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On the absence of finite approximation relative

to model completeness in propositional provability logic
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Abstract. In the present paper we consider the expressibility of formulas in the
provability logic GL and related to it questions of the model completeness of sys-
tem of formulas. We prove the absence of a finite approximation relative to model
completeness in GL.
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1 Introduction

Artificial Intelligence (AI) systems simulating human behavior are often called
intelligent agents. These intelligent agents exhibit somehow human-like intelligence.
Intelligent agents typically represent human cognitive states using underlying beliefs
and knowledge modeled in a knowledge representation language, specifically in the
context of decision making [1]. In the present paper we investigate some functional
properties of the underlying knowledge representation language of intelligent agents
which are based on the provability logic GL [2].

The notion of model completeness of systems of formulas was proposed in [6,7].
In the present paper we prove the propositional provability logic of Gödel-Löb (GL)
is not finitely approximable relative to model completeness.

2 Definitions and notations

Provability logic. We consider the propositional provability logic GL whose
formulas are based on propositional variables p, q, r, . . . and logical connectives
&,∨,⊃,¬,∆, its axioms are the classical ones together with the following
∆-formulas:

∆(p ⊃ q) ⊃ (∆p ⊃ ∆q), ∆(∆p ⊃ p) ⊃ ∆p, ∆p ⊃ ∆∆p,

and the rules of inference are the rules of: 1) substitution; 2) the modus ponens, and
3) the necessity, which allows to get formula ∆A if we already get formula A. The
normal extensions of the propositional provability logic GL are defined as usual [2].
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Diagonalizable algebras. A diagonalizable algebra [4] is a universal algebra
of the form A =<M ; &,∨,⊃,¬,∆>, where <M ; &,∨,⊃,¬> is a boolean algebra,
and the unary operation ∆ satisfies the relations

∆(∆x ⊃ x) = ∆x, ∆(x&y) = (∆x&∆y), ∆1A = 1A,

where 1A is the unit of A, which is denoted also by 1 in case the confusion is avoided.
Diagonalizable algebras are known to be algebraic models for provability logic

and its extensions [5]. Obviously we can interpret any formula of the calculus of GL

on any diagonalizable algebra A. As usual a formula F is said to be valid on A if
for any evaluation of variables of F with elements of A the value of the formula on
A is 1A. The set of all valid formulas on A, denoted by LA and referred to as the
logic of the algebra A, forms an extension LA of the provability logic GL [5].

An extension L of GL is called tabular if there is a finite diagonalizable algebra
A such that L = LA.

Expressibility and model completeness. The formula F (p1, . . . , pn) is a
model for the Boolean function f(x1, . . . , xn) if for any ordered set (α1, . . . , αn),
αi ∈ {0, 1}, i = 1, . . . , n, we have F (α1, . . . , αn) = f(α1, . . . , αn), where logical
connectors from F are interpreted in a natural way on the two-valued Boolean
algebra [6, 7].

They say the formula F is expressible in the logic L via a system of formulas Σ
if F can be obtained from variables and Σ applying finitely many times 2 kinds of
rules: a) the rule of weak substitution, b) the rule of passing to equivalent formula
in L [3].

The system of formulas Σ is called model complete in the logic L if at least a
model for every Boolean function is expressible via Σ in the logic L. System Σ is
model pre-complete in L if Σ is not model complete in L, but for any formula F

which is not expressible in L via Σ the system Σ ∪ {F} is already model complete
in L [8].

The logic L is finitely approximable with respect to model completeness if for any
system of formulas Σ which is not model complete in L there is a tabular extension
of L in which Σ is also model incomplete.

3 Preliminary results

First let mention an obvious fact:

Proposition. If a system of formulas Σ is complete with respect to expressibility of

formulas in the logic GL then it is also model complete in GL.

Let us consider the following system of formulas:

{p&¬q,∆p}. (1)

Lemma 1. The system of formulas (1) is model complete in any tabular extension

of the propositional provability logic GL.
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Proof. Note that for any finite diagonalizable algebra A there exists a positive integer
k such that the following equivalence is valid in the logic LA

∆k(p&¬p) ∼ (p ⊃ p),

which shows the tautology p ⊃ p is expressible in the logic LA via system of formulas
(1). It remains to observe the system

{(p ⊃ p)} ∪ {∆p, p&¬q}

is complete in the logic LA, so by Proposition it is also model complete in LA.

Let M
∗ the diagonalizable algebra of sequences of the form α = (µ1, µ2, . . .),

where µi ∈ {0, 1} (i = 1, 2, . . .) and the operations &,∨,⊃,¬ made term by term
as Boolean functions on the set of {0, 1}, and ∆α is a sequence (ν1, ν2, . . .), where
νi = (µ1& · · ·&µi) (i = 1, 2, . . .). The logic LM

∗ coincides with the extension of
provability logic generated by the formula

∆(2p ⊃ q) ∨ ∆(2q ⊃ p),

where 2p means p&∆p.

Lemma 2. Let L be any intermediate logic between GL and LM
∗. The system of

formulas (1) is not model complete in the propositional provability logic L.

Proof. Realy, the system of formulas (1) is not model complete in LM
∗ since for-

mulas of the system (1) conserves the relation x 6= 1 on the algebra M
∗, and the

formula (p ⊃ p) does not.

4 Main result

Now we are able to formulate the main result of the present work.

Theorem. Let L be any intermediate logic between GL and LM
∗. The propositional

provability logic L is not finitely approximable with respect to model completeness.

Proof. The proof results from the above Lemmas 1 and 2.

Taking into account our previous result [9] together with these new findings
we can conclude that traditional algorithm for determining model completeness of
systems of formulas in GL is impossible to find out.
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