , if and only if

Re
( 1

f ′(z)

)
> 0, ∀z ∈ E. (4)

Some preliminary Lemmas required for proving our results are as follows.

2 Preliminary Results

Let P denote the class of functions consisting of p, such that

p(z) = 1 + c1z + c2z
2 + c3z

3 + ... = 1 +
∞∑

n=1

cnzn, (5)

which are regular in the open unit disc E and satisfy Re
(
p(z)

)
> 0 for any z ∈ E.

Here p(z) is called the Caratheòdory function [3].

Lemma 1 (see [11, 13]). If p ∈ P, then |ck| ≤ 2, for each k ≥ 1 and the
inequality is sharp for the function 1+z

1−z
.

Lemma 2 (see [5]). The power series for p(z) given in (5) converges in the open
unit disc E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn

c−1 2 c1 · · · cn−1

c−2 c−1 2 · · · cn−2

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

, for n = 1, 2, 3....

and c−k = ck, are all non-negative. They are strictly positive except for

p(z) =

m∑

k=1

ρkp0(e
itkz),

ρk > 0, tk real and tk 6= tj, for k 6= j, where p0(z) = 1+z
1−z

; in this case
Dn > 0 for n < (m − 1) and Dn

.
= 0 for n ≥ m.

This necessary and sufficient condition found in [5] is due to Caratheòdory and
Toeplitz. We may assume without restriction that c1 > 0. On using Lemma 2,
for n = 2, we have

D2 =
2 c1 c2

c1 2 c1

c2 c1 2
= [8 + 2Re{c2

1c2} − 2 | c2 |2 − 4|c1|2] ≥ 0,
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which is equivalent to

2c2 = c2
1 + x(4 − c2

1), for some x, |x| ≤ 1. (6)

For n = 3,

D3 =

2 c1 c2 c3

c1 2 c1 c2

c2 c1 2 c1

c3 c2 c1 2

≥ 0

and is equivalent to

|(4c3 − 4c1c2 + c3
1)(4 − c2

1) + c1(2c2 − c2
1)

2| ≤ 2(4 − c2
1)

2 − 2|(2c2 − c2
1)|2. (7)

Simplifying the relations (6) and (7), we get

4c3 = c3
1 + 2c1(4 − c2

1)x − c1(4 − c2
1)x

2 + 2(4 − c2
1)(1 − |x|2)z

for some z, with |z| ≤ 1. (8)

To obtain our results, we refer to the classical method initiated by Libera and
Zlotkiewicz [8] and used by several authors in the literature.

3 Main Result

Theorem 1. If f(z) ∈ R̃T and f−1(w) = w +
∞∑

n=2

tnwn near w=0 is the in-

verse function of f then | t2t4 − t23| ≤ 137

288
.

Proof. For f(z) = z +
∞∑

n=2

anzn ∈ R̃T , there exists an analytic function p ∈ P

in the open unit disc E with p(0) = 1 and Re
(
p(z)

)
> 0 such that

1

f ′(z)
= p(z) ⇔ 1 = f ′(z)p(z). (9)

Replacing f ′(z) and p(z) with their equivalent series expressions in (9), we have

1 =
(
1 +

∞∑

n=2

nanzn−1
)(

1 +

∞∑

n=1

cnzn
)
.

Upon simplification, we obtain

1 = 1 + (c1 + 2a2)z + (c2 + 2a2c1 + 3a3)z
2

+ (c3 + 2a2c2 + 3a3c1 + 4a4)z
3

+ (c4 + 2a2c3 + 3a3c2 + 4a4c1 + 5a5)z
4 · · · . (10)
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Equating the coefficients of like powers of z, z2, z3 and z4 respectively on both sides
of (10), after simplifying, we get

a2 = −c1

2
; a3 =

1

3
(c2

1 − c2); a4 = −1

4
(c3 − 2c1c2 + c3

1);

a5 = −1

5
(c4 − 2c1c3 + 3c2

1c2 − c2
2 − c4

1). (11)

Since f(z) = z +
∞∑

n=2

anzn ∈ R̃T , from the definition of inverse function

of f, we have

w = f(f−1(w)) = f−1(w) +

∞∑

n=2

an

(
f−1(w)

)n ⇔ w

= w +

∞∑

n=2

tnwn +

∞∑

n=2

an

(
w +

∞∑

n=2

tnwn

)n

.

After simplifying, we get

(t2 + a2)w
2 + (t3 + 2a2t2 + a3)w

3 + (t4 + 2a2t3 + a2t
2
2 + 3a3t2 + a4)w

4

+(t5 + 2a2t4 + 2a2t2t3 + 3a3t3 + 3a3t
2
2 + 4a4t2 + a5)w

5 + · · · = 0. (12)

Equating the coefficients of like powers of w2, w3, w4 and w5 on both sides of (12),
respectively, further simplification gives

t2 = −a2; t3 = −a3 + 2a2
2; t4 = −a4 + 5a2a3 − 5a3

2;

t5 = −a5 + 6a2a4 − 21a2
2a3 + 3a2

3 + 14a4
2. (13)

Using the values of a2, a3, a4 and a5 in (11) along with (13), upon simplification, we
obtain

t2 =
c1

2
; t3 =

1

6
[2c2 + c2

1]; t4 =
1

24
[6c3 + 8c1c2 + c3

1];

t5 =
1

120
[24c4 + 42c1c3 + 22c2

1c2 + 16c2
2 + c4

1]. (14)

Substituting the values of t2, t3 and t4 from (14) in the functional | t2t4 − t23| for the

function f ∈ R̃T upon simplification, we obtain

| t2t4 − t23| =
1

144

∣∣∣18c1c3 + 8c2
1c2 − 16c2

2 − c4
1

∣∣∣

which is equivalent to

| t2t4 − t23| =
1

144

∣∣∣d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1

∣∣∣ (15)

where d1 = 18; d2 = 8; d3 = −16; d4 = −1. (16)

Substituting the values of c2 and c3 given in (6) and (8) respectively from Lemma 2
on the right-hand side of (15) and using the fact |z| < 1, we have
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4| d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤

∣∣∣(d1 + 2d2 + d3 + 4d4)c
4
1

+ {2d1c1 + 2(d1 + d2 + d3)c
2
1|x| − [(d1 + d3)c

2
1 + 2d1c1 − 4d3]|x|2}(4 − c2

1)
∣∣∣. (17)

From (16) and (17), we can now write

(d1 + 2d2 + d3 + 4d4) = 14; 2d1 = 36; 2(d1 + d2 + d3) = 20;

(d1 + d3)c
2
1 + 2d1c1 − 4d3 = 2(c2

1 + 18c1 + 32). (18)

Since c1 ∈ [0, 2], using the result (c1 + a)(c1 + b) ≥ (c1 − a)(c1 − b), where a, b ≥ 0
in (18), we can have

−{(d1 + d3)c
2
1 + 2d1c1 − 4d3} ≤ −2(c2

1 − 18c1 + 32). (19)

Substituting the calculated values from (18) and (19) on the right-hand side of (17),
we have

4| d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤

∣∣∣14c4
1 + {36c1 + 20c2

1|x|

− 2(c2
1 − 18c1 + 32)|x|2}(4 − c2

1)
∣∣∣.

Choosing c1 = c ∈ [0, 2], applying triangle inequality and replacing |x| by µ on the
right-hand side of the above inequality

2| d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤

∣∣∣7c4 + {18c + 10c2µ + (c2 − 18c + 32)µ2}(4 − c2)
∣∣∣

= F (c, µ) , 0 ≤ µ = |x| ≤ 1 and 0 ≤ c ≤ 2.
(20)

We next maximize the function F (c, µ) on the closed region [0, 2] × [0, 1]. Diffe-
rentiating F (c, µ) given in (20) partially with respect to µ, we obtain

∂F

∂µ
= [20c + 2(c − 2)(c − 16)µ](4 − c2) > 0. (21)

For 0 < µ < 1 and for fixed c with 0 < c < 2, from (21), we observe that ∂F
∂µ

> 0.
Therefore, F (c, µ) becomes an increasing function of µ and hence it cannot have
a maximum value at any point in the interior of the closed region [0, 2] × [0, 1].
Moreover, for a fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c).

Therefore, replacing µ by 1 in F (c, µ), upon simplification, we obtain

G(c) = −4c4 + 12c2 + 128 (22)
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G′(c) = −16c3 + 24c (23)

G′′(c) = −48c2 + 24. (24)

For optimum value of G(c), consider G′(c) = 0. From (23), we get

c2 =
3

2
.

Using the obtained value of c2 in (24), which simplifies to give

G′′(c) = −48 < 0.

Therefore, by the second derivative test, G(c) has maximum value at c =√
3

2
∈ [0, 2]. Substituting the value of c in the expression (22), upon simplification,

we obtain the maximum value of G(c) at c as

Gmax = 137. (25)

Simplifying the expressions (20) and (25)

| d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤

137

2
. (26)

From the relations (15) and (26), we obtain

| t2t4 − t23| ≤ 137

288
. (27)

This completes the proof of our Theorem.

Remark 1. It is observed that the upper bound to the second Hankel determinant
of inverse of a function whose derivative has a positive real part [14] and the inverse
of a function whose reciprocal derivative has a positive real part is the same.

Theorem 2. If f(z) ∈ R̃T and f−1(w) = w +
∞∑

n=2

tnwn near w = 0 is

the inverse function of f then | t2t3 − t4| =
(

13

6

) 3
2
.

Proof. Substituting the values of t2, t3 and t4 from (14) in | t2t3 − t4| for the

function f ∈ R̃T , after simplifying, we get

| t2t3 − t4| =
1

24
| − 6c3 − 4c1c2 + c3

1|. (28)

Substituting the values of c2 and c3 from (6) and (8) respectively, from Lemma 2
on the right-hand side of (28) and using the fact | z |< 1, after simplifying, we get

2| − 6c3 − 4c1c2 + c3
1| ≤

∣∣∣− 5c3
1 − 6(4 − c2

1) − 10c1(4 − c2
1)|x|



THIRD HANKEL DETERMINANT FOR THE . . . FUNCTIONS 57

+ 3(c1 + 2)(4 − c2
1)|x|2

∣∣∣. (29)

Since c1 = c ∈ [0, 2], using the result (c1 +a) ≥ (c1 −a), where a ≥ 0, applying
triangle inequality and replacing |x| by µ on the right-hand side of the above
inequality, we have

2| − 6c3 − 4c1c2 + c3
1| ≤ | 5c3 + 6(4 − c2) + 10c(4 − c2)µ + 3(c − 2)(4 − c2)µ2|

= F (c, µ) , 0 ≤ µ =| x |≤ 1 and 0 ≤ c ≤ 2. (30)

Next, we maximize the function F (c, µ) on the closed square [0, 2] × [0, 1]. Dif-
ferentiating F (c, µ) partially with respect to µ, we get

∂F

∂µ
= (4 − c2)[10c + 6(c − 2)µ] > 0.

As described in Theorem 3, further, we obtain

G(c) = −8c3 + 52c (31)

G′(c) = −24c2 + 52 (32)

G′′(c) = −48c. (33)

For optimum value of G(c), consider G′(c) = 0. From (32), we get

c2 =
13

6
.

Using the obtained value of c =
√

13

6
∈ [0, 2] in (33), then

G′′(c) = −8
√

78 < 0.

Therefore, by the second derivative test, G(c) has maximum value at c =
√

13

6
.

Substituting the value of c in the expression (31), upon simplification, we obtain
the maximum value of G(c) at c as

Gmax =
104

3

√
13

6
. (34)

From the expressions (30) and (34), after simplifying, we get

| − 6c3 − 4c1c2 + c3
1| ≤ 52

3

√
13

6
. (35)

Simplifying the relations (28) and (35), we obtain

| t2t3 − t4| ≤ 1

3

(
13

6

) 3
2

.

This completes the proof of our Theorem.
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Remark 2. It is observed that the upper bound to the |t2t3 − t4| of a function whose
derivative has a positive real part [14] and a function whose reciprocal derivative
has a positive real part is the same.

The following theorem is a straight forward verification on applying the same
procedure as described in Theorems 3 and 4 and the result is sharp for the values
c1 = 0, c2 = 2 and x = 1.

Theorem 3. If f(z) ∈ R̃T and f−1(w) = w +
∞∑

n=2

tnwn near w = 0 is

the inverse function of f then | t3 − t22| ≤ 2

3
.

Using the fact that |cn| ≤ 2, n ∈ N = {1, 2, 3, · · · }, with the help of c2 and
c3 values given in (6) and (8) respectively together with the values in (14), we at
once obtain all the below inequalities.

Theorem 4. If f(z) ∈ R̃T and f−1(w) = w +
∞∑

n=2

tnwn near w = 0 is

the inverse function of f then we have the following inequalities:
(i) |t2| ≤ 1 (ii) |t3| ≤ 4

3
(iii) |t4| ≤ 13

6
(iv) |t5| ≤ 59

15
.

Using the results of Theorems 3, 4, 5 and 6 in (3), we obtain the following
corollary.

Corollary 1. If f(z) ∈ R̃T and f−1(w) = w +
∞∑

n=2

tnwn near w = 0 is

the inverse function of f then |H3(1)| ≤ 1

3

[
3157

360
+
(

13

6

) 5
2

]
.

Remark 3. It is observed that the upper bound to the third Hankel determinant
of a function whose derivative has a positive real part [14] and a function whose
reciprocal derivative has a positive real part is the same.
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