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A Parametric Scheme for Online Uniform-Machine

Scheduling to Minimize the Makespan
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Abstract. In this paper, we consider the Online Uniform Machine Scheduling prob-
lem in the case when speed si = 1 for i = n − k + 1, . . . , n and Si = s, 1 ≤ s ≤ 2
for i = 1, . . . , k, where k is a constant, and we propose a parametric scheme with an
asymptotic worst-case behavior (when m tends to infinity).
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1 Introduction

In this paper, we study the classic problem of scheduling jobs online on m uni-
form machines (M1,M2, . . . Mm) with speeds (s1, s2, . . . , sm) without preemption:
jobs arrive one at a time, according to a linear ordering (a list) σ, with known pro-
cessing times and must immediately be scheduled on one of the machines, without
knowledge of what jobs will come afterwards, or how many jobs are still to come;
all machines can perform the same tasks, according to distinct speeds. However,
the way jobs are ordered inside the list σ has no correlation with the starting times
which are assigned to them in the schedule: some future (in the list σ) job may come
to start earlier than the current one, because what we do here is only distributing
the jobs among the machines.

We denote by Jj the j th job in the list s, and say that job Jj arrives at step j
according to s. We denote by pj the processing time of job Jj . If job pj is assigned
to machine Mi, then pj/si time units are required to process this job.

The quality of an online algorithm A is measured by its competitive ratio, defined
as the smallest number c such that, for every list of jobs σ which describes jobs
together with their arrival order, we have F (A,σ) ≤ c · Opt(σ), where F (A,σ)
denotes the makespan of the schedule which derives from application of algorithm A
to the list σ, and Opt(σ) denotes the makespan of some optimal schedule of the jobs
of σ, computed while considering σ as a set of jobs, and not as an ordering. We may
also say that Opt(σ) is the optimal value of the offline scheduling problem induced
by the jobs contained in the list σ. The algorithm A is said to be c-competitive.

The online Multi-machine Scheduling problem for identical machines (they are
all provided with the same speed) was first investigated by Graham, who showed
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that the List algorithm (LS) which always puts the next job on the least loaded
machine is exactly (2 − 1/m)-competitive [2].

In the case of uniform machines Cho and Sahni [1] proved that the LS algorithm
has a worst-case bound of (3m−1)/(m+1) for m ≥ 3. When si = 1, i = 1, . . . ,m−1
and sm > 1, Cho and Sahni also showed that the LS algorithm has a worst-case
bound c of 1 + (m − 1) · (min (2, s)/(m + s − 1)) ≤ 3 − 4/(m + 1), and the bound
3 − 4/(m + 1) is achieved when s = 2. Li and Shi [3] proved that the LS algorithm
is the best possible one for m ≤ 3, and proposed an algorithm that is significantly
better than the LS algorithm when si = 1, i = 1, . . . ,m − 1 and sm = 2,m ≥ 4.
The algorithm has a worst-case bound of 2.8795 for a big m. For the same problem
Cheng, Ng and Kotov [4] proposed a 2.45-competitive algorithm for any m ≥ 4 and
any sm, 1 ≤ sm = s ≤ 2. Also, some results in the case of fixed number of machines
can be found in [5–7]. It should be mentioned that the worst-case behavior of all
previous algorithms occurs when m tends to infinity.

In this paper we use ideas of reserved classes and a dynamic lower bound of the
optimal solution from [8, 9].

2 A Parametric Scheme for the OnLine Uniform Machine

Scheduling Problem

Before presenting the main results, we introduce some notations.

1. m denotes the total number of machines;

2. k denotes the number of machines with a speed 1 < s ≤ 2, k is a constant.

We are going to describe here a strategy (an algorithm) which will allow us to
assign for any index j the job Jj with processing time pj which arrives at step j (j =
1, . . . , Length(s)) according to the list ordering σ to some machine Mi, i = 1, . . . ,m.
We shall do in such a way that Jj will then be scheduled immediately after the end
of the latest job which was assigned to Mi. As a matter of fact, since no precedence
relation is imposed to the jobs, jobs assigned to a same machine will be consecutively
run, without any idle time. So, any time we have to deal with a current job Jj of
the input list σ, we denote by:

1. Li,j the current load of machine i before assigning job Jj ;

2. L∗

i,j the current load of machine i after assigning job Jj ;

3. Vj the theoretical optimal makespan for the offline scheduling problem induced
by the job set J(j) = {J1, . . . , Jj} made of the jobs which arrived no later than
step j.

It is easy to check that, if we denote by q1, .., , qj the processing time of the jobs
of J(j), sorted by decreasing order, which means that we have: q1 ≥ q2 ≥ · · · ≥ qj,
then we may state:
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Lemma 1. The following inequalities hold:

1. Vj ≥ (q1 + q2 + · · · + qj)/(m − k + s · k);

2. Vj ≥ q1/s;

3. Vj ≥ min{(qk + qk+1)/s, qk+1}.

Proof. Left to the reader. It is important to notice that the last inequality Vj ≥
min{(qk + qk+1)/s, qk+1} derives from the hypothesis 1 ≤ s ≤ 2. As a matter of fact,
it will be the only place, inside our reasoning process, where the hypothesis plays a
role.

So, for any step value j, we set:

LBj = max{(q1 + q2 + · · ·+ qj)/(m− k + s · k), q1/s,min{(qk + qk+1)/s, qk+1}}. (1)

Clearly, LBj is a lower bound for the optimal offline makespan related to step j and
we have: LBj−1 ≤ LBj (LBj is monotonic).

2.1 The Assignment Process Assign

We suppose now that some positive number α is given together with three integral
numbers R,m1 and m2 in such a way that:

(1 + α) · s · k + (1 + α/2) · m1 ≥ s · k + m1 + m2, (2)

k + m1 + m2 = m, (3)

m2 = R · k, (4)

R ≥ log1+α/2((1 + α/2)/(2 + α − s)). (5)

It is easy to see that, if we fix k, s and α, and if we require R and m1 to take the
smallest possible values, then R,m,m1 and m2 are completely determined by k, s
and α.

This assumption about the way the machine number m may be decomposed,
allows us to split the machine set machines into three classes:

1. machines with speed s are called Fast ;

2. we pick up m1 machines among the m − k machines with speed 1 and call
them Normal ;

3. the m2 remaining machines with speed 1 are called Reserved and the m2 = R·k
Reserved machines are split into R groups G0, . . . , GR−1, each group containing
exactly k machines.

By the same way, we say that job Jj , which arrives at step j is:
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1. Small if its processing time pj is at most equal to (1 + α/2) · LBj ;

2. Large else.

Finally, we say that this job Jj fits machine Mi, i = 1 . . . m, if Li,j + pj/si ≤
(2 + α) · LBj .

We easily see that:

Lemma 2. If Large job Jj does not fit machine i from class Fast then Li,j >
(1 + α) · LBj .

Proof. It comes in a straightforward way from the fact that pj/si = pj/s ≤ LBj.

Doing this allows us to describe our online algorithm Assign, which will work on
any instance of the Online Uniform Machine Scheduling Problem such that m,k, s
may be written according to the relations (2)-(5). The main idea here is that at
any step j, we are going to be able to assign job Jj to some machine i(j) in such a
way that we keep the following inequality: maxi L

∗

i,j ≤ (2 + α) · LBj . While doing
this will happen to be easy in the case when j is a Small job, the trick will be to
show that, if j is a Large job, we may, by conveniently switching machines inside the
Normal and Reserved classes, do in such a way that if j does not fit any of machine
of classes Fast and Normal, then it fits at least some machine in current group G0,
whose machines are, at any time during the process, provided with current labels
in {1, ..., k}. It is important to understand here that the status Normal or Reserved
of a given machine with speed 1 is not going to be fixed, and will be evolving all
throughout the process.

Algorithm Assign

Initialization: Set n = 1; (*n denotes the index of the current target Reserved
machine in group G0; machines in every group GR are indexed from 0 to k − 1*);
Set j = 0; LBj = 0;

Read(σ);

While σ is non empty do

j := j + 1;

Read the current job Jj and perform Step j as follows:

Update LBj according to formula (1).

If job Jj fits some machine i in classes Fast and Normal

then (I1)

assign j to this machine i

Else

If n < k then (I2)

Assign job Jj on the machine (with label) n in G0;

Let i0 be the machine from class Normal with minimal

current load. Switch machines n and i0 between groups Normal

and G0 in such a way that machine i0 comes in G0 with label n,
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and machine n is put into class Normal. Set n = n + 1;

If n = k then (I3)

Update the labeling of groups G0, . . . , GR−1 in such a way

that group r, 1 ≤ r ≤ R − 1, becomes group r − 1,

and group 0 becomes group R − 1. Set n = 1.

2.2 Worst Case Performance of Assign

The Assign algorithm works on an instance (M1,M2, . . . ,Mm; s1, s2, . . . , sm) of
the Online Uniform Machine Scheduling Problem which is such that:

1. si = s ∈ [1, 2] for i = 1, ..., k; si = 1 for i = k + 1, ...,m;

2. m may be decomposed as a sum m = k + m1 + m2 = k + m1 + k · R with
m1,m2, R as in (2)-(5).

We are now going to show that, if k, α is fixed and if m is large enough, then the
competitive ratio of Assign is no more than (2+α).More specifically, we are going to
prove that, if a job list s is some input for Assign, then the makespan F (Assign, σ)
of the schedule which is computed by Assign does not exceed (2+a) ·LB(σ), where
LB(σ) denotes the lower bound for Opt(σ) which may be derived from the list s
according to Lemma 1.

Lemma 3. At every step j during the execution of the Assign algorithm there exists
either a machine i in class Fast such that Li,j ≤ (1 + α) · LBj or a machine i from
class Normal such that Li,j ≤ (1 + α/2) · LBj .

Proof. Let us suppose the converse, which means that, at some step j, we have,
for any Fast machine i: Li,j > (1 + α) · LBj, and for any Normal machine i :
Li,j > (1 + α/2) · LBj. It means that p1 + p2 + · · · + pj = s ·

∑
i∈Fast Li,j +∑

i∈Normal ∪Reserved Li,j > k · s · (1 + α) · LBj + m1 · (1 + α/2) · LBj. But Lemma 1
tells us that p1 + p2 + · · · + pjs ≤ s · k + m1 + m2) · LBj , while relation 2 tells us
that k · s · (1 + α) + m1 · (1 + α/2) ≥ (s · k + m1 + m2) . We deduce a contradiction
and conclude.

We deduce:

Lemma 4. If current job Jj is a Small job then there is a machine from class Fast
or Normal such that job Jj fits with it.

Proof. Let us apply above Lemma 2 and consider a machine i as in the statement
of Lemma 2. If i is Fast, then Li,j ≤ (1 + α) · LBj . We deduce from the fact that
pj/si = pj/s ≤ LBj that Li,j + pj/si ≤ (2 + α) · LBj and the result. If i is Normal,
then Li,j ≤ (1 + α/2) · LBj, and Li,j + pj/si = Li,j + pj ≤ (2 + α) · LBj. We
conclude.
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Given some input job list σ: let us denote by j(1), ..., j(Q) the steps when process
Assign performs instructions (I2) or (I3) while running σ. Clearly, those instructions
are performed according to some kind of cyclic scheme, and every index q = 1, ..., Q
may be written as q = h + t · k + T · k · R, where h ∈ {0, ..., k − 1} and t ∈
{0, ..., R − 1}, T ≥ 0, with the following meaning: when performing (I2) or (I3),
Assign deals with the job group which was originally group Gt, and, inside this
group, deals with machine with label h.

For every q = 1, ..., Q, we denote by i(q) the related target machine, which is, at
this time, a Reserved machine located in current group G0, with index h.

We may notice that:
– instruction (I3) occurs every time t is incremented: t → t + 1;
– original group G0 takes again label 0 every time T is incremented: T → T + 1.

We claim:

Lemma 5. For q = 1, ..., Q, we have Li(q),j(q) ≤ (2 + α − s) · LBj(q). (*)

Proof. Let us consider q = h + t · k + T · k · R, and try to prove above inequality
(*). Obviously, (*) is true in case T = 0, since all machines from class Reserved are
empty. So we may suppose T ≥ 1. After assigning a Large current job Jj(q−k·R) to
the machine j(q−k ·R) = h in current group G0, we switch machine j(q−k ·R) with
some Normal machine i0 according to instruction (I2). Since we could not assign
job Jj(q−k·R) neither to a Fast nor to a Normal machine, Lemma 3 tells us that
there is a machine i in class Normal such that: Li,j(q−k·R) ≤ (1 + α/2) · LBj(q−k·R).
So, this inequality also holds for the machine i0 which becomes machine h in group
G0. We deduce that the load, after instruction (I2) has been performed, of machine
h in group G0 is bounded by (1 + α/2) · LBj(q−k·R). This machine is going to keep
with the same load until we arrive to step q = h + t · k + T · k · R and at this time
this machine corresponds to machine i(q). So we may state:

Li(q),j(q) ≤ (1 + α/2) · LBj(q−k·R). (6)

On the one hand, we see that, for any value q ≥ k + 1, we have been provided
with Large (at the time when they arrived) k + 1 jobs Jj(q), ..., Jj(q−k), all with
processing times respectively larger than (1 + α/2) · LBj(q), ..., (1 + α/2) · LBj(q−k),
which means, because of the monotonicity of LBj, all with processing times larger
than (1+α/2)·LBj(q−k). It comes from the relation LBj ≥ min{(qk+qk+1)/s, qk+1}}
of Lemma 1, that (1 + α/2) · LBj(q−k) < LBj(q). We may propagate this relation
and get:

(1 + α/2)R · LBj(q−R·k) ≤ LBj(q). (7)

Combining (6) and (7) yields: Li(q),j(q) ≤ (1 + α/2)1−R · LBj(q−R·k). We deduce

(*) if (1 + α/2)1−R ≤ 2 + α− s , that means if R ≥ log1+α/2((1 + α/2)/(2 + α− s)).
We conclude since this last inequality is part of our hypothesis (equation (5)).

Theorem 1. Let us suppose that σ is given and that our Online Uniform Machine
Scheduling instance is such that m,k, s may be written according to the relations
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(2)-(5). Then, for any input job list s, the Assign algorithm works in such a way
that: F (Assign, σ) ≤ (2 + α) · Opt(σ). That means that its competitive ratio does
not exceed (2 + σ) in the case of such instance.

Proof. Lemma 4 tells us that, if, at any step j, current job Jj is Small, then it is
possible to assign it to some machine in Normal ∪ Fast in such a way that the
resulting makespan does not exceed (2 + α) · LBj. By the same way, if Jj is Large
and fits with some Fast machine, then it is possible, according to the mere definition
of fitness, to assign it to this machine in such a way that the resulting makespan
does not exceed (2+α)·LBj . Finally, Lemma 2 and 5 tell us that if if Jj is Large and
cannot be assigned to some Fast machine, then Reserved machine i with label n in
group G0 is such that Li,j ≤ (2+α−s) ·LBj . Since Algorithm Assign assigns job Jj

to machine i, we see that the resulting load L∗

i,j does not exceed (2+α−s) ·LBj +pj .
Since Lemma 1 tells us that pj ≤ s ·LBj , we deduce that the makespan which results
from assigning job Jj to machine i does not exceed (2 + α) · LBj . In any case, we
see that we are able to bound, at the end of every iteration of Assign, the current
makespan by (2 + α) · LBj. Since LBj is a lower bound of the optimal makespan
related to the offline Uniform Machine Scheduling problem induced by the job set
J(j) = {J1, ..., Jj}, we conclude.

Theorem 2. Given the speed s value, 1 < s ≤ 2, and the number k of machines
with speed s. Then, for any value α > 0, there exists m0 such that if an Online
Uniform Machine Scheduling instance, defined with k machines with speed s and
m − k machines with speed 1, is such that m ≥ m0, then the Assign algorithm may
be applied to this instance in such a way that, for any input job list σ: F (Assign, σ) ≤
(2 + α) · Opt(σ).

Proof. It comes in a straightforward way from the fact that, if m is large enough,
then it is possible to compute R,m1,m2 in such a way that relations (2)-(5) hold.

Remark. It should be mentioned that it is possible to reverse the way we have
been using inequalities (2)-(5 ) in order to get a lower bound for the worst-case
performance of the Assign algorithm. First, we may notice that we may generate
input job lists σ, such that (*) inequality is going to hold as an equality, which will
means that the worst case performance of Assign is going to converge to (2 + α) ·
LB(σ) when the size of s is going to increase. On the other side, we may, while
starting from m2, k and s, derive α,R and m1 according to (2.5), and with minimal
values. Indeed, when m2 (and R) is fixed, the smallest value of α which ensures
(*), is the value α1 such that (1 + α1/2)

1−R ≤ (2 + α1 − s). We may consider an
example, related to s = 2, k = 1,m2 = 7. In such a case, we derive from (2)-(5):
R = m2 = 7,m1 = 31 and m = 39, α ≈ 0.41. Therefore for any m ≥ 39 the
proposed algorithm provides W.C.P. of at least 2.41 · LB(σ).
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