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Abstract. For certain classes S of locally compact abelian groups, we determine
the groups X ∈ S with the property that the ring E(X) of continuous endomorphisms
of X is locally compact in the compact-open topology.
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1 Introduction

Let L be the class of locally compact abelian groups. For X ∈ L, let E(X)
denote the ring of continuous endomorphisms of X, taken with the compact-open
topology.

In the present paper, we continue our work begun in [17] concerning the problem
of characterizing the groups X ∈ L for which E(X) is locally compact. Our main
results are as follows. We establish some necessary conditions and, respectively,
some sufficient conditions on X in order for E(X) be locally compact. For groups
in L containing a lattice and for densely divisible torsion-free groups in L, we give
a complete solution to the considered problem. We also determine the topological
torsion groups X ∈ L with the property that E(A/B) is locally compact for all
closed subgroups A,B of X such that A ⊃ B.

2 Notation

We will follow the notation used in [17]. In addition, for X,Y ∈ L and
f ∈ H(X,Y ), we denote by f∗ the transpose of f, i.e. the homomorphism
f∗ ∈ H(Y ∗,X∗) defined by the rule f∗(γ) = γ ◦ f for all γ ∈ Y ∗. If C is a closed
subgroup of X and n ∈ N0, we set 1

n
C = {x ∈ X | nx ∈ C}. We will also make use of

the discrete group Z of integers, and of the groups of reals R and of p-adic numbers
Qp, where p ∈ P, all taken with their usual topologies. Finally, if (Xi)i∈I is a family
of topological groups (rings) such that, for each i ∈ I, Xi admits an open subgroup
(subring) Ui, then

∏
i∈I(Xi;Ui) stands for the local direct product of (Xi)i∈I with

respect to (Ui)i∈I . Recall that
∏

i∈I(Xi;Ui) is the subgroup (subring) of
∏

i∈I Xi

consisting of all families (xi)i∈I such that xi ∈ Ui for all but finitely many i ∈ I,
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topologized by declaring all neighborhoods of zero in the topological group (ring)∏
i∈I Ui to be a fundamental system of neighborhoods of zero in

∏
i∈I(Xi;Ui).

3 Local compactness of some homomorphism groups

In this preparatory section, we determine the groups X ∈ L with the property
that the topological groups H(X, R), H(R,X), H(X, Q), H(Q,X), H(X, Q∗), and
H(Q∗,X) are locally compact.

We first recall the following definition, due to V. Charin [4].

Definition 1. A topological group X is said to be a group of finite (special) rank
if there exists a natural number r such that every finite subset F of X topo-
logically generates a subgroup with no more than r topological generators, i.e.
〈F 〉 = 〈x1, . . . , xk〉 for some x1, . . . , xk ∈ X and k ≤ r. The smallest r with this
property is called the special rank of X. In case no such r exists, X is said to have
infinite special rank.

As is well known, a discrete torsion-free group X ∈ L has finite special rank r
if and only if its torsion-free rank is equal to r. It is also known that if X ∈ L is
a topologically p-primary group for some p ∈ P, then X has finite special rank r if
and only if

X ∼= G1 × · · · × Gr,

where every Gi, 1 ≤ i ≤ r, is topologically isomorphic with one of the groups Qp,
Zp, Z(p∞), or Z(pn) for some n ∈ N0 [5, Theorem 5].

We now begin the study of local compactness of the mentioned homomorphism
groups. For H(X, R) and H(X, Q), we have

Theorem 1. Let X be a group in L containing a compact open subgroup. The

following conditions are equivalent:

(i) H(X, R) is locally compact.

(ii) H(X, Q) is locally compact.

(iii) X/k(X) has finite rank.

Proof. The fact that (i) and (iii) are equivalent follows from [15, Lemma 3.2]. Let us
establish the equivalence of (ii) and (iii). Assume (ii), and let Ω be a compact neigh-
borhood of zero in H(X, Q). By the definition of the compact-open topology, there
is a compact subset K of X such that ΩX,Q(K, {0}) ⊂ Ω. Let π : X → X/k(X)
be the canonical projection. Since X has a compact open subgroup, X/k(X) is
discrete, and hence π(K) is finite. Let G = 〈π(K)〉∗. It is clear that G has finite
rank [12, p. 41]. We shall show that G = X/k(X). Assume the contrary, and pick an
arbitrary non-zero b ∈

(
X/k(X)

)
/G. Since G is pure in X/k(X), the quotient group(

X/k(X)
)
/G is torsion-free, so o(b) = ∞. Letting ϕ : X/k(X) →

(
X/k(X)

)
/G de-

note the canonical projection, write b = ϕ(b′) for some b′ ∈ X/k(X). Now, given any
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r ∈ Q, let ξr :
(
X/k(X)

)
/G → Q be the extension of the group homomorphism from

〈b〉 to Q which carries b to r [8, Theorem 21.1]. Then ξr ◦ ϕ ◦ π ∈ ΩX,Q(K, {0}),
so r ∈ Ωb′. Since r ∈ Q was chosen arbitrarily, we get Q ⊂ Ωb′, which is a contra-
diction because Ωb′ is finite and Q is infinite. This proves that G = X/k(X), so (i)
implies (iii).

To see the converse, assume (iii), and pick any elements a1, . . . , am ∈ X such
that a1 + k(X), . . . , am + k(X) form a basis in X/k(X). We claim that

ΩX,Q

(
{a1, . . . , am}, {0}

)
= {0},

which means that H(X, Q) is discrete. To see this, fix any a ∈ X \k(X). Then there
exist n ∈ N0 and l1, . . . , lm ∈ Z such that

n(a + k(X)) =

m∑

i=1

li(ai + k(X)),

and hence

na−

m∑

i=1

liai ∈ k(X).

Pick any f ∈ ΩX,Q

(
{a1, . . . , am}, {0}

)
. Since k(Q) = {0}, we have k(X) ⊂ ker(f).

It follows that

nf(a) =

m∑

i=1

lif(ai) = 0,

so f(a) = 0. Since a ∈ X \ k(X) was chosen arbitrarily, it follows that f = 0, and
hence (iii) implies (ii).

As a direct consequence, we derive the following:

Corollary 1. Let X be a group in L containing a compact open subgroup. The

following conditions are equivalent:

(i) H(R,X) is locally compact.

(ii) H(Q∗,X) is locally compact.

(iii) c(X) has finite dimension.

Proof. Since H(R,X) ∼= H(X∗, R) and H(Q∗,X) ∼= H(X∗, Q) [11, Ch. IV, Theorem
4.2, Corollary 2], the assertion follows from Theorem 1 and duality.

For H(Q,X), we have:

Theorem 2. For a group X ∈ L, the following statements are equivalent:

(i) H(Q,X) is locally compact.
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(ii) There is a symmetric open neighborhood V of zero in X such that ( 1
n
V )∩d(X)

is relatively compact for all n ∈ N0.

(iii) There is an open subgroup F of d(X) such that ( 1
n
F ) ∩ d(X) is compactly

generated for all n ∈ N0.

Proof. Assume (i), and let Ω be a compact neighborhood of zero in H(Q,X). Then
there is a finite subset K = {a1, . . . , ak} of Q and an open neighborhood U of zero
in X such that ΩQ,X(K,U) ⊂ Ω. As is well known, the finitely generated subgroups
of Q are cyclic [8, p. 17], so 〈K〉 = 〈a〉 for some a ∈ Q. Write ai = mia with mi ∈ Z

for all i = 1, . . . , k. Further, set m = max1≤i≤k |mi|, and choose a symmetric open
neighborhood V of zero in X such that

V + · · · + V︸ ︷︷ ︸
m

⊂ U.

We claim that ( 1
n
V ) ∩ d(X) is relatively compact for all n ∈ N0. Indeed, given any

f ∈ ΩQ,X({a}, V ), we have

f(ai) = mif(a) ∈ V + · · · + V︸ ︷︷ ︸
m

⊂ U

for all i = 1, . . . , k. Consequently,

ΩQ,X({a}, V ) ⊂ ΩQ,X(K,U) ⊂ Ω,

proving that ΩQ,X({a}, V ) has compact closure in H(Q,X). It follows from the
Ascoli’s theorem that for each q ∈ Q, the orbit ΩQ,X({a}, V )q is relatively com-
pact in X. Now, fix any n ∈ N0 and any x ∈ ( 1

n
V ) ∩ d(X). Then nx ∈ V. Define

h ∈ H(〈 a
n
〉, d(X)) by setting h( a

n
) = x. Since d(X) is divisible, h extends to a ho-

momorphism ĥ ∈ H(Q, d(X)) [8, Theorem 21.1]. Let j be the canonical injection of
d(X) into X. We have ĥ(a) = nĥ( 1

n
a) = nx ∈ V, so j ◦ ĥ ∈ ΩQ,X({a}, V ), and hence

x ∈ ΩQ,X({a}, V )
a

n
.

Since x ∈
(

1
n
V

)
∩ d(X) was chosen arbitrarily, we get

( 1

n
V

)
∩ d(X) ⊂ ΩQ,X({a}, V )

a

n
,

proving that
(

1
n
V

)
∩ d(X) is relatively compact in X. So (i) implies (ii).

Now assume (ii), and fix an arbitrary n ∈ N0. It follows from [7, Exercise 1.3.D(a)]
that ( 1

n
V

)
∩ d(X) =

( 1

n
V

)
∩ d(X),

so
(

1
n
V

)
∩ d(X) is compact, and hence the subgroup

〈(
1
n
V

)
∩ d(X)

〉
is compactly

generated in d(X) [9, (5.13)]. Since
(

1
n
V

)
∩d(X) is open in d(X), it also follows that
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〈(
1
n
V

)
∩ d(X)

〉
is closed in X [9, (5.5)]. In a similar manner, 〈V ∩ d(X)〉 is open

in d(X), so closed in X, and hence 1
n
〈V ∩d(X)〉 is closed in X because multiplication

by n is continuous. We assert that

〈( 1

n
V

)
∩ d(X)

〉
=

1

n

〈
V ∩ d(X)

〉
∩ d(X). (1)

Indeed, if x ∈
(

1
n
V

)
∩ d(X), then nx ∈ V ∩ d(X), so x ∈

〈(
1
n
V

)
∩ d(X)

〉
∩ d(X),

proving that 〈( 1

n
V

)
∩ d(X)

〉
⊂

1

n

〈
V ∩ d(X)

〉
∩ d(X).

To see the inverse inclusion, pick an arbitrary x ∈ 1
n

〈
V ∩ d(X)

〉
∩ d(X). Since

〈
V ∩ d(X)

〉
=

〈
V ∩ d(X)

〉

=
〈
V ∩ d(X)

〉
=

〈
V ∩ d(X)

〉
,

we conclude that there exist m ∈ N0, l1, . . . , lm ∈ Z, and a1, . . . , am ∈ V ∩d(X) such
that

nx −
m∑

i=1

liai ∈ V.

Further, since d(X) is divisible, we can write ai = nbi with bi ∈ d(X) for all
i = 1, . . . ,m. It follows that

n(x −

m∑

i=1

libi) ∈ V,

so

x −

m∑

i=1

libi ∈
1

n
V,

and hence

x −

m∑

i=1

libi ∈
( 1

n
V

)
∩ d(X).

As b1, . . . , bm ∈
(

1
n
V

)
∩ d(X), this proves that x ∈

〈(
1
n
V

)
∩ d(X)

〉
, so

1

n

〈
V ∩ d(X)

〉
∩ d(X) ⊂

〈( 1

n
V

)
∩ d(X)

〉
,

proving (1). Finally, taking F =
〈
V ∩ d(X)

〉
, we conclude that (ii) implies (iii).

Next assume (iii), and let U be a symmetric open neighborhood of zero in X such
that U is compact and F = 〈U ∩d(X)〉 [9, (5.13)]. We shall show that ΩQ,X({1}, U)
is relatively compact in H(Q,X). Since Q is discrete, it is clear that ΩQ,X({1}, U)
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is equicontinuous. Fix any l, n ∈ N0. To show that ΩQ,X({1}, U) l
n

is relatively
compact in X, observe first that

ΩQ,X({1}, U)
l

n
⊂ l

(( 1

n
U

)
∩ d(X)

)
. (2)

Indeed, for any f ∈ ΩQ,X({1}, U), we have nf( 1
n
) = f(1) ∈ U, so f( 1

n
) ∈

(
1
n
U

)
∩d(X)

because Q is divisible, and hence

f(
l

n
) = lf(

1

n
) ∈ l

(( 1

n
U

)
∩ d(X)

)
.

Since
( 1

n
U

)
∩ d(X) =

1

n

(
U ∩ d(X)

)
∩ d(X)

it is clear that the inclusion (2) will assure the compactness of ΩQ,X({1}, U) l
n

if we show that 1
n

(
U ∩ d(X)

)
has compact closure. Now, since G =

(
1
n
F

)
∩ d(X)

is compactly generated, we can write G = A⊕B⊕C, where A ∼= Rd and B ∼= Zs for
some d, s ∈ N, and C is a compact subgroup of G [9, (9.8)]. Let πA, πB , πC ∈ E(G) be
the canonical projections of G onto A,B, and C, respectively. Since

(
1
n
V

)
∩d(X) ⊂ G

and 1G = πA + πB + πC , where 1G is the identity mapping on G, we have

1

n

(
U ∩ d(X)

)
⊂ πA

( 1

n

(
U ∩ d(X)

))
+ πB

( 1

n

(
U ∩ d(X)

))
+ πC

( 1

n

(
U ∩ d(X)

))
.

But

πA(
1

n

(
U ∩ d(X)

)
) ⊂

1

n
πA(U ∩ d(X)) ∩ A,

πB(
1

n

(
U ∩ d(X)

)
) ⊂

1

n
πB(U ∩ d(X)) ∩ B

and

πC(
1

n

(
U ∩ d(X)

)
) ⊂

1

n
πC(U ∩ d(X)) ∩ C,

so

1

n

(
U ∩ d(X)

)
⊂

1

n
πA(U ∩ d(X)) ∩ A +

1

n
πB(U ∩ d(X)) ∩ B +

1

n
πC(U ∩ d(X)) ∩ C,

proving that 1
n

(
U ∩ d(X)

)
has compact closure in X. It follows by the Ascoli’s

theorem that ΩQ,X({1}, U) is relatively compact in H(Q,X), and hence (iii) implies
(i).

In order to dualize the preceding theorem, we will need the following lemma.

Lemma 1. Let X ∈ L. For every closed subgroup C of X and every n ∈ N0,
A(X∗, nC) = 1

n
A(X∗, C).
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Proof. We have

A(X∗, nC) = {γ ∈ X∗ | γ(nx) = 0 for all x ∈ C}

= {γ ∈ X∗ | nγ(x) = 0 for all x ∈ C}

= {γ ∈ X∗ | nγ ∈ A(X,C)}

=
1

n
A(X∗, C).

Corollary 2. For a group X ∈ L, the following statements are equivalent:

(i) H(X, Q∗) is locally compact.

(ii) There is a closed subgroup C of X such that m(X) ⊂ C, C/m(X) is compact,

and X/nC + m(X) has no small subgroups for all n ∈ N0.

Proof. Assume (i). Since H(Q,X∗) ∼= H(X, Q∗) [11, Ch. IV, Theorem 4.2, Corol-
lary 2], it follows from Theorem 2 that there is an open subgroup F of d(X∗) such
that

(
1
n
F

)
∩d(X∗) is compactly generated for all n ∈ N0. Set C = A(X,F ). Clearly,

m(X∗) ⊂ C and C/m(X∗) ∼=
(
d(X∗)/F

)∗

[6, Exercise 3.8.7], so C/m(X∗) is com-

pact [9, (5.21) and (23,17)]. By Lemma 1, we have

A(X∗, nC) =
1

n
A(X∗, C) =

1

n
F,

so nC = A(X, 1
n
F ), and hence

A
(
X,

( 1

n
F

)
∩ d(X∗)

)
= A(X,

1

n
F ) + A(X, d(X∗))

= nC + m(X)

for all n ∈ N0. It follows from [9, (23.25)] that

(
X/nC + m(X)

)∗
∼=

( 1

n
F

)
∩ d(X∗),

so X/nC + m(X) has no small subgroups [1, Proposition 7.9] for all n ∈ N0. Conse-
quently, (i) implies (ii).

Now assume (ii), and set F = A(X∗, C). Since m(X) ⊂ C, we clearly have
F ⊂ d(X∗). Further, since d(X∗)/F ∼=

(
C/m(X)

)∗
, it is also clear that F is open

in d(X∗). Finally, given any n ∈ N0. we have

(( 1

n
F

)
∩ d(X∗)

)∗
∼= X/nC + m(X),

so
(

1
n
F

)
∩d(X∗) is compactly generated [1, Proposition 7.9]. It follows from Theorem

2 that H(Q,X∗), and hence H(X, Q∗), is locally compact, proving that (ii) implies
(i).
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4 Some necessary and some sufficient conditions

In this section, we reduce the study of local compactness of the ring E(X) for
general groups X ∈ L to some more special groups. We also establish some sufficient
conditions for local compactness of E(X).

Definition 2. A group X ∈ L is caled residual if d(X) ⊂ k(X) and c(X) ⊂ m(X).

Theorem 3. Let X ∈ L. If E(X) is locally compact, then

X ∼= Rd × Qr × (Q∗)s × T,

where d, r, s ∈ N and T is a residual group in L such that E(T ) is locally compact.

In addition, if d 6= 0, then T/k(T ) is of finite rank and c(T ) is of finite dimension.

If r 6= 0, then T/k(T ) is of finite rank and d(T ) admits an open subgroup F such

that ( 1
n
F ) ∩ d(T ) is compactly generated for all n ∈ N0.

If s 6= 0, then c(T ) is of finite dimension and T admits a compact subgroup C

such that m(T ) ⊂ C, C/m(T ) is compact, and T/nC + m(T ) has no small subgroups

for all n ∈ N0.

Proof. By [1, Theorem 9.3], we can write X = C ⊕ D ⊕ S ⊕ T, where C ∼= Rd for
some d ∈ N, D ∼= Q(r) and S ∼= (Q∗)s for some cardinal numbers r and s, and T
is a residual group in L. Since D, S, and T are topological direct summands of X,
we conclude from [17, Lemma 2] that E(D), E(S), and E(T ) are locally compact.
Further, r and s must be finite by virtue of [17, Corollary 2 and Corollary 4]. Taking
account of [9, (23,34)(c) and (23,34)(d)], the remaining assertions follow from the
results of Section 3.

We also have

Theorem 4. Let X be a residual group in L. If E(X) is locally compact, then X
satisfies one of the following conditions:

(i) X/k(X) is of finite rank and c(X) is of finite dimension.

(ii) X/k(X) is of finite rank, c(X) is of infinite dimension, and m(x) = k(X).

(iii) X/k(X) is of infinite rank, c(X) is of finite dimension, and d(X) = c(X).

(iv) X/k(X) is of infinite rank, c(X) is of infinite dimension, d(X) = c(X),
and m(x) = k(X).

Proof. Let E(X) be locally compact. We show first that if X/k(X) is of infinite rank,
then d(X) = c(X). Indeed, assume X/k(X) is of infinite rank. By the local com-
pactness of E(X), there exist a compact subset K of X and an open neighborhood
U of zero in X such that U ⊂ K and ΩX(K,U) is relatively compact in E(X). Since
X is residual and 〈K〉 is compactly generated, we can write 〈K〉 = A⊕B, where A
is compact and B ∼= Zn for some n ∈ N0. Clearly, A ⊂ k(X) and k(X) ∩ B = {0}.
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Let π : X → X/k(X) be the canonical projection. Since B ∼= π(B), the pure
subgroup π(B)∗ has finite rank in X/k(X) [12, p. 41], so X/k(X) 6= π(B)∗, and
hence

(
X/k(X)

)
/π(B)∗ is a non-zero torsion-free group. Fix an arbitrary c ∈ X

such that π(c) /∈ π(B)∗. It follows by the Ascoli’s theorem that ΩX(K,U)c is rela-
tively compact in X. Our goal is to show that d(X) ⊂ ΩX(K,U)c. To this end,
pick any z ∈ d(X), and define ξz ∈ H(〈ϕ(π(c))〉, d(X)) by setting ξ(ϕ(π(c))) = z,
where ϕ : X/k(X) →

(
X/k(X)

)
/π(B)∗ is the canonical projection. Let us denote

by ξ̂z ∈ H
((

X/k(X)
)
/π(B)∗, d(X)

)
the extension of ξz to

(
X/k(X)

)
/π(B)∗ and by

j the canonical injection of d(X) into X. We have j ◦ ξ̂z ◦ ϕ ◦ π ∈ ΩX(K,U) and
z = (j ◦ ξ̂z ◦ ϕ ◦ π)(c), so z ∈ ΩX(K,U)c. Since z ∈ d(X) was picked arbitrarily, we
deduce that d(X) ⊂ ΩX(K,U)c, so d(X) is compact, and hence d(X) = c(X) by [9,
(24.24)]. Consequently, if X/k(X) is of infinite rank, then d(X) = c(X) [9, (24.25)].
Now, since E(X∗) is locally compact too [17, Lemma 1], we conclude as above for
X that if X∗/k(X∗) is of infinite rank, then d(X∗) = c(X∗). It follows by duality
that if c(X) is of infinite dimension, then m(X) = k(X).

We further combine these facts, to get the conclusion. First suppose that X/k(X)
is of finite rank. If X∗/k(X∗) is of finite rank too, then c(X) is of finite dimension,
and hence we have (i). On the other hand, if X∗/k(X∗) is of infinite rank, then
c(X) is of infinite dimension and, as we know from the above, also m(X) = k(X),
so in this case we have (ii). Next suppose that X/k(X) is of infinite rank. Then we
know from the above that d(X) = c(X). Thus, if X∗/k(X∗) is of finite rank, then
c(X) is of finite dimension, and in this case we are led to (iii). Finally, if X∗/k(X∗)
is of infinite rank, we are led to (iv).

We will need the following lemma, which is an adaption of Lemma 3 from [10].

Lemma 2. For any groups X,Y ∈ L, the following statements are equivalent:

(i) There is a neighborhood Ω of zero in H(X,Y ) such that Ωx is compact in Y
for all x ∈ X.

(ii) There is a neighborhood Ω of zero in H(Y ∗,X∗) which operates equiconti-

nuously on Y ∗.

Proof. Assume (i). By the definition of the compact-open topology, there exist
a compact subset K of X and an open neighborhood U of zero in Y such that
ΩX,Y (K,U) ⊂ Ω. Since X and Y are locally compact, we can choose an open
neighborhood V of zero in X and an open neighborhood W of zero in Y such
that V and W are compact. Let K0 = K ∪ V and U0 = U ∩ W. It is clear that
ΩX,Y (K0, U0) ⊂ ΩX,Y (K,U), so ΩX,Y (K0, U0) has compact closure in H(X,Y ).
Moreover, for any compact subset C of X, the set

ΩX,Y (K0, U0)C = {f(x) | f ∈ ΩX,Y (K0, U0) and x ∈ C}

has compact closure in Y. Indeed, by the compactness of C, there exist elements
x1, . . . , xm ∈ C such that C ⊂ ∪m

i=1(xi + V ). Given any x ∈ C, we then have
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x − xi0 ∈ V for some i0 ∈ {1, . . . ,m}, whence

f(x) ∈ f(xi0) + f(V ) ⊂ ΩX,Y (K0, U0)xi + U0

for all f ∈ ΩX,Y (K0, U0). Consequently,

ΩX,Y (K0, U0)C ⊂
m⋃

i=1

ΩX,Y (K0, U0)xi + U0,

proving that ΩX,Y (K0, U0)C has compact closure in Y. We shall show that the set

ΩX,Y (K0, U0)
∗ = {f∗ ∈ H(Y ∗,X∗) | f ∈ ΩX,Y (K0, U0)}

is equicontinuous in H(Y ∗,X∗). Let O be an arbitrary neighborhood of zero in X∗.
We may assume that O = ΩX,T(C,D), where C is a compact subset of X and D

is an open neighborhood of zero in T. For this C, let C ′ = ΩX,Y (K0, U0)C. Then
C ′ is a compact subset of Y, so O′ = ΩY,T(C ′,D) is a neighborhood of zero in Y ∗.
Now, it is easily seen that f∗(O′) ⊂ O for all f ∈ ΩX,Y (K0, U0), so ΩX,Y (K0, U0)

∗

is equicontinuous at zero, and hence on Y ∗. This proves that (i) implies (ii).
Now assume (ii), and let Φ be the neighborhood of zero in H(X,Y ) such that

Ω = {f∗ | f ∈ Φ} [11, Ch. IV, Theorem 4.2, Corollary 2]. We claim that Φ
operates with relatively compact orbits. Pick any a ∈ X. It suffices to show that
ξY (Φa) is relatively compact in Y ∗∗, where ξY : Y → Y ∗∗ is the canonical topological
isomorphism of Y, i.e. ξY (y)(γ) = γ(y) for all y ∈ Y and γ ∈ Y ∗. Observe that

ξY (Φa) =
{
ξX(a) ◦ f∗ | f ∈ Φ

}
,

where ξX : X → X∗∗ is the canonical topological isomorphism of X. To see that
ξY (Φa) is equicontinuous, pick an arbitrary neighborhood D of zero in T, and set
O = {γ ∈ X∗ | ξ(a)(γ) ∈ D}. Since ξ(a) is continuous, O is a neighborhood of zero
in X∗. Further, since Φ∗ = Ω is equicontinuous, there is a neighborhood W of zero
in Y ∗ such that f∗(W ) ⊂ O for all f ∈ Φ∗. It follows that (ξ(a)◦f∗)(W ) ⊂ D for all
f ∈ Φ∗, proving that ξY (Φa) is equicontinuous. Finally, since T is compact, it is also
clear that ξY (Φa) operates with relatively compact orbits. Consequently, ξY (Φa) is
relatively compact in Y ∗∗ by the Ascoli’s theorem.

We now establish some sufficient conditions for the local compactness of E(X).

Theorem 5. Let X be a group in L satisfying the following conditions:

i) c(X) ∩ k(X) has finite dimension.

ii) For each p ∈ S(X),
(
k(X)/

(
c(X) ∩ k(X)

))

p
has finite rank.

iii) X/
(
c(X) + k(X)

)
has finite rank.

Then E(X) is locally compact.
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Proof. We can write X = C ⊕ Y, where C ∼= Rd for some d ∈ N and Y contains
a compact open subgroup. Then

E(X) ∼=

(
E(Rd) H(Y, Rd)

H(Rd, Y ) E(Y )

)
.

Now, since H(Y, Rd) ∼= H(Y, R)d and H(Rd, Y ) ∼= H(R, Y )d [9, (23.34)(c) and
(23.34)(d)], we conclude from Theorem 1 and Theorem 2 that H(Y, Rd) and
H(Rd, Y ) are locally compact. As E(Rd) is locally compact too, it suffices to show
that E(Y ) is locally compact. To this purpose, pick any elements a1, . . . , am of Y
such that a1 + k(Y ), . . . , am + k(Y ) form a basis in Y/k(Y ), and a compact open
subgroup U of Y. We claim that

Ω = ΩY ({a1, . . . , am} ∪ U,U)

is relatively compact in E(Y ). Let a be an arbitrary element in Y. Then there exist
n ∈ N0, l1, . . . , lm ∈ Z, and b ∈ k(Y ) such that na = b +

∑m
i=1 liai. Moreover, by

multiplying the above equation through by the order of b+U in k(Y )/U, if necessary,
we may assume that b ∈ U. Now, given any f ∈ Ω, we have

nf(a) = f(b) +

m∑

i=1

lif(ai) ⊂ U,

so f(a) ∈ 1
n
U. Consequently, to conclude that Ω operates with relatively compact

orbits, it suffices to show that 1
n
U is compact. It is clear that

(
1
n
U

)
/U is a torsion

group of bounded order, so 1
n
U ⊂ k(Y ), and hence

(
1
n
U

)
/U is a subgroup of bounded

order of k(Y )/U. Since

k(Y )/U ∼=
(
k(Y )/c(Y )

)
/
(
U/c(Y )

)
,

we deduce from condition (ii) that the primary components of k(Y )/U have finite
rank. Further, since

(
1
n
U

)
/U is a subgroup of bounded order of k(Y )/U, we conclude

that
(

1
n
U

)
/U is finite, so 1

n
U is compact. Consequently, Ω operates with relatively

compact orbits.
Further, observe that X∗ too satisfies the hypotheses of the theorem. Indeed,

by [9, (24,17)],[6, Proposition 3.3.3], and [9, (23,25)], we have

c(X∗) ∩ k(X∗) = A(X∗, c(X) + k(X))

∼=
(
X/

(
c(X) + k(X)

))∗

,

so c(X∗) ∩ k(X∗) has finite dimension by (iii) and [9, (24.28)]. Similarly, since

(
X∗/

(
c(X∗) + k(X∗)

))∗
∼= c(X) ∩ k(X),

we deduce from (i) that X∗/
(
c(X∗)+k(X∗)

)
has finite rank. Finally, we see from [6,

Exercise 3.8.7] and [9, (6.9)] that
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(
k(X∗)/

(
c(X∗) ∩ k(X∗)

))∗
∼=

(
c(X) + k(X)

)
/c(X)

=
(
C ⊕ k(X)

)
/
(
C ⊕

(
c(X) ∩ k(X)

))

∼= k(X)/
(
c(X) ∩ k(X)

)
.

Given any p ∈ S(X), we then have
(
k(X∗)/

(
c(X∗) ∩ k(X∗)

))

p

∼=
(
k(X)/

(
c(X) ∩ k(X)

))∗

p
,

so
(
k(X∗)/

(
c(X∗) ∩ k(X∗)

))

p
has finite rank by (ii) and [5, Theorem 4]. It follows

that X∗ too satisfies the hypotheses of the theorem. Consequently, we can conclude
by using the same argument as with X that E(X∗) admits a neighborhood of zero,
which operates with relatively compact orbits. It follows from Lemma 2 that E(X)
admits a neighborhood of zero, which operates equicontinuously on X. It remains
to apply the Ascoli’s theorem.

Remark 1. In [10, n◦ 9], M. Levin has shown that A
(∏

n∈N0

(
Z(p2n); pnZ(p2n)

))

is locally compact although
∏

n∈N0

(
Z(p2n); pnZ(p2n)

)
has infinite rank. With similar

arguments, it is easy to see that E
(∏

n∈N0

(
Z(p2n); pnZ(p2n)

))
is locally compact

as well, so the inverse of Theorem 5 is not valid.

5 Groups containing a lattice

Let X be a group in L. A subgroup L of X is called a lattice in X if L is discrete
and X/L is compact. If there exists such a subgroup L in X, then X is said to contain
a lattice. If X decomposes as a topological direct sum of a discrete subgroup and
a compact one, then it is said to contain a lattice trivially. If X contains a lattice but
cannot be decomposed as a topological direct sum of a discrete group and a compact
one, it is said to contain a lattice non-trivially.

In the present section, we answer the question of the local compactness of E(X)
in the case when X contains a lattice. In preparation for this we first establish
a lemma, which introduces a topology, called the Birkhoff topology, on the group of
units of a topological ring and shows how this topology is related to the topology of
that ring.

Lemma 3. Let E be a topological ring with identity 1, and let E× be the group of

invertible elements of E.

(i) If B is a filter base of neighborhoods of zero in E, then the set

B× =
{[

(1 + B) ∩ E×
]
∩

[
(1 + B) ∩ E×

]−1
| B ∈ B

}

is a filter base of neighborhoods of 1 for a group topology on E×, which we call

the Birkhoff topology of E×.
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(ii) If Eop is the opposite topological ring of E and E×Eop is the topological direct

product of topological rings E and Eop, then E× with the Birkhoff topology

is topologically isomorphic to a closed subgroup of the multiplicative monoid

of E × Eop. In particular, if E is locally compact, then E× with its Birkhoff

topology is locally compact too.

Proof. (i) Since B 6= ∅, it is clear that B× 6= ∅ as well. Also, since every B ∈ B
contains 0, we see that every element of B× contains 1, so ∅ /∈ B×. Further, given
any B1, B2 ∈ B, there is B3 ∈ B such that B3 ⊂ B1 ∩ B2. It follows that

[(1 + B3) ∩ E×] ⊂ [(1 + B1) ∩ E×] ∩ [(1 + B2) ∩ E×],

so

[(1 + B3) ∩ E×]−1 ⊂ [(1 + B1) ∩ E×]−1 ∩ [(1 + B2) ∩ E×]−1,

and hence [(1 + B3) ∩ E×] ∩ [(1 + B3) ∩ E×]−1 is contained in the set

(
[(1 + B1) ∩ E×] ∩ [(1 + B1) ∩ E×]−1

)
∩

(
[(1 + B2) ∩ E×] ∩ [(1 + B2) ∩ E×]−1

)
.

Consequently, B× is a filter base on E×.

Next we show that B× satisfies the conditions (GV ′
I ), (GV ′

II), and (GV ′
III) of [2,

Ch. III, §1, n◦ 2]. Let U be a neighborhood of zero in E. We can choose neigh-
borhoods O and V of zero in E such that O + O ⊂ U, V + V ⊂ O, and V V ⊂ O.
Then

[(1 + V ) ∩ E×][(1 + V ) ∩ E×] ⊂ [(1 + U) ∩ E×],

so

(
[(1 + V ) ∩ E×] ∩ [(1 + V ) ∩ E×]−1

)(
[(1 + V ) ∩ E×] ∩ [(1 + V ) ∩ E×]−1

)

⊂ [(1 + U) ∩ E×] ∩ [(1 + U) ∩ E×]−1,

and hence (GV ′
I ) holds. Further, since

(
[(1 + U) ∩ E×] ∩ [(1 + U) ∩ E×]−1

)−1
= [(1 + U) ∩ E×]−1 ∩ [(1 + U) ∩ E×],

it is clear that (GV ′
II) holds too. Finally, given any a ∈ E×, we can choose neighbor-

hoods Φ and W of zero in E such that Φa ⊂ U and a−1W ⊂ Φ, whence a−1Wa ⊂ U.
But then

a−1[(1 + W ) ∩ E×]a ⊂ [(1 + U) ∩ E×],

so

a−1[(1 + W ) ∩ E×]−1a ⊂ [(1 + U) ∩ E×]−1,

and hence

a−1
(
[(1 + W ) ∩ E×] ∩ [(1 + W ) ∩ E×]−1

)
a ⊂ [(1 + U) ∩ E×] ∩ [(1 + U) ∩ E×]−1.
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This proves (GV ′
III). It follows that there is a unique group topology on E×, admit-

ting B× as a filter base of neighborhoods of 1.
(ii) Recall that Eop is the topological ring in which the underlying set, the

additive structure, and the topology are those of E, and whose multiplication is
obtained by multiplying in E with reverse order. Consider the topological direct
product E×Eop. Since the mappings (u, v) → u ◦ v and (u, v) → v ◦u from E×Eop

to E are continuous, the sets

S = {(u, v) ∈ E × Eop | u ◦ v = 1}

and

T = {(u, v) ∈ E × Eop | v ◦ u = 1}

are closed in E × Eop. It follows that S ∩ T is closed in E × Eop. Clearly,

S ∩ T = {(u, u−1) ∈ E × Eop | u ∈ E×}.

Moreover, S ∩ T has a group structure with respect to component-wise multiplica-
tion. Further, if we endow S ∩ T with the induced topology, then S ∩ T becomes a
topological group. Indeed, the multiplication in S ∩ T is the restriction to S ∩ T of
the multiplication in E ×Eop, and hence is continuous. Similarly, taking of inverses
in S ∩ T is the restriction to S ∩ T of the mapping (u, v) → (v, u) from E × Eop

onto E ×Eop, and hence is continuous too. It remains to observe that the mapping
ξ : u → (u, u−1) is an isomorphism of topological groups from E× onto S∩T. Indeed,
ξ is, clearly, an isomorphism of groups. Now, if U is a neighborhood of zero in E,
then

ξ
(
[(1 + U) ∩ E×] ∩ [(1 + U) ∩ E×]−1

)
=

(
(1 + U) × (1 + U)

)
∩ (S ∩ T ),

so ξ is bicontinuous.

Specializing to the case E = E(X), we have the following

Corollary 3. Let X ∈ L. Then A(X) coincides with E(X)× taken with its Birkhoff

topology, and hence A(X) is topologically isomorphic to a closed subgroup of the

multiplicative monoid of E(X) × E(X)op.

We are now prepared to describe all the groups X ∈ L containing a lattice for
which E(X) is locally compact. First, we consider the case when X contains a lattice
non-trivially.

Theorem 6. Let X be a group in L containing a lattice non-trivially. The following

statements are equivalent:

(i) E(X) is locally compact.

(ii) A(X) is locally compact.
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(iii) X satisfies the following conditions:

1) c(X) ∩ k(X) has finite dimension.

2) For each p ∈ S(X),
(
k(X)/

(
c(X) ∩ k(X)

))

p
has finite rank.

3) X/
(
c(X) + k(X)

)
has finite rank.

Proof. The fact that (i) implies (ii) follows from Corollary 3, the fact that (ii) implies
(iii) follows from [10, Theorem 5], and the fact that (iii) implies (i) follows from
Theorem 5.

For the case of groups containing a lattice trivially, we have:

Theorem 7. Let X be a group in L containing a lattice trivially, say X = L ⊕ C
with L discrete and C compact. Then E(X) is locally compact if and only if E(L)
and E(C) are both locally compact.

Proof. We have

E(X) ∼=

(
E(L) H(C,L)

H(L,C) E(C)

)
.

Since L is discrete, H(L,C) is equicontinuous. Since C is compact, H(L,C) operates
with relatively compact orbits. Consequently, H(L,C) is compact by the Ascoli’s
theorem. On the other hand, H(C,L) is discrete because ΩC,L(C, {0}) = {0}. It
follows that E(X) is locally compact if and only if E(L) and E(C) are both locally
compact.

Remark 2. Taking account of the results in [17], the problem of determining the
groups X ∈ L containing a lattice for which the ring E(X) is locally compact
is completely solved. In a similar way, the results of [17] and those of Section 3 can
be used to describe the structure of any group X ∈ L with locally compact ring
E(X), which decomposes as a topological direct product of a finite number of copies
of R, Q, Q∗, and a group containing a lattice trivially. For example, this can be
done for compactly generated groups [9, (9.8)], for groups with no small subgroups
[1, Proposition 7.9], for groups with open connected component [1, Corollary 6.8],
and for groups with compact subgroup of compact elements [1, Corollary 6.10],
respectively.

We close this section by transferring to E(X) a result of P. Plaumann for A(X).
We need the following definition from [13].

Definition 3. Let X ∈ L. A factor of X is a quotient of the form A/B, where A
and B are closed subgroups of X such that A ⊃ B.

Theorem 8. For a topological torsion group X ∈ L, the following statements are

equivalent:

(i) E(F ) is locally compact for every factor F of X.
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(ii) A(F ) is locally compact for every factor F of X.

(iii) For each p ∈ S(X), Xp has finite rank.

Proof. The fact that (i) implies (ii) follows from Corollary 3, the fact that (ii) implies
(iii) follows from [13, Theorem 3.6 and Lemma 3.1], and the fact that (iii) implies
(i) follows from Theorem 5 because every factor of X has primary components of
finite rank [4, 1)].

6 Densely divisible torsion-free groups

In this final section, we answer the question of local compactness of the ring
E(X) for densely divisible torsion-free groups X ∈ L. We begin with a special case.

Theorem 9. Let p ∈ P, and let X be a densely divisible, torsion-free, topological

p-primary group in L. The ring E(X) is locally compact if and only if X ∼= Qr
p for

some r ∈ N.

Proof. Let E(X) be locally compact. Then E(X∗) is locally compact as well. It
is also clear that X∗ is densely divisible and torsion-free. Let Ω be a compact
neighborhood of zero in E(X∗). By the definition of the compact-open topology,
there exist a compact subset K of X∗ and an open neighborhood U of zero in
X∗ such that ΩX∗(K,U) ⊂ Ω. Since X∗ is totally disconnected [1, Theorem 3.5],
there is a compact open subgroup V of X∗ such that V ⊂ U [9, (7.5)], whence
ΩX∗(K,V ) ⊂ ΩX∗(K,U), and hence ΩX∗(K,V ) is compact in E(X∗).

We claim that 1
pn V is compact for all n ∈ N. To see this, fix any non-zero

character α ∈ d(X∗), and let Dα be the minimal divisible subgroup of X∗ containing
α. Then Dα

∼= Qp [14, Lemma 2.4], so X∗ = Dα ⊕ Γ for some closed subgroup Γ
of X∗ [1, Proposition 6.23]. Let πα, πΓ ∈ E(X∗) be the canonical projections of X∗

onto Dα and Γ, respectively. As πα(K) is compact in Dα, we have πα(K) ⊂ 1
pnK

〈α〉

for some nK ∈ N0. Pick any n ∈ N0 and any β ∈ d(X∗) ∩ 1
pn V, and let α′ ∈ Da

be the unique element satisfying pn+nKα′ = α. Further, define f ∈ H(〈α′〉 ⊕ Γ,Dα)
by setting f(α′) = β and f(γ) = 0 for all γ ∈ Γ. Since 〈α′〉 ⊕ Γ is open in X∗, f
extends to continuous group homomorphism f̂ : X∗ → Dα, so j ◦ f̂ ∈ E(X∗), where
j : Dα → X∗ is the canonical injection. Now, given any χ ∈ K, we have

f̂(χ) = f̂(πα(χ)) ∈ f̂
( 1

pnK
〈α〉

)
= f̂

(
〈

1

pnK
α〉

)

= f̂
(
〈pnα′〉

)
⊂ 〈pnβ〉 ⊂ V,

so j ◦ f̂ ∈ ΩX∗(K,V ). Since β ∈ d(X∗) ∩ 1
pn V was chosen arbitrarily, it follows

from [7, Theorem 1.3.6] that

1

pn
V = d(X∗) ∩

1

pn
V ⊂ ΩX∗(K,V )α′,
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so 1
pn V is compact.
Next, let W = A(X,V ). Clearly, W is compact and open in X [1, P. 22(e)].

Given any n ∈ N0, we deduce from Lemma 1 that

A(X∗, pnW ) =
1

pn
A(X∗,W ),

so pnW = A(X, 1
pn V ). It follows that pnW is open in X, and hence in W. But

W ∼= Zν
p for some cardinal number ν [3, Ch. III, §1, Proposition 3]. Consequently,

ν must be finite, i.e. ν = r for some r ∈ N.
The converse is clear, because E(Qr

p) is topologically isomorphic to the matrix
ring Mr(Qp) over the field of p-adic numbers Qp, taken with its usual product topo-
logy.

With this preparation, we can prove:

Theorem 10. Let X be a densely divisible, torsion-free group in L. The ring E(X)
is locally compact if and only if

X ∼= Rd × Qr × (Q∗)s ×
∏

p∈S(X)

(Q
rp
p ; Z

rp
p ),

where d, r, s, and the rp’s are natural numbers.

Proof. Assume that E(X) is locally compact. It follows from Theorem 3 that

X ∼= Rd × Qr × (Q∗)s × T,

where d, r, s ∈ N and T is a residual in L such that E(T ) is locally compact. Now,
in view of our hypotheses, d(T ) = T and m(T ) = {0}, whence k(T ) = T and
c(T ) = {0}. Consequently, T is a topological torsion group in L, and hence

E(T ) ∼=
∏

p∈S(X)

(E(Tp); ΩTp
(Up, Up)),

where, for each p ∈ S(X), Up is a compact open subgroup of Tp [16, (2.2)]. It follows
that, for every p ∈ S(X), E(Tp) is locally compact ([3, p. 9] or [9, (6.16)(c)]), so Tp

∼=
Q

rp
p for some rp ∈ N0 by virtue of Theorem 9, and hence T ∼=

∏
p∈S(X)(Q

rp
p ; Z

rp
p )

by [3, Ch. III, Proposition 4].
To show the converse, we write

X = A ⊕ B ⊕ C ⊕ D,

where A ∼= Rd, B ∼= Qr, C ∼= (Q∗)s, and D ∼=
∏

p∈S(X)(Q
rp
p ; Z

rp
p ). It is clear that

c(X) = A ⊕ C and k(X) = C ⊕ D, so c(X) ∩ k(X) = C. We also have

c(X) + k(X) = A ⊕ C ⊕ D,

so X/
(
c(X) + k(X)

)
∼= B. Finally, given any p ∈ S(X), we have

(
k(X)/

(
c(X) ∩ k(X)

))

p

∼= Q
rp
p .

It remains to apply Theorem 5.
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