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A REPUBLICII MOLDOVA. MATEMATICA
Number 2(78), 2015, Pages 74–81
ISSN 1024–7696

Estimates of stability radius of multicriteria Boolean

problem with Hölder metrics in parameter spaces
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Abstract. We consider multiple objective combinatorial linear problem in the situa-
tion where parameters of objective functions are exposed to perturbations. We study
quantitative characteristic of stability (stability radius) of the problem assuming that
there are Hölder metrics in the space of solutions and the criteria space.
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1 Introduction

The main difficulty while studying stability of discrete optimization problems is
their combinatorial complexity. Small changes of initial data make a model behave
in an unpredictable manner. In addition, in the case of several conflicting objectives
the problem complexity may only be increased (see e.g. [1, 2]).

There are a lot of papers devoted to different approaches dealing with uncertainty
in discrete models, both in single and multicriteria cases (see e.g. [3–5]). One of
such approaches is known as quantitative approach. This approach aims to derive
quantitative bounds for feasible initial data changes preserving a given property of
the solution set (or of a single solution) or/and create algorithms for the bounds
calculation. The limit level of perturbations of problem parameters which preserve
the property of invariance is called stability radius. The present work continues a
line of investigations initiated in [6–9] that focuses on studying the stability radius
of multicriteria Boolean optimization problems with various types of metrics in the
parameter space. We have obtained the lower and upper bounds for the stability
radius of the multicriteria combinatorial linear problem on the assumption that
Hölder norms are specified in the space of solutions and in the space of criteria.

2 Problem statement and basic definitions

Let Rm be the space of criteria, Rn be the space of solutions, C be an m × n
matrix with the rows Ci = (ci1, ci2, . . . , cin) ∈ Rn, i ∈ Nm = {1, 2, . . . ,m}, x =
(x1, x2, . . . , xn)T ∈ X ⊆ En, n ≥ 2, E = {0, 1}, |X| ≥ 2. Let a linear vector
criterion
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Cx = (C1x,C2x, . . . , Cmx)
T → min

x∈X

be specified on the set of Boolean vectors (solutions) X.

Under a m-criterion problem Boolean problem Zm(C), C ∈ Rm×n, we under-
stand the problem of finding the Pareto set, i.e. the set of efficient (Pareto optimal)
solutions

Pm(C) = {x ∈ X : X(x,C) = ∅},

where

X(x,C) = {x′ ∈ X : Cx′ ≤ Cx & Cx′ 6= Cx}.

Since X is finite, the set Pm(C) is not empty for any matrix C ∈ Rm×n.

We will perturb elements of the matrix C by adding matrices C ′ from Rm×n to
it. Thus, the perturbed problem Zm(C + C ′) has the form

(C + C ′)x→ min
x∈X

and the Pareto set of such a problem has the form Pm(C + C ′).

For any natural number d in the real space Rd, we specify the Hölder norm lp,
p ∈ [1,∞], i. e., the norm of a vector y = (y1, y2, . . . , yd) is understood to be the
number

‖y‖p =















(

∑

i∈Nd

|yi|
p
)1/p

if 1 ≤ p <∞,

max
i∈Nd

|yi| if p = ∞.

For any p, q ∈ [1,∞], let us define the Hölder norm lp in the space of solutions
Rn and the Hölder norm lq in the criteria space Rm. Thereby, the norm ‖C‖pq of
the matrix C ∈ Rm×n is defined as the norm of the vector whose components are
the norms of the matrix rows C1, C2, . . . , Cm, i.e.

‖C‖pq =
∥

∥

(

‖C1‖p, ‖C2‖p, . . . , ‖Cm‖p

)T ∥

∥

q
.

It is easy to see that for any p, q ∈ [1,∞] the following inequalities hold

‖Ci‖p ≤ ‖C‖pq, i ∈ Nm. (1)

Obviously, for each α ≥ 0, p ∈ [1,∞] and vector a = (a1, a2, . . . , an) ∈ Rn with
components |ai| = α, i ∈ Nn, the following equality holds

‖a‖p = αn1/p. (2)

Let lp′ be a conjugate norm in the space of solutions Rn and, as is well known,
the numbers p and p′ are related by the condition

1/p+ 1/p′ = 1.
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As usual, we assume that p′ = 1 if we have p = ∞ and that p′ = ∞ if we have
p = 1. Thus, henceforth, we assume that the domain of varying the numbers p and
p′ is the interval [1,∞] and that the numbers p and p′ themselves are related by the
above-mentioned condition. In addition, we impose that 1/p = 1 if p = ∞.

We will use the well-known Hölder inequality

ab ≤ ‖a‖p‖b‖p′ , (3)

where a = (a1, a2, . . . , an) ∈ Rn and b = (b1, b2, . . . , bn)T ∈ Rn.

As usually (see e. g. [6–9]), by the radius of stability of the problem Zm(C) we
mean the quantity

ρm(p, q) =

{

supΞ if Ξ 6= ∅,

0 if Ξ = ∅,

where

Ξ =
{

ε > 0 : ∀C ′ ∈ Ωpq(ε)
(

Pm(C + C ′) ⊆ Pm(C)
)}

,

Ωpq(ε) = {C ∈ Rm×n : ‖C‖pq < ε}.

Thus, the stability radius of the problem Zm(C) is the limiting perturbation of
elements of the matrix C in the space Rm×n that does not produce new efficient
solutions. The set Ωpq(ε) is called the set of perturbing matrices.

In the trivial case, where Pm(C) = X, the inclusion Pm(C+C ′) ⊆ Pm(C) holds
for any perturbing matrix C ′ ∈ Ωpq(ε), ε > 0. Therefore, no one perturbation of
the problem parameters can cause appearance of new efficient solutions, i. e. sta-
bility radius of such problem is unbounded above. The problem Zm(C) for which
Pm(C) 6= X will be called non-trivial.

3 Estimates of the stability radius

For a non-trivial problem Zm(C) and any p, q ∈ [1,∞] we assume

ϕm(p) = min
x∈X\P m(C)

max
x′∈P m(x,C)

min
i∈Nm

Ci(x− x′)

‖x− x′‖p′
,

ψm(p, q) = min
{

σm(p), n1/pm1/qϕm(∞)
}

,

where

Pm(x,C) = Pm(C) ∩X(x,C),

σm(p) = min{‖Ci‖p : i ∈ Nm}.

Theorem 1. For any p, q ∈ [1,∞] and m ∈ N, the stability radius ρm(p, q) of a

non-trivial problem Zm(C) has the following bounds:

ϕm(p) ≤ ρm(p, q) ≤ ψm(p, q).
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Proof. First, let us prove the inequality ρm(p, q) ≥ ϕm(p) which is trivial in the case
ϕm(p) = 0. Assume ϕm(p) > 0. Let C ′ ∈ Ωpq(ϕ

m(p)) be a perturbing matrix with
rows C ′

i, i ∈ Nm. By the definition of the number ϕm(p) and according to (1), for
any solution x ∈ X \ Pm(C), there exists an effective solution x0 ∈ Pm(x,C) such
that

Ci(x− x0)

‖x − x0‖p′
≥ ϕm(p) > ‖C ′‖pq ≥ ‖C ′

i‖p, i ∈ Nm.

Whence, using the Hölder inequality (3) we find

(Ci + C ′
i)(x− x0) ≥ Ci(x− x0) − ‖C ′

i‖p‖x− x0‖p′ > 0, i ∈ Nm.

Thus, x 6∈ Pm(C + C ′). Therefore, every ineffective solution of the problem Zm(C)
retains its ineffectiveness in perturbed problem Zm(C + C ′). Hence Pm(C + C ′) ⊆
Pm(C) for every perturbing matrix C ′ ∈ Ωpq(ϕ

m(p)), i. e. ρm(p, q) ≥ ϕm(p).
Now, let us prove the inequality ρm(p, q) ≤ n1/pm1/qϕm(∞). According to the

definition of the number ϕm(∞) there exists a solution x0 ∈ X \ Pm(C) such that
for each solution x ∈ Pm(x0, C) there exists an index k = k(x) ∈ Nm satisfying

Ck(x
0 − x) ≤ ϕm(∞)‖x0 − x‖1. (4)

Choose an arbitrary number ε that obeys the condition ε > n1/pm1/qϕm(∞) and
specify elements of the perturbing matrix C0 = [c0ij ] ∈ Rm×n with rows C0

i , i ∈ Nm,
as follows

c0ij =

{

−δ if i ∈ Nm, x
0
j = 1,

δ if i ∈ Nm, x
0
j = 0,

where ϕm(∞) < δ < ε/n1/pm1/q. Using (2) we derive

‖C0
i ‖p = δn1/p, i ∈ Nm,

‖C0‖pq = δn1/pm1/q, C0 ∈ Ωpq(ε),

C0
i (x0 − x) = −δ‖x0 − x‖1 < 0, i ∈ Nm. (5)

Therefore, taking into account inequality (4) we obtain

(Ck +C0
k)(x0 − x) = Ck(x

0 − x) + C0
k(x0 − x) ≤ (ϕm(∞) − δ)‖x0 − x‖1 < 0.

As a result we have

∀x ∈ Pm(x0, C)
(

x 6∈ X(x0, C + C0)
)

. (6)

If X(x0, C + C0) = ∅, then x0 ∈ Pm(C + C0). Assume X(x0, C + C0) 6=
∅. In this case, due to external stability of the Pareto set Pm(C + C0) (see e. g.
p. 34 in [10]) there exists a solution x∗ ∈ Pm(x0, C + C0). Let us prove that
x∗ 6∈ Pm(C). Assume to the contrary that x∗ ∈ Pm(C). According to (6) this
yields x∗ ∈ Pm(C) \ Pm(x0, C). Therefore, there are only two cases: the equality
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Cx∗ = Cx0 holds or the inequality Cx∗ ≤ Cx0 does not hold. In the first case,
taking into account (5) we have

(Ci + C0
i )(x0 − x∗) < 0, i ∈ Nm.

In the second case, there exists an index l ∈ Nm such that Clx
∗ > Clx

0. Taking into
account (5) again we obtain

(Cl + C0
l )(x0 − x∗) < 0.

In both cases we obtained contradictions with the inclusion x∗ ∈ Pm(x0, C + C0).
Summarizing the above we state that for any number ε > n1/pm1/qϕm(∞) there

exist perturbing matrix C0 ∈ Ωpq(ε) and an inefficient solution (x0 or x∗) of the
problem Zm(C) such that it becomes efficient in perturbed problem Zm(C + C0).
Hence

∀ε > n1/pm1/qϕm(∞) ∃C0 ∈ Ωpq(ε)
(

Pm(C + C0) 6⊆ Pm(C)
)

,

i. e.
ρm(p, q) ≤ n1/pm1/qϕm(∞).

It remains to prove that ρm(p, q) ≤ σm(p). Let x0 be an inefficient solution of
the problem Zm(C) and the index k ∈ Nm be such that

σm(p) = ‖Ck‖p. (7)

Assuming that ε > σm(p) we denote a number δ with the conditions

0 < δn1/p < ε− σm(p). (8)

We define the vector η = (η1, η2, . . . , ηn) by

ηj =

{

−δ if x0
j = 1,

δ if x0
j = 0.

Then we have
‖η‖p = δn1/p (9)

and for each solution x ∈ X \ {x0} we obtain

η(x0 − x) = −δ‖x0 − x‖1 < 0. (10)

We specify the rows C0
i ∈ Rn, i ∈ Nm, of the perturbing matrix C0 ∈ Rm×n by

the rule

C0
i =

{

η − Ci if i = k,

0 if i ∈ Nm \ {k}.

Hence, taking into account (10) we derive

C0
k(x0 − x) = (η −Ck)(x

0 − x) = −δ‖x0 − x‖1 − Ck(x
0 − x).
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It follows from equalities (7) and (9) and inequality (8) that

‖C0‖pq = ‖C0
k‖p = ‖η − Ck‖p ≤ ‖η‖p + ‖Ck‖p = δn1/p + σm(p) < ε.

Consequently, for each solution x ∈ X \ {x0} we deduce

(Ck + C0
k)(x0 − x) = −δ‖x0 − x‖1 < 0,

i.e. x 6∈ X(x0, C + C0), where C0 ∈ Ωpq(ε). Using x0 6∈ X(x0, C + C0) we get
X(x0, C + C0) = ∅, which implies x0 ∈ Pm(C + C0). Due to x0 6∈ Pm(C) the
inequality ρm(p, q) ≤ ε is true for any number ε > σm(p). Thus we have proved that
ρm(p, q) ≤ σm(p). This with proved inequality ρm(p, q) ≤ n1/pm1/qϕm(∞) implies
ρm(p, q) ≤ ψm(p, q).

4 Corollaries

As corollaries of Theorem 1 we obtain the following results.

Corollary 1 [11]. ϕm(p) ≤ ρm(p, p) ≤ (nm)1/pϕm(∞).

Corollary 2 [6]. ρm(∞,∞) = ϕm(∞) = min
x∈X\P m(C)

max
x′∈P m(x,C)

min
i∈Nm

Ci(x− x′)

‖x− x′‖1
.

Corollary 3 [12]. ϕm(p) ≤ ρm(p,∞) ≤ n1/pϕm(∞).

Corollary 4 [13]. ϕm(∞) ≤ ρm(∞, q) ≤ m1/qϕm(∞).

Note that the paper [13] describes a class of problems Zm(C) for which the
following formula holds

ρm(∞, q) = m1/qϕm(∞), q ∈ [1,∞].

This means that the upper-bound of Corollary 4 is achievable.

The following known result proves that the lower-bound estimate of the stability
radius is achievable.

Theorem 2 [9]. If |Pm(C)| = 1, then for any numbers p, q ∈ [1,∞] the stability

radius is expressed by the formula

ρm(p, q) = ϕm(p).

We denote the stability radius of scalar problem Z1(C)

Cx→ min
x∈X

, C ∈ R1×n, X ⊆ En,

by ρ1(p), p ∈ [1,∞].

Corollary 5. ϕ1(p) ≤ ρ1(p) ≤ n1/pϕ1(∞).
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The paper [12] describes a class of scalar linear problems Z1(C) for which the
following formula holds

ρ1(p) = n1/pϕ1(∞), p ∈ [1,∞].

Therefore, the upper-bound of Corollary 5 is achievable.
Corollaries 2 and 5 imply the following known result.

Corollary 6 [14, 15]. ρ1(∞) = ϕ1(∞).

This work has been done with partial support of the Belarusian Republican Fund
of Fundamental Research (Project F13K-078) and European Community Mobility
Programme (Project 204289-EM-1-2011-1-FI-ERA MUNDUS-EMA21).
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