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On certain subclasses of analytic functions associated

with generalized struve functions
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Abstract. The goal of the present paper is to investigate some characterization for
generalized Struve functions of first kind to be in the new subclasses of β uniformly
starlike and β uniformly convex functions of order α. Further we point out some
consequences of our main results.
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1 Introduction

Denote by A the class of analytic functions in the unit disc U = {z : |z| < 1} of
the form

f(z) = z +
∞
∑

n=2

anzn, z ∈ U. (1)

Also denote by S the subclass of A consisting of functions which are normalized
by f(0) = 0 = f ′(0) − 1 and also univalent in the unit disc U = {z : |z| < 1}.
A function f ∈ A is said to be starlike of order α (0 ≤ α < 1) if and only if

ℜ
(

zf ′(z)
f(z)

)

> α (z ∈ U). This function class is denoted by S∗(α). We also write

S∗(0) = S∗, where S∗ denotes the class of functions f ∈ A such that f(U) is
starlike with respect to the origin. A function f ∈ A is said to be convex of order

α (0 ≤ α < 1) if and only if ℜ
(

1 + zf ′′(z)
f ′(z)

)

> α (z ∈ U). This class is denoted by

K(α). Further, K = K(0), the well-known standard class of convex functions. We
remark that, according to the Alexander duality theorem [1] the function f : U → C

is convex of order α, where 0 = α < 1, if and only if z → zf ′(z) is starlike of
order α. We note that every starlike (and hence convex) function of the form (1)
is in fact close-to-convex, and every close-to-convex function is univalent. However,
if a function is starlike then it is not necessary that it will be close-to-convex with
respect to a particular convex function.

The class β − UCV was introduced by Kanas et al. [14], where its geometric
definition and connections with the conic domains were considered. The class β −
UCV was defined purely by geometrically as a subclass of univalent functions that
map each circular arc contained in the unit disk U with a center ξ, |ξ| ≤ β (0 ≤
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β < 1), onto a convex arc. The notion of β− uniformly convex function is a natural
extension of the classical convexity. Observe that, if β = 0 then the center ξ is the
origin and the class β − UCV reduces to the class of convex univalent functions K.
Moreover for β = 1, the class β − UCV corresponds to the class UCV introduced
by Goodman [12,13] and studied extensively by Rønning [21,22]. The class β − SP

is related to the class β − UCV by means of the well-known Alexander equivalence
between the usual classes of convex K and starlike S∗ functions. Further the analytic
criteria for functions in these classes are given below.

For −1 < α ≤ 1 and β ≥ 0, a function f ∈ A is said to be in the class
(i) β− uniformly starlike functions of order α, denoted by SP (α, β), if it satisfies
the condition

ℜ
(

zf ′(z)

f(z)
− α

)

> β

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

, z ∈ U (2)

and
(ii) β− uniformly convex functions of order α, denoted by UCV(α, β), if it satisfies
the condition

ℜ
(

1 +
zf ′′(z)

f ′(z)
− α

)

> β

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

, z ∈ U. (3)

Indeed it follows from (2) and (3) that

f ∈ UCV(α, β) ⇔ zf ′ ∈ SP (α, β). (4)

Remark 1. It is of interest to state that UCV(α, 0) = K(α) and SP (α, 0) = S∗(α).

Motivated by the above definitions we define the following subclasses of A due
to Murugusundaramoorthy and Magesh [18].

For 0 ≤ λ < 1, 0 ≤ α < 1 and β ≥ 0, we let SP (λ, α, β) be the subclass of A
consisting of functions of the form (1) and satisfying the analytic criterion

ℜ
(

zf ′(z)

(1 − λ)f(z) + λzf ′(z)
− α

)

> β

∣

∣

∣

∣

zf ′(z)

(1 − λ)f(z) + λzf ′(z)
− 1

∣

∣

∣

∣

, z ∈ U, (5)

and also, let UCV(λ, α, β) be the subclass of A consisting of functions of the form
(1) and satisfying the analytic criterion

ℜ
(

f ′(z) + zf ′′(z)

f ′(z) + λzf ′′(z)
− α

)

> β

∣

∣

∣

∣

f ′(z) + zf ′′(z)

f ′(z) + λzf ′′(z)
− 1

∣

∣

∣

∣

, z ∈ U. (6)

We further let T SP (λ, α, β) = SP (λ, α, β)∩T and UCT (λ, α, β) = UCV(λ, α, β)∩
T where T denotes the subclass of A consisting of functions whose nonzero coeffi-
cients from second on, is given by

f(z) = z −
∞

∑

n=2

anzn. (7)

SP (0, α, 0) ≡ T ∗(α) and UCT (0, α, 0) ≡ C(α) are the class of starlike and convex
functions of order α (0 ≤ α < 1), introduced and studied by Silverman [23]. Suitably
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specializing the parameters one can define various subclasses defined in [2, 7, 23,27,
28]. Now we recall the following necessary and sufficient conditions for functions f to
be in the function classes SP (λ, α, β), T SP (λ, α, β), UCV(λ, α, β) and UCT (λ, α, β)
due to Murugusundaramoorthy and Magesh [18].

Theorem 1 ( see [18]). A function f(z) of the form (1) is in SP (λ, α, β) if

∞
∑

n=2

[n(1 + β) − (α + β)(1 + nλ − λ)] |an| ≤ 1 − α. (8)

Theorem 2 (see [18]). A function f(z) of the form (1) is in UCV(λ, α, β) if

∞
∑

n=2

n[n(1 + β) − (α + β)(1 + nλ − λ)] |an| ≤ 1 − α. (9)

Theorem 3 (see [18]). A function f(z) of the form (7) is in T SP (λ, α, β) if and
only if

∞
∑

n=2

[n(1 + β) − (α + β)(1 + nλ − λ)] |an| ≤ 1 − α. (10)

Theorem 4 (see [18]). A function f(z) of the form (7) is in UCT (λ, α, β) if and
only if

∞
∑

n=2

n[n(1 + β) − (α + β)(1 + nλ − λ)] |an| ≤ 1 − α. (11)

It is well known that the special functions (series) play an important role in
geometric function theory, especially in the solution by de Branges [10] of the fa-
mous Bieberbach conjecture.The surprising use of special functions (hypergeometric
functions) has prompted renewed interest in function theory in the last few decades.
There is an extensive literature dealing with geometric properties of different types
of special functions, especially for the generalized, Gaussian hypergeometric func-
tions [9, 15,17,24,29] and the Bessel functions [3–6,16].

We recall here the Struve function of order p (see [19, 30]), denoted by Hp, is
given by

Hp(z) =
∞
∑

n=0

(−1)n

Γ(n + 3
2) Γ(p + n + 3

2)

(z

2

)2n+p+1
,∀z ∈ C (12)

which is the particular solution of the second order non-homogeneous differential
equation

z2ω′′(z) + zω′(z) + (z2 − p2)ω(z) =
4(z/2)p+1

√
πΓ(p + 1

2)
(13)

where p is unrestricted real (or complex) number. The solution of the non-
homogeneous differential equation

z2ω′′(z) + zω′(z) − (z2 + p2)ω(z) =
4(z/2)p+1

√
πΓ(p + 1

2)
(14)
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is called the modified Struve function of order p and is defined by the formula

Lp(z) = −ie−ipπ/2Hp(iz) =
∞
∑

n=0

1

Γ(n + 3
2) Γ(p + n + 3

2)

(z

2

)2n+p+1
,∀z ∈ C.

Let the second order non-homogeneous linear differential equation [30] (also see [19]
and references cited therein),

z2ω′′(z) + bzω′(z) + [cz2 − p2 + (1 − b)p]ω(z) =
4(z/2)p+1

√
πΓ(p + b

2)
(15)

where b, p, c ∈ C, which is natural generalization of Struve equation. It is of in-
terest to note that when b = c = 1, then we get the Struve function (12) and for
c = −1, b = 1 the modified Struve function (14). This permits us to study the
Struve and modified Struve functions. Now, denote by wp,b,c(z) the generalized
Struve function of order p given by

wp,b,c(z) =

∞
∑

n=0

(−1)n(c)n

Γ(n + 3
2) Γ(p + n + b+2

2 )

(z

2

)2n+p+1
,∀z ∈ C,

which is the particular solution of the differential equation (15). Although the series
defined above is convergent everywhere, the function ωp,b,c is generally not univalent
in U. Now, consider the function up,b,c defined by the transformation

up,b,c(z) = 2p√πΓ

(

p +
b + 2

2

)

z
−p−1

2 ωp,b,c (
√

z),
√

1 = 1.

By using well known Pochhammer symbol (or the shifted factorial) defined, in terms
of the familiar Gamma function, by

(a)n =
Γ(a + n)

Γ(a)
=







1 (n = 0),

a(a + 1)(a + 2) · · · (a + n − 1) (n ∈ N = {1, 2, 3, . . .})

we can express up,b,c(z) as

up,b,c(z) =

∞
∑

n=0

(−c/4)n

(m)n (3/2)n
zn

= b0 + b1z + b2z
2 + ... + bnzn + ...,

where m =
(

p + b+2
2

)

6= 0,−1,−2, . . . . This function is analytic on C and satisfies
the second-order inhomogeneous linear differential equation

4z2u′′(z) + 2(2p + b + 3)zu′(z) + (cz + 2p + b)u(z) = 2p + b.

For convenience throughout in the sequel, we use the following notations

wp,b,c(z) = wp(z) up,b,c(z) = up(z), m = p +
b + 2

2
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and for if c < 0,m > 0 (m 6= 0,−1,−2, . . . ) let

zup(z) = z +
∞
∑

n=2

(−c/4)n−1

(m)n−1 (3/2)n−1
zn = z +

∞
∑

n=2

bn−1z
n (16)

and

Ψ(z) = z(2 − up(z)) = z −
∞
∑

n=2

(−c/4)n−1

(m)n−1 (3/2)n−1
zn (17)

Mapping properties of various subclasses of analytic and univalent functions are
potentially useful in a number of widespread areas of the mathematical, physical
and engineering sciences. In particular, in order to solve such applied problems that
are expressible in terms of functions of a complex variable, but that exhibit incon-
venient geometrical shapes, we can appropriately choose one or the other of such
mappings and thereby transform the inconvenient geometrical shape into a much
more convenient and easy-to-handle geometrical shape. Several mapping properties
of the function classes β−UST and β−UCV involving hypergeometric functions were
studied by Srivastava et al [26] (also see [9,15,17,24,29]) and references cited therein.
Recently Yagmur and Orhan [30] (see [19]) have determined various sufficient condi-
tions for the parameters p, b and c such that the functions up,b,c(z) or z → zup,b,c(z)
to be univalent, starlike, convex and close to convex in the open unit disk. Moti-
vated essentially by the aforementioned works and by work of Baricz [3–6], in our
present investigation, we determined sufficient conditions for the family of Struve
functions (zup(z)) in order to belong to the classes T SP (λ, α, β) and UCT (λ, α, β)
in the open unit disk U. We also proved that those sufficient conditions are necessary
for functions of the form (17). Further we deduce several interesting corollaries and
consequences by suitably applying our main results.

2 Main results and their consequences

Lemma 1 (see [19]). If b, p, c ∈ C and m 6= 0,−1,−2, ..., then the function up

satisfies the recursive relation

2zu′

p(z) + up(z) +
cz

2m
up+1(z) = 1

for all z ∈ C.

Theorem 5. If c < 0,m > 0 (m 6= 0,−1,−2, ...), then the sufficient condition for
zup(z) ∈ T SP (λ, α, β) is

[1 + β − λ(α + β)]u′

p(1) + (1 − α)up(1) ≤ 2(1 − α). (18)

Moreover (18) is necessary and sufficient for Ψ(z), given by (17) to be in T SP (λ, α, β).
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Proof. According to Theorem 3, we must show that

∞
∑

n=2

[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1
≤ (1 − α). (19)

Now,

∞
∑

n=2

[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1

=

∞
∑

n=2

[(n − 1){1 + β − λ(α + β)} + (1 − α)]
(−c/4)n−1

(m)n−1 (3/2)n−1

= [1 + β − λ(α + β)]
∞
∑

n=2

(n − 1)((−c/4))n−1

(m)n−1 (3/2)n−1
+ (1 − α)

∞
∑

n=2

(−c/4)n−1

(m)n−1 (3/2)n−1

= [1 + β − λ(α + β)]u′

p(1) + (1 − α)[up(1) − 1].

But the last expression is bounded from above by 1 − α if and only if (18) holds.
Since

z(2 − up(z)) = z −
∞
∑

n=2

(−c/4)n−1

(m)n−1 (3/2)n−1
zn (20)

the necessity of (18) for z(2− up(z)) to be in T SP (λ, α, β) follows from Theorem 3.

Theorem 6. If c < 0,m > 0 (m 6= 0,−1,−2, ..., then the sufficient condition for
zup(z) ∈ UCT (λ, α, β) is

[1+β−λ(α+β)]u′′

p(1)+[3+2β−α−2λ(α+β)]u′

p(1)+(1−α)up(1) ≤ 2(1−α). (21)

Moreover (21) is necessary and sufficient for Ψ(z), given by (17) to be in UCT (λ, α, β).

Proof. In view of Theorem 4, we need to show that

∞
∑

n=2

n[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1
≤ (1 − α).

If we let g(z) = zup(z), then we have g′(1) = u′

p(1)+up(1) and g′′(1) = u′′

p(1)+2u′

p(1).
Further we notice that

∞
∑

n=2

n[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1

= [1 + β − λ(α + β)]

∞
∑

n=2

n2 (−c/4)n−1

(m)n−1 (3/2)n−1
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−(α + β)(1 − λ)

∞
∑

n=2

n
(−c/4)n−1

(m)n−1 (3/2)n−1

= [1 + β − λ(α + β)]

{

∞
∑

n=2

n(n − 1)
(−c/4)n−1

(m)n−1 (3/2)n−1

}

+[1 + β − λ(α + β) − (α + β)(1 − λ)]

{

∞
∑

n=2

n
(−c/4)n−1

(m)n−1 (3/2)n−1

}

= [1 + β − λ(α + β)]g′′(z) + (1 − α)[g′(z) − 1],

∞
∑

n=2

n[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1

= [1 + β − λ(α + β)](u′′

p(1) + u′

p(1)) + (1 − α)(u′

p(1) + up(1) − 1)

= [1 + β − λ(α + β)]u′′

p(1) + [3 + 2β − 2λ(α + β) − α]u′

p(1) + (1 − α)[up(1) − 1].

The last expression is bounded from above by (1 − α) if and only if (21) holds.
By Theorem 4, the condition (21) is also necessary for z(2 − up(z)) = Ψ(z) ∈
UCT (λ, α, β).

Remark 2. In particular when λ = 0 and β = 0 the conditions given in (18) and
(21) yield the results obtained in [30].

By taking λ = 0 and α = 0, we state the following results for the function classes
T SP (0, 0, β) ≡ T SP (β) and UCT (0, 0, β) ≡ UCT (β) defined in [27].

Corollary 1. If c < 0,m > 0 (m 6= 0,−1,−2, ..., then
(i) the sufficient condition for zup(z) ∈ T SP (β) is

(1 + β)u′

p(1) + up(1) ≤ 2,

moreover it is necessary and sufficient for functions Ψ(z) = z(2 − up(z)) to be in
T SP (β)
(ii) the sufficient condition for zup(z) ∈ UCT (β) is

(1 + β)u′′

p(1) + (3 + 2β)u′

p(1) + up(1) ≤ 2,

moreover it is necessary and sufficient for functions Ψ(z) = z(2 − up(z)) to be in
UCT (β).

By taking λ = 0, we deduce results for the function class defined in [7].

Corollary 2. If c < 0,m > 0 (m 6= 0,−1,−2, ..., then
(i) the sufficient condition for zup(z) ∈ T SP (α, β) is

(1 + β)u′

p(1) + (1 − α)up(1) ≤ 2(1 − α),
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(ii) the sufficient condition for zup(z) ∈ UCT (α, β) is

(1 + β)u′′

p(1) + (3 + 2β − α)u′

p(1) + (1 − α)up(1) ≤ 2(1 − α).

Further the above conditions are necessary and sufficient for functions of the
form (17).

3 Inclusion Properties

For functions f ∈ A given by (1) and g ∈ A given by g(z) = z +
∑

∞

n=2 bnzn, we
define the Hadamard product (or convolution) of f and g by

(f ∗ g)(z) = z +

∞
∑

n=2

anbnzn, z ∈ U . (22)

Now, we considered the linear operator

I(c,m) : A → A

defined by

I(c,m)f(z) = zup,b,c(z) ∗ f(z) = z +

∞
∑

n=2

(−c/4)n−1

(m)n−1 (3/2)n−1
an zn (23)

where m = p + (b+2)
2 6= 0. A function f ∈ A is said to be in the class Rτ (A,B)

(τ ∈ C\{0}, −1 ≤ B < A ≤ 1) if it satisfies the inequality
∣

∣

∣

∣

f ′(z) − 1

(A − B)τ − B[f ′(z) − 1]

∣

∣

∣

∣

< 1 (z ∈ U).

The class Rτ (A,B) was introduced earlier by Dixit and Pal [11]. If we put

τ = 1, A = β and B = −β (0 < β ≤ 1),

we obtain the class of functions f ∈ A satisfying the inequality
∣

∣

∣

∣

f ′(z) − 1

f ′(z) + 1

∣

∣

∣

∣

< β (z ∈ U; 0 < β ≤ 1),

which was studied by (among others) Padmanabhan [20] and Caplinger and Causey
[8]. Making use of the following lemma, we will study the action of the Struve
function on the class UCT (λ, α, β).

Lemma 2 (see [11]). If f ∈ Rτ (A,B) is of form (1), then

|an| ≤ (A − B)
|τ |
n

, n ∈ N \ {1}. (24)

The bound given in (24) is sharp.
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Theorem 7. Let c < 0,m > 0 (m 6= 0,−1,−2, ...). If f ∈ Rτ (A,B) and if the
inequality

(A − B)|τ |
{

[1 + β − λ(α + β)]u′

p(1) + (1 − α)[up(1) − 1]
}

≤ 1 − α (25)

is satisfied, then I(c,m)(f) ∈ UCT (λ, α, β).

Proof. Let f of the form (1) belong to the class Rτ (A,B). By virtue of Theorem 4,
it suffices to show that

L(α, β, λ) =
∞
∑

n=2

n[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1
|an| ≤ 1 − α.

Since f ∈ Rτ (A,B) then by Lemma 2 we have,

|an| ≤ (A − B)
|τ |
n

.

Hence

L(α, β, λ) =

∞
∑

n=2

n[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1
|an|

≤ (A − B)|τ |
[

∞
∑

n=2

[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1

]

. (26)

Further, proceeding as in Theorem 5, we get

L(α, β, λ) ≤ (A − B)|τ |
{

[1 + β − λ(α + β)]u′

p(1) + (1 − α)[up(1) − 1]
}

.

But this last expression is bounded above by 1 − α if and only if (25) holds.

Theorem 8. Let c < 0,m > 0 (m 6= 0,−1,−2, ...) then

L(m, c, z) =

∫ z

0
(2 − up(t))dt

is in UCT (λ, α, β) if and only if

[1 + β − λ(α + β)]u′

p(1) + (1 − α)up(1) ≤ 2(1 − α). (27)

Proof. Since

L(m, c, z) = z −
∞
∑

n=2

(−c/4)n−1

(m)n−1 (3/2)n−1

zn

n
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then by Theorem 4 we need only to show that

∞
∑

n=2

n[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

n(m)n−1 (3/2)n−1
≤ 1 − α.

That is, let

P(m, c, z) =
∞

∑

n=2

[n(1 + β) − (α + β)(1 + nλ − λ)]
(−c/4)n−1

(m)n−1 (3/2)n−1

Now by proceeding as in Theorem 5, we get

P(m, c, z) = [1 + β − λ(α + β)]u′

p(1) + (1 − α)[up(1) − 1].

which is bounded from above by 1 − α if and only if (27) holds.

Remarks. If we put c = −1 and b = 1 in above theorems we obtain results ana-
logous to ones discussed in this paper. Further by taking β = 0 and specializing the
parameter λ we can state various interesting results (as proved in above theorems)
for the subclasses studied in the literature [2, 7, 23,27,28].
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