Relation between Levinson center, chain recurrent set and center of Birkhoff for compact dissipative dynamical systems

David Cheban

Abstract. In this paper we prove the analogues of Birkhoff’s theorem for one-sided dynamical systems (both with continuous and discrete times) with noncompact space having a compact global attractor. The relation between Levinson center, chain recurrent set and center of Birkhoff is established for compact dissipative dynamical systems.

Keywords and phrases: Global attractors; Birkhoff’s center; chain recurrent set.

1 Introduction

Let X be a compact metric space, (X,\mathbb{R},π) be a flow on X, $M \subseteq X$ be a nonempty compact and invariant subset of X. Denote $\Omega(M) := \{ x \in M : \text{there exist } \{x_n\} \subseteq M \text{ and } \{t_n\} \subseteq \mathbb{R} \text{ such that } x_n \to x, \ t_n \to +\infty \text{ as } n \to \infty \text{ and } \pi(t_n, x_n) \to x \}$. Recall that the point $x \in X$ is called Poisson stable if $x \in \omega_x \cap \alpha_x$, where by ω_x (respectively, α_x) the ω (respectively, α)-limits set of x is denoted. The following result is well known (see, for example, [1, 14]).

Theorem 1 (Birkhoff’s theorem). The following statements hold:

1. there exists a nonempty, compact and invariant subset $\mathcal{B}(\pi) \subseteq X$ with the properties:

 (i) $\Omega(\mathcal{B}(\pi)) = \mathcal{B}(\pi)$;

 (ii) $\mathcal{B}(\pi)$ is the maximal compact invariant subset of J with the property (i).

2. $\mathcal{B}(\pi) = \overline{\mathcal{P}(\pi)}$, i.e., the set of all Poisson stable points $\mathcal{P}(\pi)$ of the dynamical system (X,\mathbb{R},π) is dense in $\mathcal{B}(\pi)$.

Remark 1. 1. The set $\mathcal{B}(\pi)$ is called the Bikhoff center of dynamical system (X,\mathbb{R},π).

2. Note that Birkhoff theorem remains true also for the discrete dynamical systems (X,\mathbb{Z},π). This fact was established in the work of V. S. Bondarchuk and V. A. Dobrynisky [1].

© David Cheban, 2015
3. The second statement of Theorem 1 remains true if we replace the center of Birkhoff $\mathfrak{B}(\pi)$ by arbitrary compact invariant set $M \subseteq J$ with the property $\Omega(M) = M$. Namely the following equality takes place: $M = \overline{P(\pi)} \cap M$.

The main result of this paper is the proof of the analogues of Birkhoff theorem for the one-sided dynamical systems (both with continuous and discrete times) with noncompact phase space having a compact global attractor.

2 Birkhoff center

Definition 1. A dynamical system (X, T, π) is said to be:

1. pointwise dissipative if there exists a nonempty compact subset $K \subseteq X$ such that
 \[
 \lim_{t \to +\infty} \rho(\pi(t, x), K) = 0
 \] (1)
 for all $x \in X$;

2. compactly dissipative if there exists a nonempty compact subset $K \subseteq X$ such that (1) holds uniformly with respect to x on every compact subset from X.

Remark 2. Every compact dissipative dynamical system is pointwise dissipative. The converse, generally speaking, is not true (see, for example, [4, Ch.I]).

Theorem 2 (see [4, Ch.I]). Suppose that (X, T, π) is a compact dissipative dynamical system, then there exists a nonempty, compact, invariant subset $J \subseteq X$ possessing the following properties:

1. J attracts every compact subset A from X, i.e.,
 \[
 \lim_{t \to +\infty} \rho(\pi(t, x), J) = 0
 \]
 uniformly with respect to $x \in A$;

2. J is orbitally stable, i.e., for all $\varepsilon > 0$ there exists a $\delta = \delta(\varepsilon) > 0$ such that $\rho(x, J) < \delta$ implies $\rho(\pi(t, x), J) < \varepsilon$ for all $t \geq 0$;

3. J is the maximal compact invariant subset of X.

Let M be a positively invariant and closed subset of X. Denote by $J^+_x(M) := \{ p \in X : \text{there exist } \{x_n\} \subseteq M \text{ and } t_n \to +\infty \text{ such that } x_n \to x \text{ and } \pi(t_n, x_n) \to p \text{ as } n \to +\infty \}$.

Lemma 1. Let M be a positively invariant and closed subset of X. If $p_n \to p$, $x_n \to x$ as $n \to \infty$ and $p_n \in J^+_x(M)$, then $p \in J^+_x(M)$.
Proof. Let \(\varepsilon \) be an arbitrary positive number, \(p_n \to p \) and \(x_n \to x \) as \(n \to \infty \). Then there exists a number \(n_0 = n_0(\varepsilon) \in \mathbb{N} \) such that

\[
\rho(p_n, p) < \varepsilon/3 \quad \text{and} \quad \rho(x_n, x) < \varepsilon/3
\]

for all \(n \geq n_0 \). Since \(p_n \in J^+_x(M) \) for all \(n \in \mathbb{N} \), then there exist \(\{x^n_m\} \subseteq M \) and \(\{t^m_n\} \) (for all \(m \in \mathbb{N} \)) such that \(x^n_m \to x_n, t^m_n \to +\infty \) and \(\pi(t^m_n, x^n_m) \to p_n \) as \(m \to \infty \). In particular, for given \(\varepsilon \) there exists \(n < m_n = m_n(\varepsilon) \in \mathbb{N} \) such that

\[
\rho(x^n_m, x_n) < \varepsilon/3 \quad \text{and} \quad \rho(\pi(t^m_n, x^n_m), p_n) < \varepsilon/3
\]

for all \(m \geq m_n \). Denote by \(\bar{x}_n := x^n_{m_n} \) and \(\bar{t}_n := t^m_n > n \). Note that \(\{\bar{x}_n\} \subseteq M \), \(\bar{t}_n \to +\infty \) as \(n \to \infty \) and

\[
\rho(\bar{x}_n, x) = \rho(x^n_{m_n}, x) \leq \rho(x^n_{m_n}, x_n) + \rho(x_n, x) < \varepsilon/3 + \varepsilon/3 < \varepsilon
\]

for all \(n \geq n_0(\varepsilon) \), i.e., \(\bar{x}_n \to x \) as \(n \to \infty \). In addition we have

\[
\rho(\pi(\bar{t}_n, \bar{x}_n), p) = \rho(\pi(t^n_{m_n}, x^n_{m_n}), p) \leq \rho(\pi(t^n_{m_n}, x^n_{m_n}), p_n) + \rho(p_n, p) < \varepsilon/3 + \varepsilon/3 < \varepsilon
\]

for all \(n \geq n_0 \). Thus for the point \(p \) we find the sequence \(\{\bar{x}_n\} \subseteq M \) and \(\bar{x}_n \to +\infty \) as \(n \to \infty \) such that \(\bar{x}_n \to x \) and \(\pi(\bar{t}_n, \bar{x}_n) \to p \) as \(n \to \infty \), i.e., \(p \in J^+_x(M) \). Lemma is proved. \(\square \)

Lemma 2. Let \(M \) be a positively invariant and closed subset of \(X \) and \(x \in X \). The following statements hold:

1. \(J^+_x(M) \subseteq M \) for all \(x \in M \);
2. the set \(J^+_x(M) \) is closed and positively invariant;
3. if \(M \) is compact, then \(J^+_x(M) \) is invariant.

Proof. Let \(p \in J^+_x(M) \) and \(t \in \mathbb{T} \), then there are \(\{x_n\} \) and \(t_n \to +\infty \) such that \(x_n \to x \) and \(\pi(t_n, x_n) \to p \) as \(n \to \infty \). Then we have \(\pi(t, p) = \lim_{n \to \infty} \pi(t_n, x_n) = \lim_{n \to \infty} \pi(t + t_n, x_n) \) and, consequently, \(\pi(t, p) \in J^+_x(M) \) because \(x_n \in M \) and \(M \) is closed and positively invariant. Finally, it is evident that \(J^+_x(M) \subseteq M \) for all \(x \in M \).

Now we will establish the second statement of Lemma. Let \(\{p_n\} \) be a sequence from \(J^+_x(M) \) such that \(p_n \to p \) as \(n \to \infty \), then \(p_n \in J^+_x(M) \) where \(x_n := x \) for all \(n \in \mathbb{N} \). By Lemma 1 \(p \in J^+_x(M) \) because \(p_n \to p \) and \(x_n \to x \) as \(n \to \infty \). Let us show now that the set \(J^+_x(M) \) is positively invariant. Indeed, let \(t \in \mathbb{T} \) and \(p \in J^+_x(M) \), then there are \(\{x_n\} \subseteq M \) and \(t_n \to +\infty \) as \(n \to \infty \) such that \(\pi(t_n, x_n) \to p \) as \(n \to \infty \). Note that \(\pi(t, p) = \lim_{n \to \infty} \pi(t + t_n, x_n) \) and, consequently, \(\pi(t, p) \in J^+_x(M) \).

Suppose that the set \(M \) is compact and \(p \in J^+_x(M) \), then there are \(\{x_n\} \subseteq M \) and \(t_n \to +\infty \) as \(n \to \infty \) such that \(\pi(t_n, x_n) \to p \) as \(n \to \infty \). Let \(t \in \mathbb{T} \) be an arbitrary number, then for sufficiently large \(n \in \mathbb{N} \) we have \(t_n - t \in \mathbb{T} \) because \(t_n \to +\infty \) as \(n \to \infty \). Since the set \(M \) is positively invariant and compact, then without loss of
generality we can suppose that the sequence \(\{\pi(t_n - t, x_n)\} \) is convergent. Denote by \(p_1 \) its limit, then we obtain \(p = \lim_{n \to \infty} \pi(t_n - t + t, x_n) = \lim_{n \to \infty} \pi(t_n - t, x_n) = \pi(t, p_1) \) and, consequently, \(p \in \pi(t, J^+_{\pi}(M)) \), i.e., \(J^+_{\pi}(M) \subseteq \pi(t, J^+_{\pi}(M)) \) for all \(t \in \mathbb{T} \). Thus \(J^+_{\pi}(M) \) is positively and negatively invariant, i.e., it is invariant.

Definition 2. Let \(M \) be a subset of \(X \). A point \(x \in X \) is said to be non-wandering with respect to \(M \) if \(x \in J^+_{\pi}(M) \).

Denote by \(\Omega(M) := \{x \in M : x \in J^+_{\pi}(M)\} \) the set of all non-wandering points of \(M \) with respect to \(M \).

Remark 3. Let \(A \) and \(B \) be two closed and positively invariant subsets of \(X \), then \(\Omega(A) \subseteq \Omega(B) \).

Definition 3. A point \(p \in X \) is said to be:

- Poisson stable in the positive direction if \(x \in \omega_{\pi} \);
- Poisson stable in the negative direction if there exists an entire trajectory \(\gamma_p \in \Phi_{\pi} \) such that \(x \in \alpha_{\gamma_p} \), where \(\alpha_{\gamma_p} := \{q \in X : \text{there exists } t_n \to -\infty \text{ such that } \gamma_p(t_n) \to q \text{ as } n \to \infty\} \);
- Poisson stable if it is Poisson stable in the both directions.

Lemma 3. Let \(M \) be a nonempty, closed and positively invariant set, then the following statements hold:

1. the set \(\Omega(M) \) is closed;
2. if \(p \in M \) is Poisson stable in the positive direction, then \(p \in \Omega(M) \);
3. if the point \(p \in M \) and \(\gamma \in \Phi_p \) is an entire trajectory such that \(\gamma(S) \subseteq M \) and \(p \in \alpha_{\gamma} \), then \(p \in \Omega(M) \).

Proof. The first statement directly follows from Lemma 1 and definition of \(\Omega(M) \).

Let \(p \in M \) and \(p \in \omega_{\pi} \); then there exists a sequence \(t_n \to +\infty \) such that \(\pi(t_n, p) \to p \) as \(n \to \infty \). Let \(p_n := p \) for all \(n \in \mathbb{N} \), then \(p_n \to p \) and \(\pi(t_n, p_n) \to p \) as \(n \to \infty \). This means that \(p \in J^+_{\pi}(M) \), i.e., \(p \in \Omega(M) \).

Let \(p \in M \), \(\gamma \in \Phi_p \), \(\gamma(S) \subseteq M \) and \(p \in \alpha_{\gamma} \). Then there exists a sequence \(t_n \to +\infty \) such that \(\gamma(-t_n) \to p \) as \(n \to \infty \). Denote by \(p_n := \gamma(-t_n) \), then \(p_n \to p \) and \(p = \pi(t_n, p_n) \to p \) as \(n \to \infty \). Thus \(p \in J^+_{\pi}(M) \) and, consequently, \(p \in \Omega(M) \).

Lemma 4. Suppose that \(M \) is a nonempty, compact positively invariant set and \(\mathcal{M} \) is a nonempty, compact minimal subset of \(M \), then \(\mathcal{M} \subseteq \Omega(M) \).

Proof. Let \(p \in \mathcal{M} \) and \(\gamma \in \Phi_p \) be an entire trajectory of \((X, \mathbb{T}, \pi)\) passing through \(p \) at the initial moment such that \(\gamma(S) \subseteq M \). Since \(\mathcal{M} \) is minimal, \(\omega_{\pi} \) and \(\alpha_{\gamma} \) are nonempty, compact and invariant we have \(\alpha_{\gamma} = \omega_{\pi} = \mathcal{M} \). In particular there exists a sequence \(\tau_n \to +\infty \) such that \(p_n := \gamma(-\tau_n) \to p \) as \(n \to \infty \). Note that \(\pi(\tau_n, p_n) = p \) for all \(n \in \mathbb{N} \) and, consequently, \(p \in \Omega(\mathcal{M}) \subseteq \Omega(M) \).
Corollary 1. If M is a nonempty, compact positively invariant set, then $\Omega(M) \neq \emptyset$.

Proof. Let M be a nonempty, compact and positively invariant set of (X, \mathbb{T}, π). By Birkhoff theorem there exists a nonempty minimal subset $\mathcal{M} \subseteq M$ and by Lemma 4 we have $\mathcal{M} \subseteq \Omega(M)$.

Denote by Φ_x the set of all entire trajectories γ_x of (X, \mathbb{T}, π) passing through the point x at the initial moment $t = 0$.

Lemma 5. Suppose that M is a nonempty, compact and positively invariant set. Then $\Omega(M)$ is a nonempty, compact and positively invariant subset of M.

Proof. By Corollary 1 the set $\Omega(M)$ is a nonempty subset. By Lemma 1 the set $\Omega(M)$ is closed. Since $\Omega(M) \subseteq M$ and M is compact, then $\Omega(M)$ is so. Let now $p \in \Omega(M)$ and $t \in \mathbb{T}$, then there are $p_n \to p$ ($p_n \in M$) and $t_n \to +\infty$ as $n \to \infty$ such that $p = \lim_{n \to \infty} \pi(t_n, p_n)$. Note that $\pi(t, p) = \lim_{n \to \infty} \pi(t, \pi(t_n, p_n)) = \lim_{n \to \infty} \pi(t_n, \pi(t, p_n))$ and, consequently, $\pi(t, p) \in J^+_p(M)$ because $\lim_{n \to \infty} \pi(t_n, p_n) = \pi(t, p)$ and $\{\pi(t_n, p_n)\} \subseteq M$. This means that $\pi(t, p) \in \Omega(M)$, i.e., $\Omega(M)$ is positively invariant.

Lemma 6. Let M be a nonempty positively invariant subset of X, then the following statements hold:

1. if (X, \mathbb{T}, π) is pointwise dissipative, then $\Omega(M)$ is nonempty, closed and positively invariant;

2. if the dynamical system (X, \mathbb{T}, π) is compactly dissipative and J is its Levinson center, then the set $\Omega(M)$ is nonempty, compact, positively invariant and $\Omega(M) \subseteq J$;

3. if the dynamically system (X, \mathbb{T}, π) is point dissipative (but not compactly dissipative), then the set $\Omega(X)$, generally speaking, is not compact.

Proof. Since (X, \mathbb{T}, π) is pointwise dissipative, then $\Omega_M := \bigcup\{\omega_x : x \in M\} \subseteq X$ is a nonempty compact invariant subset of (X, \mathbb{T}, π) and by Birkhoff’s theorem in Ω_M there exists at least one compact minimal subset $\mathcal{M} \subseteq \Omega \subseteq X$. By Corollary 1 $\Omega(M) \neq \emptyset$. Let us show that $\Omega(M)$ is closed. If $p = \lim_{n \to \infty} p_n$ and $p_n \in \Omega(M)$, then $p_n \in J^+_p(M)$. By Lemma 1 we have $p \in J^+_p(M)$, i.e., $p \in \Omega(M)$. If $p \in \Omega(M)$ and $t \in \mathbb{T}$, then there are $p_n \in M$ and $t_n \to +\infty$ such that $p = \lim_{n \to \infty} \pi(t_n, p_n)$ and, consequently, $\pi(t, p) = \lim_{n \to \infty} \pi(t, \pi(t_n, p_n)) = \lim_{n \to \infty} \pi(t_n, \pi(t, p_n))$, i.e., $\pi(t, p) \in J^+_{\pi(t, p)}(M)$ because $\lim_{n \to \infty} \pi(t_n, p_n) = \pi(t, p)$. This means that $\pi(t, p) \in \Omega(M)$, i.e., $\Omega(M)$ is positively invariant.

Let (X, \mathbb{T}, π) be compactly dissipative and $x \in \Omega(M)$, then there exist $\{x_n\} \subseteq M$ and $t_n \to +\infty$ such that $x_n \to x$ and $\pi(t_n, x_n) \to x$ as $n \to \infty$. Denote $K_0 := \{x_n\}$, where by bar the closure in X is denoted. Then we have

$$\rho(\pi(t_n, x_n), J) \leq \sup_{p \in K_0} \rho(\pi(t_n, p), J), \quad (2)$$
where J is Levinson center of (X, T, π). Passing to limit in (2) we obtain $x \in J$. By the first item the set $\Omega(X)$ is nonempty, compact and positively invariant.

To prove the third item it is sufficient to construct an example with the corresponding properties. To this end we note that in the works [5] and [8] a dynamical system (X, T, π) with the following properties was constructed:

1. (X, T, π) is point dissipative, but it is not compactly dissipative;
2. $\Omega(X)$ is an unbounded set and, consequently, it is not compact.

Lemma is proved.

Let (X, T, π) be a compact dissipative dynamical system and J be its Levinson center and $M \subseteq X$ be a nonempty, closed and positively invariant subset from X. Denote by $M_1 := \Omega(M)$ the set of all non-wandering (with respect to M) points of (X, T, π). By Lemma 6 the set M_1 is a nonempty, compact and positively invariant subset of J. We denote by $M_2 := \Omega(M_1) \subseteq M_1$ the set of all non-wandering (with respect to M_1) points. By Corollary 1 and Lemma 5 the set M_2 is nonempty, compact and positively invariant. Analogously we define the set $M_3 := \Omega(M_2) \subseteq M_2$ which is also a nonempty, compact and positively invariant set. We can continue this process and we will obtain $M_n := \Omega(M_{n-1})$ for all $n \in \mathbb{N}$. Thus we have a sequence $\{M_n\}_{n \in \mathbb{N}}$ possessing the following properties:

1. for all $n \in \mathbb{N}$ the set M_n is nonempty, compact and positively invariant;
2. $J \supseteq M_1 \supseteq M_2 \supseteq M_3 \supseteq \ldots \supseteq M_n \supseteq M_{n+1} \supseteq \ldots$.

Denote by $M_\lambda := \bigcap_{n=1}^{\infty} M_n$, then M_λ is a nonempty, compact (since the set J is compact) and invariant subset of J. Now we define the set $M_{\lambda+1} := \Omega(M_\lambda)$ and we can continue this process to obtain the following sequence

$$J \supseteq M_1 \supseteq M_2 \supseteq M_3 \supseteq \ldots \supseteq M_n \supseteq M_{n+1} \supseteq \ldots \supseteq M_\lambda \supseteq M_{\lambda+1} \supseteq \ldots \supseteq M_{\lambda+k} \supseteq \ldots.$$

Now construct the set $M_\mu := \bigcap_{k=1}^{\infty} M_{\mu+k}$ and we denote by $M_{\mu+1} := \Omega(M_\mu)$ and so on. Thus we will obtain a transfinite sequence of nonempty, compact and positively invariant subsets

$$J \supseteq M_1 \supseteq M_2 \supseteq M_3 \supseteq \ldots \supseteq M_n \supseteq M_{n+1} \supseteq \ldots \supseteq M_\lambda \supseteq \ldots \supseteq M_\mu \supseteq \ldots.$$

Since J is a nonempty compact set, then in the sequence (3) there is at most a countable family of different elements, i.e., there exists a γ such that $M_{\mu+1} = M_\mu$.

Definition 4. The set $\mathfrak{B}(M) := M_\mu$ is said to be the center of Birkhoff for the closed and positively invariant set M. If $M = X$, then the set $\mathfrak{B}(\pi) := \mathfrak{B}(X)$ is said to be the Birkhoff center of compact dissipative dynamical system (X, T, π).

Lemma 7. Let \((X, T, \pi)\) be a compact dissipative dynamical system and \(\mathcal{B}(\pi)\) be its Birkhoff center. Then the following statements hold:

1. \(\mathcal{B}(\pi)\) is a nonempty, compact and invariant set;
2. \(\mathcal{B}(\pi)\) is a maximal compact invariant subset \(M\) of \(X\) such that \(\Omega(M) = M\).

Proof. By Lemma 6 \(\mathcal{B}(\pi)\) is a nonempty, compact and positively invariant set. To finish the proof of the first statement it is sufficient to establish that the set \(\mathcal{B}(\pi)\) is negatively invariant, i.e., \(\mathcal{B}(\pi) \subset \pi(t, \mathcal{B}(\pi))\) for all \(t \in T\). To this end it is sufficient to show that for all \(x \in \mathcal{B}(\pi)\) the set of all entire trajectories \(\gamma_x\) of \((X, T, \pi)\) passing through the point \(x\) at the initial moment with the condition \(\gamma_x(0) \subset \mathcal{B}(\pi)\) is nonempty. Let \(x \in \mathcal{B}(\pi)\). Since \(\Omega(\mathcal{B}(\pi)) = \mathcal{B}(\pi)\), then there are \(\{x_n\} \subset \mathcal{B}(\pi)\) and \(\{\tau_n\} \subset T\) such that \(x_n \to x\), \(\tau_n \to +\infty\) and \(\pi(\tau_n, x_n) \to x\). Denote by \(\gamma_n\) the function from \(C(S, \mathcal{B}(\pi))\) defined by the equality \(\gamma_n(t) = \pi(t + \tau_n, x_n)\) for all \(t \geq -\tau_n\) and \(\gamma_n(t) = x_n\) for all \(t \leq -\tau_n\). We will show that the sequence \(\{\gamma_n\}\) is relatively compact in \(C(S, \mathcal{B}(\pi))\). Let \(l > 0\). Since the set \(\mathcal{B}(\pi)\) is compact, then it is sufficient to check that the sequence \(\{\gamma_n\}\) is equi-continuous on the interval \([-l, l]\).

If we suppose that it is not true then there exist \(\varepsilon_0 > 0\), \(\delta_n \to 0\) and \(t^1_n, t^2_n \in [-l, l]\) such that

\[
|t^1_n - t^2_n| < \delta_n \quad \text{and} \quad \rho(\gamma_n(t^1_n), \gamma_n(t^2_n)) \geq \varepsilon_0
\]

(4)

for all \(n \in \mathbb{N}\). Without loss of generality we may consider that the sequence \(\{\gamma_n(-l)\}\) is convergent and denote its limit by \(\bar{x}\). From inequality (4) we have

\[
\varepsilon_0 \leq \rho(\gamma_n(t^1_n), \gamma_n(t^2_n)) = \rho(\pi(l + t^1_n, \gamma_n(-l)), \pi(l + t^2_n, \gamma_n(-l)))).
\]

(5)

Passing to limit in inequality (5) as \(n \to \infty\) and taking into consideration (4), we obtain \(\varepsilon_0 \leq \rho(\pi(l + \bar{t}, \bar{x}), \pi(l + \bar{t}, \bar{x})) = 0\), where \(\bar{t} := \lim_{n \to \infty} t^1_n = \lim_{n \to \infty} t^2_n\). The obtained contradiction proves our statement. Thus the sequence \(\{\gamma_n\}\) is equi-continuous on \([-l, l]\) and the set \(\cup_{n=1}^{\infty} \gamma_n([-l, l]) \subset \mathcal{B}(\pi)\) is relatively compact. Taking into account that \(l\) is an arbitrary positive number we conclude that the sequence \(\{\gamma_n\}\) is relatively compact in \(C(S, \mathcal{B}(\pi))\). We may suppose that the sequence \(\{\gamma_n\}\) is convergent. Denote by \(\gamma := \lim_{n \to \infty} \gamma_n\), then \(\gamma(0) = x := \lim_{n \to \infty} \pi(\tau_n, x_n)\) and \(\gamma \in \mathcal{B}(\pi)\) such that \(\gamma(S) \subset \mathcal{B}(\pi) = \Omega(\mathcal{B}(\pi))\), because by construction \(\gamma_n(S) \subset \mathcal{B}(\pi)\) for all \(n \in \mathbb{N}\).

Let now \(M \subset X\) be an arbitrary nonempty, compact and invariant subset of \(X\) with the property \(\Omega(M) = M\). Then by construction of \(\mathcal{B}(M)\) we have \(\mathcal{B}(M) = M\). On the other hand \(M \subset J\), where \(J\) is the Levinson center of the compact dissipative dynamical system \((X, T, \pi)\) and, consequently, \(\mathcal{B}(M) \subset \mathcal{B}(X) = \mathcal{B}(\pi)\). Lemma is completely proved. \(\Box\)
Definition 5. Recall that the mapping \(f : X \mapsto X \) is said to be open if for all \(p \in X \) and \(\delta > 0 \) the set \(f(B(p, \delta)) \) is open.

Let \(p \in \mathcal{B}(\pi) \) and \(\varepsilon > 0 \). Denote by \(\tilde{B}(p, \varepsilon) := B(p, \varepsilon) \cap \mathcal{B}(\pi) \).

Lemma 8. Let \((X, \mathbb{T}, \pi)\) be a compact dissipative dynamical system and \(\mathcal{B}(\pi) \) be its Birkhoff center. Then the following statements hold:

1. for all \(p \in \mathcal{B}(\pi), \varepsilon > 0 \) and \(t_0 \in \mathbb{T} \) there exists a number \(t = t(p, \varepsilon, t_0) > t_0 \) such that \(\pi(t, \tilde{B}(p, \varepsilon)) \cap \tilde{B}(p, \varepsilon) \neq \emptyset \);

2. for all \(\varepsilon > 0, L > 0 \) and \(p \in \mathcal{B}(\pi) \) there are \(q \in \tilde{B}(p, \varepsilon) \), \(\delta = \delta(L, \varepsilon) > 0 \) and \(t > L \) such that
\[
\tilde{B}(q, \delta) \cup \pi(t, \tilde{B}(q, \delta)) \subset \tilde{B}(p, \varepsilon).
\]

Proof. Suppose that under the conditions of Lemma the first statement is not true. Then there exist \(p_0 \in \mathcal{B}(\pi), \varepsilon_0 > 0 \) and \(t_0 \in \mathbb{T} \) such that
\[
\pi(t, \tilde{B}(p_0, \varepsilon_0)) \cap \tilde{B}(p_0, \varepsilon_0) = \emptyset \tag{6}
\]
for all \(t \geq t_0 \). On the other hand since \(p_0 \in \mathcal{B}(\pi) \), then there exist \(\{p_n\} \subseteq \mathcal{B}(\pi) \) and \(t_n \to +\infty \) such that \(\pi(t_n, p_n) \to p \) as \(n \to \infty \) and, consequently,
\[
\pi(t_n, \tilde{B}(p_n, \varepsilon_0)) \cap \tilde{B}(p_0, \varepsilon_0) \neq \emptyset \tag{7}
\]
for all \(n \in \mathbb{N} \). Conditions (6) and (7) are contradictory. The obtained contradiction proves our statement.

Now we will establish the second statement. Let \(\varepsilon > 0, L > 0 \) and \(p \in \mathcal{B}(\pi) \). Since \(p \in J_J^+(\mathcal{B}(\pi)) \), then there are \(q \in \tilde{B}(p, \varepsilon) \) and \(t > L \) such that \(\pi(t, q) \in \tilde{B}(p, \varepsilon) \).

Let \(\mu \) be a positive number such that \(\tilde{B}(\pi(t, q), \mu) \subset \tilde{B}(p, \varepsilon) \). By continuity of the map \(\pi(t, \cdot) : \mathcal{B}(\pi) \mapsto \mathcal{B}(\pi) \) there exists a positive number \(\delta = \delta(t, q, \varepsilon) \) such that
\[
\tilde{B}(q, \delta) \subset \tilde{B}(p, \varepsilon) \text{ and } \pi(t, \tilde{B}(q, \delta)) \subset \tilde{B}(\pi(t, q), \mu) \subset \tilde{B}(p, \varepsilon). \tag*{\square}
\]

Lemma 9. Suppose that \((X, \mathbb{T}, \pi)\) is a dynamical system and the following conditions hold:

1. the space \(X \) is compact;

2. \(X \) is an invariant set, i. e., \(\pi(t, X) = X \) for all \(t \in \mathbb{T} \);

3. \(\Omega(X) = X \).

Then for all \(x \in X, \varepsilon > 0 \) and \(l > 0 \) there exists a number \(t > l \) such that
\[
\pi^{-t}B(x, \varepsilon) \cap B(x, \varepsilon) \neq \emptyset.
\]
Proof. Let $x \in X$ and l, ε be two arbitrary positive numbers. Since $x \in J_\pi^+$, then there are sequences $\{x_n\} \subseteq X$ and $\{t_n\} \subseteq \mathbb{T}$ such that

$$x_n \to x, \ t_n \to +\infty \text{ and } \pi(t_n, x_n) \to x$$

as $n \to \infty$. For the sufficiently large $n \in \mathbb{N}$ we have

$$t_n > l \text{ and } x_n, \pi(t_n, x_n) \in B(x, \varepsilon).$$

Let $\gamma_n \in \Phi_{\pi(t_n, x_n)}$ be a full trajectory of (X, \mathbb{T}, π) passing through $\pi(t_n, x_n)$ at the initial moment $t = 0$ such that $\gamma_n(s) = \pi(s + t_n, x_n)$ for all $s \geq -t_n$. Then $\gamma_n(-t_n) = x_n \in B(x, \varepsilon)$ and $x_n = \gamma_n(-t_n) \in \pi^{-t_n}(x_n) \subseteq \pi^{-t_n}B(x, \varepsilon)$. Thus we will have

$$x_n \in \pi^{-t_n}B(x, \varepsilon) \bigcap B(x, \varepsilon) \neq \emptyset$$

for all sufficiently large $n \in \mathbb{N}$. □

Corollary 2. Under the conditions of Lemma 9 for all $x \in X$, $\varepsilon > 0$ and $l > 0$ there exists $t > 1$ such that $B(x, \varepsilon) \bigcap \pi^tB(x, \varepsilon) \neq \emptyset$.

Proof. By Lemma 9 for all $x \in X$, $\varepsilon > 0$ and $l > 0$ there exists $t > l$ such that $\pi^{-t}B(x, \varepsilon) \bigcap B(x, \varepsilon) \neq \emptyset$ and, consequently,

$$\pi^{t}B(x, \varepsilon) \bigcap B(x, \varepsilon) \subseteq B(x, \varepsilon) \bigcap \pi^{t}B(x, \varepsilon) \neq \emptyset.$$ □

Corollary 3. Suppose that the dynamical system (X, \mathbb{T}, π) is compact dissipative and $\mathfrak{B}(\pi)$ is its Birkhoff's center, then for all $x \in \mathfrak{B}(\pi)$, $\varepsilon > 0$ and $l > 0$ there exists a number $t > l$ such that $\pi^{-t}\overline{B}(x, \varepsilon) \bigcap \overline{B}(x, \varepsilon) \neq \emptyset$.

Proof. This statement directly follows from Lemmas 7 and 9. □

Theorem 3. Suppose that (X, \mathbb{T}, π) is a compact dissipative dynamical system, for all $t > 0$ the mapping $\tilde{\pi}(t, \cdot) := \pi(t, \cdot)\big|_{\mathfrak{B}(\pi)}$ is open, then the set of all Poisson stable in the positive direction points of (X, \mathbb{T}, π) is dense in $\mathfrak{B}(\pi)$, i.e., $\mathfrak{B}(\pi) = \overline{P(\pi)}$.

Proof. By Lemma 3 we have $P(\pi) \subseteq \mathfrak{B}(\pi)$ and, consequently, $P(\pi) \subseteq \mathfrak{B}(\pi)$. To finish the proof of Theorem it is sufficiently to show that $P(\pi) \supseteq \mathfrak{B}(\pi)$.

Let $p \in \mathfrak{B}(\pi)$ and ε be an arbitrary (sufficient small) positive number. Let $\{t_n\}$ be an increasing sequence such that $t_n \to +\infty$. By Lemma 8 (item 2) there exists $t_1 > t_1$ such that

$$\tilde{B}[x_1, \varepsilon_1] \subseteq \tilde{B}[p, \varepsilon] \text{ and } \pi(t_1, \tilde{B}[x_1, \varepsilon_1]) \subseteq \tilde{B}[p, \varepsilon].$$

Since the mapping $\pi(t_1, \cdot)$ is open, then we can choose $x_1 \in \mathfrak{B}(\pi)$ and $\varepsilon_1 > 0$ such that

$$\tilde{B}[x_1, \varepsilon_1] \subseteq \pi(t_1, \tilde{B}[p, \varepsilon]) \subseteq \tilde{B}[p, \varepsilon].$$
By Lemma 8 there is $t_2 > \tau_2$ such that we will have
\[\bar{B}[x_2, \varepsilon_2] \subseteq \bar{B}[x_1, \varepsilon_1] \quad \text{and} \quad \pi(t_2, \bar{B}[x_2, \varepsilon_2]) \subseteq \bar{B}[x_1, \varepsilon_1]. \]

Since the mapping $\pi(t_2, \cdot)$ is open we can again choose $x_2 \in \mathcal{B}(\pi)$ and $0 < \varepsilon_2 < \varepsilon_1/2$ such that
\[\bar{B}[x_3, \varepsilon_3] \subseteq \bar{B}[x_2, \varepsilon_2] \quad \text{and} \quad \pi(t_3, \bar{B}[x_3, \varepsilon_3]) \subseteq \bar{B}[x_2, \varepsilon_2]. \]

Reasoning analogously we can construct sequences \{${x_n}$\} $\subseteq \mathcal{B}(\pi)$ and \{${\varepsilon_n}$\} such that $\varepsilon_n < \varepsilon_{n-1}/2$, $\bar{B}[x_n, \varepsilon_n] \subseteq \bar{B}[x_{n-1}, \varepsilon_{n-1}]$ and $\pi(t_n, \bar{B}[x_n, \varepsilon_n]) \subseteq \bar{B}[x_{n-1}, \varepsilon_{n-1}]$ for all $n \in \mathbb{N}$, where $\varepsilon_0 := \varepsilon$ and $x_0 := p$. Since $\mathcal{B}(\pi)$ is a nonempty compact set, then
\[\Lambda := \bigcap_{n=0}^{\infty} \bar{B}(x_n, \varepsilon_n) \neq \emptyset \quad \text{and it consists of a unique point. Let } \{x\} = \Lambda. \]
We will show that the point x is Poisson stable in the positive direction. In fact, if $L > 0$ is a sufficiently large number and $\delta > 0$, respectively, sufficiently small number, then we choose a natural number $m \in \mathbb{N}$ with the condition that $t_m > L$ and $\varepsilon_m < \delta$, then $\pi(t_n, \bar{B}[x_n, \varepsilon_n]) \subseteq \bar{B}[x_m, \varepsilon_m] \subseteq \bar{B}[x, \delta]$ for all $n > m$. In particular $\pi(t_n, x) \in \bar{B}[x, \delta]$ for all $n > m$, i.e., $x \in \omega_x$. Thus $x \in \bar{B}(p, \varepsilon)$ and, consequently, $\mathcal{B}(\pi) \subseteq \bar{P}(\pi)$. Theorem is proved.

Remark 4. 1. Note that the mappings $\bar{\pi}(t, \cdot)$ ($t \in \mathbb{T}$) are open, if on $\mathcal{B}(\pi)$ the dynamical system (X, \mathbb{T}, π) is invertible, i.e., for all $t \in \mathbb{T}$ the mapping $\bar{\pi}(t, \cdot) : \mathcal{B}(\pi) \to \mathcal{B}(\pi)$ is a homeomorphism.

2. If the dynamical system (X, \mathbb{T}, π) is invertible on $\mathcal{B}(\pi)$, then by Theorem 1.14 [14, Ch.III] (see also Proposal 1.1 from [1], where the analogue of Theorem 1.4 for the discrete dynamical systems was proved) in the set $\mathcal{B}(\pi)$ the set of all Poisson stable (both in the positive and negative directions) points from X is dense.

Let (X, \mathbb{T}, π) be a compact dissipative dynamical system. Recall that a compact set $M \subseteq X$ is called a weak attractor of the dynamical system (X, \mathbb{T}, π) if $\omega_x \cap M \neq \emptyset$ for all $x \in X$. In this section we establish the relationship between weak attractors of the dynamical system (X, \mathbb{T}, π) and its Levinson center.

Theorem 4 (see [4, Ch.I]). Let (X, \mathbb{T}, π) be compactly dissipative, J be its Levinson center and M be a compact weak attractor of the dynamical system (X, \mathbb{T}, π). Then $J = J^+(M)$.

Denote by $J^+_x := \{p \in X : \text{there exist the sequences } x_n \to x \text{ and } t_n \to +\infty \text{ such that } \pi(t_n, x_n) \to p \text{ as } n \to \infty\}$ and $J^+(M) := \bigcup\{J^+_x : x \in M\}$.

Lemma 10. Let $M \subseteq X$ be a nonempty, compact, positively invariant and minimal subset of X. Then the following statements hold:

1. the set M is invariant, i.e., $\pi(t, M) = M$ for all $t \in \mathbb{T}$;

2. for every $x \in M$ each full trajectory $\gamma \in \Phi_x$ is Poisson stable, i.e., $x \in \omega_x = \alpha\gamma$.

Proof. Let \(t_0 \in \mathbb{T} \) and \(M := \pi(t_0, M) \), then \(M' \subseteq M \) and \(\pi(t, M') = \pi(t + t_0, M) \subseteq M \). Since \(M \) is a nonempty, compact and positively invariant set, then the set \(M' \) is so. Taking into consideration that \(M \) is a minimal set we conclude that \(M = \pi(t_0, M) \) for all \(t_0 \in \mathbb{T} \) and, consequently, it is invariant.

Let now \(x \in M \) be an arbitrary point from \(M \), then \(\omega_x \) is a nonempty, compact and positively invariant subset of \(M \). Since the set \(M \) is minimal, then we have \(\omega_x = M \). Let now \(\gamma \in \Phi_x \) be an arbitrary full trajectory of \((X, \mathbb{T}, \pi)\) with the properties: \(\gamma(0) = x \) and \(\gamma(S) \subseteq M \), then its \(\alpha \)-limit set \(\alpha_{\gamma} \subseteq M \) is a nonempty and compact subset of \(\omega_x = M \). If \(p \in \alpha_{\gamma} \), then there exists a sequence \(s_n \to -\infty \) such that \(p = \lim_{n\to\infty} \gamma(s_n) \). For all \(t \in \mathbb{T} \) the sequence \(\{ \gamma(t+s_n) \} \subseteq M \) is relatively compact and, consequently, without loss of generality, we may suppose that \(\{ \gamma(t+s_n) \} \) converges. Denote by \(p_t \) its limit, i.e., \(p_t := \lim_{n\to\infty} \gamma(t+s_n) \). Note that

\[
\pi(t, p) = \lim_{n\to\infty} \pi(t, \gamma(s_n)) = \lim_{n\to\infty} \gamma(t+s_n) \in \alpha_{\gamma} \subseteq M
\]

for all \(t \in \mathbb{T} \) and, consequently, \(\omega_p \) is a nonempty, compact, positively invariant subset of \(M \). On the other hand we have \(\omega_p \subseteq \alpha_{\gamma} \subseteq M \). Since the set \(M \) is minimal, then we obtain \(M = \omega_p \subseteq \alpha_{\gamma} \subseteq M \) and, consequently, \(\alpha_{\gamma} = M \). Thus we have \(x \in \omega_x = \alpha_{\gamma} = M \). Lemma is completely proved.

Theorem 5. Let \((X, \mathbb{T}, \pi)\) be a compact dissipative dynamical system, \(J \) be its Levinson center and \(\mathfrak{B}(\pi) \) be the Birkhoff center of \((X, \mathbb{T}, \pi)\). Then the following equality takes place: \(J = J^+(\mathfrak{B}(\pi)) \).

Proof. By Lemmas 3 and 6 we have \(\overline{\mathcal{P}(\pi)} \subseteq \mathfrak{B}(\pi) \subseteq J \) and \(\overline{\mathcal{P}(\pi)} \) is a nonempty and compact subset of \(J \). It is not difficult to show that the set \(\mathcal{P}(\pi) \) is a weak attractor for \((X, \mathbb{T}, \pi)\). In fact, let \(x \in X \) be an arbitrary point of \(X \). Since the dynamical system \((X, \mathbb{T}, \pi)\) is compact dissipative, then the \(\omega \)-limit set \(\omega_x \) of the point \(x \) is a nonempty, compact and positively invariant subset of \(X \). By theorem of Birkhoff in \(\omega_x \) there exists a nonempty, compact, positively invariant and minimal subset \(M \subseteq \omega_x \). By Lemma 10 every point \(p \) from \(M \) is Poisson stable and, consequently, \(M \subseteq \mathcal{P}(\pi) \subseteq \overline{\mathcal{P}(\pi)} \subseteq \mathfrak{B}(\pi) \). Thus we have \(M \subseteq \omega_x \cap \mathfrak{B}(\pi) \) for each \(x \in X \), i.e., \(\mathfrak{B}(\pi) \) is a weak attractor of \((X, \mathbb{T}, \pi)\). Now to finish the proof of Theorem it is sufficient to apply Theorem 4.

3 Chain recurrent motions

Let \(\Sigma \subseteq X \) be a compact positively invariant set, \(\varepsilon > 0 \) and \(t > 0 \).

Definition 6. The collection \(\{ x = x_0, x_1, x_2, \ldots, x_k = y; t_0, t_1, \ldots, t_k \} \) of the points \(x_i \in \Sigma \) and the numbers \(t_i \in \mathbb{T} \) such that \(t_i \geq t \) and \(\rho(x_i x_{i+1}) < \varepsilon \) \((i = 0, 1, \ldots, k-1) \) is called (see, for example, [2, 3, 6, 7, 12] and the bibliography therein) a \((\varepsilon, t, \pi)\)-chain joining the points \(x \) and \(y \).

Remark 5. Without loss of generality we can suppose always that \(t_i \leq 2t \), where \(t_i \) and \(t \) the numbers figuring in Definition 6 (see, for example, [2, Ch.I]).
We denote by $P(\Sigma)$ the set \(\{ (x, y) : x, y \in \Sigma, \forall \varepsilon > 0 \forall t > 0 \exists (\varepsilon, t, \pi) \text{-chain joining } x \text{ and } y \} \). The relation $P(\Sigma)$ is closed, invariant and transitive \([2, 6, 10–12]\).

Definition 7. The point $x \in \Sigma$ is called chain recurrent (in Σ) if $(x, x) \in P(\Sigma)$.

We denote by $R(\Sigma)$ the set of all chain recurrent (in Σ) points from Σ.

Remark 6. Note that if Σ_1 and Σ_2 are two positively invariant subsets of (X, T, π) with condition $\Sigma_1 \subseteq \Sigma_2$, then $R(\Sigma_1) \subseteq R(\Sigma_2)$.

Definition 8. Let $A \subseteq X$ be a nonempty positively invariant set. The set A is called (see, for example, \([9]\)) internally chain recurrent if $R(A) = A$, and internally chain transitive if the following stronger condition holds: for any $a, b \in A$ and any $\varepsilon > 0$ and $t > 0$, there is an (ε, t, π)-chain in A connecting a and b.

The set of all chain recurrent points for (X, T, π) is denoted by $R(\Sigma)$, i.e., $R(\Sigma) := \{ x \in \Sigma : (x, x) \in P(\Sigma) \}$. On $R(\Sigma)$ we will introduce a relation \sim as follows: $x \sim y$ if and only if $(x, y) \in P(\Sigma)$ and $(y, x) \in P(\Sigma)$. It is easy to check that the introduced relation \sim on $R(\Sigma)$ is a relation of equivalence and, consequently, it is easy to decompose it into the classes of equivalence \(\{ R_\lambda : \lambda \in \mathcal{L} \} \) (internally chain transitive subsets), i.e., $R(\Sigma) = \sqcup\{ R_\lambda : \lambda \in \mathcal{L} \}$. By Proposal 2.6 from \([2]\) (see also \([6]\) and \([10–12]\) for the semi-group dynamical systems) the defined above components of the decomposition of the set $R(\Sigma)$ are closed and positively invariant.

Lemma 11 (see \([9]\)). Let $x \in X$ and $\gamma \in \Phi_x$. The ω-limit (respectively, α-limit) set of positive (respectively, negative) pre-compact orbit of the point x is internally chain transitive, i.e., $R(\omega_x) = \omega_x$ (respectively, $R(\alpha_\gamma) = \alpha_\gamma$).

Let (X, T, π) be a compact dissipative dynamical system and J be its Levinson center. Denote by $R(\pi) := R(J)$.

Problem. Suppose that (X, T, π) is a compact dissipative dynamical system and J is its Levinson center. To prove that $R(\pi) = R(X)$ or to construct a corresponding counterexample.

Remark 7. In the connection with the Problem formulated above it is interesting to note that in the works \([5,8]\) an example of dynamical system (X, T, π) is constructed which posses the following properties:

1. (X, T, π) is point dissipative;
2. (X, T, π) is asymptotically compact;
3. (X, T, π) is not compact dissipative;
4. $R(X)$ is an unbounded subset of X.

Denote by $C(T \times X, X)$ the set of all continuous functions $\pi : T \times X \mapsto X$ equipped with the compact-open topology. If $K \subset X$ is a compact subset from X, then we denote by

$$d_K(f, g) := \sup_{L>0} \min \{ \sup_{0 \leq t \leq L} \rho(f(t, x), g(t, x)), L^{-1} \}$$

(11)
and \(\mathcal{D} := \{ d_K : K \in C(X) \} \) a family of pseudo-metrics which generates the compact-open topology on \(C(\mathbb{T} \times X, X) \), where \(C(X) \) is the family of all compact subsets from \(X \).

Remark 8. Note that for all \(\varepsilon > 0 \) the inequality \(d_K(f, g) < \varepsilon \) is equivalent to
\[
\sup_{0 \leq t \leq \varepsilon, x \in K} \rho(f(t, x), g(t, x)) < \varepsilon \text{ (see, for example, [13, Ch.I] or [14, Ch.IV]).}
\]

Definition 9. Recall [2, Ch.I] that the collection \([x_1, x_2, \ldots, x_k := y; t_1, t_2, \ldots, t_{k-1}]\) is called a generalized chain joining \(x \) and \(y \) if the following conditions are fulfilled:

1. \(t_i \geq t \);
2. \(\rho(x, x_1) < \varepsilon \);
3. \(\rho(\pi(t_i, x_i), x_{i+1}) < \varepsilon \) \((1 = 1, \ldots, k - 1)\).

Remark 9. In the book [2, Ch.I] it is shown that in the definition of chain recurrence the \((\varepsilon, t, f)\)-chains can be replaced by generalized \((\varepsilon, t, f)\)-chains.

Theorem 6. Suppose that the following conditions hold:

1. \(\mathcal{M} \subset C(\mathbb{T} \times X, X) \) is a compact subset from \(C(\mathbb{T} \times X, X) \);
2. for all \(\pi \in \mathcal{M} \) the dynamical system \((X, \mathbb{T}, \pi)\) is compact dissipative and \(J_\pi \) is its Levinson center;
3. the set \(J := \bigcup \{ J_\pi : \pi \in \mathcal{M} \} \) is compact.

Then the mapping \(F : \mathcal{M} \mapsto 2^J \) defined by equality \(F(\pi) := \mathcal{R}(\pi) \) is upper semi-continuous, where by \(2^J \) the space of all compact subsets from \(J \) equipped with the Hausdorff metric is denoted.

Proof. Let \(\pi_n, \pi \in \mathcal{M} \) and \(d_f(\pi_n, \pi) \to 0 \), \(a_n \in \mathcal{R}(\pi_n) \) and \(a_n \to a \) as \(n \to \infty \). We need to show that \(a \in \mathcal{R}(\pi) \). Let \(\varepsilon \) be an arbitrary positive number and \(0 < \delta < \varepsilon / 4 \). There exists a number \(n_0 \in \mathbb{N} \) such that \(\rho(a_n, a) < \delta \) and \(d_f(\pi_n, \pi) < \delta \) for all \(n \geq n_0 \). Since \(a_n \in \mathcal{R}(\pi_n) \), then there is a \((\delta, \varepsilon^{-1}, \pi_n)\)-chain from \(a_n \) to \(a_n \), i.e., there exists a collection \(\{ x_0 = a_n, x_1, \ldots, x_{k-1}, x_k = a_n; t_0, \ldots, t_{k-1} \} \) such that
\[
\rho(\pi_n(t_i, x_i), x_{i+1}) < \delta, \quad \varepsilon^{-1} \leq t_i \leq 2 \varepsilon^{-1} \text{ (} i = 0, 1, \ldots, k - 1 \text{).}
\]

Thus the collection \([x_0, x_1, \ldots, x_{k-1}; a; t_0, t_1, \ldots, t_{k-1}]\) is a generalized \((2\delta, \varepsilon^{-1}, \pi_n)\)-chain joining \(a \) with \(a \). From the inequality \(d_f(\pi_n, \pi) < \delta \) it follows that
\[
\rho(\pi_n(t, x), \pi(t, x)) < \delta \text{ (} x \in J, \ 0 \leq t \leq \delta^{-1} < 4 \varepsilon^{-1}\)
\]
and, consequently, the above indicated generalized \((2\delta, \varepsilon^{-1}, \pi_n)\)-chain is also a generalized \((\varepsilon, \varepsilon^{-1}, \pi)\) chain from \(a \) to \(a \). Since \(\varepsilon \) is an arbitrary positive number, then \(a \in \mathcal{R}(\pi) \). \(\Box \)
Lemma 12. Suppose that \((X, T, \pi)\) is compact dissipative and \(J\) if its Levinson center, then \(\omega_x \subseteq \mathcal{R}(J) = \mathcal{R}(\pi)\) for all \(x \in X\).

Proof. Let \(x \in X\) be an arbitrary point. Since \((X, T, \pi)\) is compact dissipative, then \(\omega_x\) is a nonempty, compact, and invariant subset of \(J\), then \(\mathcal{R}(\omega_x) \subseteq \mathcal{R}(J) = \mathcal{R}(\pi)\). By Lemma 11 we have \(\omega_x = \mathcal{R}(\omega_x)\) and, consequently, \(\omega_x \subseteq \mathcal{R}(\pi)\). \(\square\)

Lemma 13 (see [4, Ch.IV]). If the compact invariant set \(\Sigma\) from \(X\) contains only a finite number of minimal sets, then the relation \(\sim\) decomposes the set \(\mathcal{R}(\Sigma)\) into the finite number of different classes of equivalence (internally chain transitive sets).

Remark 10. 1. Lemma 13 was established in [4, Ch.IV] for the two-sided (group) dynamical systems.
2. For the one-sided (semi-group) dynamical systems this statement may be proved by slight modifications of the arguments from [4, Ch.IV].
3. For two-sided dynamical systems \((T = \mathbb{S})\) with infinite number of compact minimal subsets Lemma 13 remains true if in addition the dynamical system \((X, \mathbb{S}, \pi)\) satisfies some condition of hyperbolicity (see Theorem 4.1 [4, Ch.IV]).

Lemma 14 (see [9]). Let \(M\) be an isolated (local maximal) invariant set and \(\mathcal{R}\) be a compact internally chain transitive set for \((X, T, \pi)\). Assume that \(M \cap \mathcal{R} \neq \emptyset\) and \(M \subseteq \mathcal{R}\).

Then

a. there exists a point \(u \in \mathcal{R} \setminus M\) such that \(\omega_u \subseteq M\);

b. there exists a point \(w \in \mathcal{R} \setminus M\) and an entire trajectory \(\gamma \in \Phi_w\) such that \(\alpha_\gamma \subseteq M\).

Theorem 7. Assume that the following conditions hold:

1. the dynamical system \((X, T, \pi)\) is compactly dissipative and \(J\) is its Levinson center;
2. there exists a finite number \(n\) of compact minimal subsets \(M_i \subseteq J\) \((i = 1, 2, \ldots, k)\) of \((X, T, \pi)\);
3. the collection of subsets \(\{M_1, M_2, \ldots, n\}\) does not admit \(k\)-cycles;
4. for all \(x \in X\) there exists a number \(i \in \{1, 2, \ldots, n\}\) such that \(\omega_x = M_i\).

Then any compact internally chain transitive set \(\mathcal{R}_\lambda(\pi)\) is a minimal set of \((X, T, \pi)\), i.e., there exists \(i \in \{1, 2, \ldots, n\}\) such that \(\mathcal{R}_\lambda = M_i\).

Proof. Let \(\mathcal{R}_\lambda(\pi)\) be a compact internally chain transitive set for \((X, T, \pi)\). Since \(\mathcal{R}_\lambda(\pi)\) is a compact positively invariant set, then by Birkhoff’s theorem in \(\mathcal{R}_\lambda(\pi)\) there exists a nonempty compact minimal set \(M_i \subseteq \mathcal{R}_\lambda(\pi)\) \((i \in \{1, 2, \ldots, n\}\). We will show that \(\mathcal{R}_\lambda(\pi) = M_i\). If we suppose that it is not true, then by Lemma 14 there exists a point \(x_1 \in \mathcal{R}_\lambda(\pi) \setminus M_i\) and an entire trajectory \(\gamma_1 \in \Phi_{x_1}\) such that
α_{x_1} \subseteq M_{i_1}. By conditions of Theorem there exists a number i_2 \in \{1, 2, \ldots, n\} such that \omega_{x_1} = M_{i_2}. Since M_{i_2} \subseteq \mathcal{R}_\lambda(\pi) and \mathcal{R}_\lambda(\pi) \neq M_{i_2} then by Lemma 14 there exists a point x_2 \in \mathcal{R}_\lambda(\pi) \setminus M_{i_2} and an entire trajectory \gamma_2 \in \Phi_{x_2} such that \alpha_{x_2} = M_{i_2} and there exists a number i_3 \in \{1, 2, \ldots, n\} such that \omega_{x_2} = M_{i_3}. Since there is only a finite number of \textit{M}'s, we will eventually arrive at a cyclic chain of some minimal sets of (X, T, \pi), which contradicts our assumption.

Corollary 4. Under the conditions of Theorem 7 we have \mathcal{R}(\pi) = \prod_{i=1}^{n} M_i.

Theorem 8. Suppose that (X, T, \pi) is a bounded dissipative dynamical system and J is its Levinson center. Then for every \delta > 0 and B \in \mathcal{B}(X) there exists L = L(\delta, B) > 0 \text{ (}L \in \mathbb{T}\text{)} such that

\[\pi([0, L], x) \cap B(\mathcal{R}(J), \delta) \neq \emptyset \text{ for all } x \in B, \]

i.e., for all x \in B there exists \ell = \ell(x) \in [0, L] such that

\[\pi(\ell, x) \in B(\mathcal{R}(J), \delta). \]

Proof. If we suppose that the statement of Theorem is not true, then there are \delta_0 > 0, B_0 \in \mathcal{B}(X), L_n \geq n and x_n \in B_0 such that

\[\rho(\pi(t, x_n), \mathcal{R}(J)) \geq \delta_0 \]

for all t \in [0, L_n]. Let \(s_n := [L_n/2] \) and \(\tilde{x}_n := \pi(s_n, x_n) \). Note that

\[\rho(\tilde{x}_n, J) = \rho(\pi(s_n, x_n), J) \leq \beta(\pi(s_n, B_0), J) \to 0 \]

as \(n \to \infty \), because \(s_n \to \infty \) and \(J \) attracts the bounded subset \(B_0 \) as \(t \to +\infty \).

From (13) it follows that the sequence \{\tilde{x}_n\} is relatively compact. Thus, without loss of generality we can suppose that the sequence \{\tilde{x}_n\} is convergent. Denote \(\hat{x} = \lim_{n \to \infty} \tilde{x}_n \), then by (13) we obtain \(\hat{x} \in J \). On the other hand by (12) we obtain

\[\rho(\pi(t, \hat{x}_n), \mathcal{R}(J)) = \rho(\pi(t + s_n, x_n), \mathcal{R}(J)) \geq \delta_0 \]

for all t \in [-s_n, s_n]. Let \(\gamma \in \mathcal{F}_{\hat{x}} \) be the full trajectory of dynamical system \((X, T, \pi) \) passing through \{x\} at the initial moment \(t = 0 \) and defined by equality \(\gamma(t) = \lim_{n \to \infty} \pi(t + s_n, x_n) \) for all \(t \in \mathbb{S} \). Note that \(\gamma(\mathbb{S}) \subseteq J \) because for every \(t \in \mathbb{S} \) we have

\[\rho(\pi(t + s_n, x_n), J) \leq \rho(\pi(t + s_n, B_0), J) \]

for sufficiently large \(n \), and passing to limit in (15) as \(n \to \infty \) we obtain \(\gamma(t) \in J \) for all \(t \in \mathbb{S} \). By Lemma 12 we have \(\omega_{\hat{x}} \subseteq \mathcal{R}(J) \). But from (14) it follows that \(\gamma(t) \notin \mathcal{R}(J) \) for all \(t \in \mathbb{S} \) and, consequently, \(\omega_{\hat{x}} \cap \mathcal{R}(J) = \emptyset \). The obtained contradiction proves our statement. Theorem is proved.

Corollary 5. Suppose that the following conditions hold:
1. \((X, \mathbb{T}, \pi)\) is a bounded dissipative dynamical system and \(J\) is its Levinson center;

2. \((X, \mathbb{T}, \pi)\) is a gradient system;

3. \(\text{Fix}(\pi) = \{p_1, p_2, \ldots, p_m\}\);

4. \(\text{Fix}(\pi)\) does not contain any \(k\)-cycle \((k \geq 1)\).

Then for every \(\delta > 0\) and \(B \in \mathcal{B}(X)\) there exists \(L = L(\delta, B) > 0\) \((L \in \mathbb{T})\) such that

\[
\pi([0, L], B) \cap B(\text{Fix}(\pi), \delta) \neq \emptyset,
\]

i. e., for all \(x \in B\) there exists \(l = l(x) \in [0, L]\) such that

\[
\pi(l, x) \in B(\text{Fix}(\pi), \delta).
\]

Proof. This statement follows from Theorems 7 and 8. \(\square\)

Theorem 9. Suppose that the following conditions are fulfilled:

1. the dynamical system \((X, \mathbb{T}, \pi)\) admits a compact global attractor \(J\) which attracts every bounded subset \(B \in \mathcal{B}(X)\);

2. \(\mathcal{R}(J)\) consists of finite number of different classes of equivalence \(\mathcal{R}_1, \mathcal{R}_2, \ldots, \mathcal{R}_k\).

Then for every \(\delta > 0\) there exists \(\delta \in (0, \delta)\) such that for every \(x \in B(\mathcal{R}_i, \delta)\) \((i = \overline{1, k})\) with \(\pi(t, x) \in B(\mathcal{R}_i, \delta)\) for all \(t \in [0, T]\) and \(\pi(T, x) \notin B(\mathcal{R}_i, \delta)\) we have \(\pi(t, x) \notin B(\mathcal{R}_i, \delta)\) for each \(t \geq T\) (i. e., never returns again in \(B(\mathcal{R}_i, \delta)\) for all \(t \geq T\)).

Proof. By Lemma 4.3 [4, Ch.IV] in the collection \(\{\mathcal{R}_1, \mathcal{R}_2, \ldots, \mathcal{R}_k\}\) there is no \(r\)-cycles \((r \geq 1)\). We will show that if we suppose that the statement of Theorem is not true, then we will have a contradiction this the fact formulated above. In fact. Suppose that Theorem is wrong, then there are \(\mathcal{R}_{i_0}, B(\mathcal{R}_{i_0}, \delta_0)\) \((\delta_0 > 0), \)

\[T_n \in \mathbb{T}, T_n' > T_n\]

and a sequence \(\{x_n\} \subset B(\mathcal{R}_{i_0}, \delta_0)\) such that

\[
\pi(T_n, x_n) \notin B(\mathcal{R}_{i_0}, \delta_0) \quad \text{and} \quad \pi(T_n', x_n) \in B(\mathcal{R}_{i_0}, 1/n).
\]

Without loss of generality we can suppose that \(\pi(t, x_n) \in B(\mathcal{R}_{i_0}, \delta_0)\) for all \(t \in [0, T_n)\).

Note that \(T_n \to \infty\) as \(n \to \infty\). If we suppose that it is not so, then we can consider that \(\{T_n\}\) is bounded (otherwise we can extract a subsequence \(\{T_{k_n}\}\) which converges to \(+\infty\) as \(n\) goes to \(+\infty\)), i. e., there exists a number \(L > 0\) such that

\[
\pi(t, x_n) \notin B(\mathcal{R}_{i_0}, \delta_0)
\]
for all $t \geq L$ and $n \in \mathbb{N}$. Since $x_n \in B(\mathcal{R}_{i_0}, 1/n)$, then without loss of generality we can suppose that $\{x_n\}$ is convergent. Denote by $p := \lim_{n \to \infty} x_n$, then $p \in \mathcal{R}_{i_0}$ and passing into limit in (16) as $n \to \infty$ we obtain
\[
\pi(t, p) \notin B(\mathcal{R}_{i_0}, \delta_0)
\] (17)
for all $t \geq L$. On the other hand
\[
\pi(t, p) \in \mathcal{R}_{i_0}
\] (18)
for all $t \geq 0$ because the set \mathcal{R}_{i_0} is invariant. Relations (17) and (18) are contradictory. The obtained contradiction proves our statement.

Denote by $\tilde{x}_n := \pi(T_n, x_n)$, then we have

1. $\tilde{x}_n \notin B(\mathcal{R}_{i_0}, \delta_0)$ for all $n \in \mathbb{N}$;
2. $\pi(t, \tilde{x}_n) = \pi(t + T_n, x_n) \in B(\mathcal{R}_{i_0}, \delta_0)$ for all $-T_n \leq t < 0$;
3. $\pi(T'_n, \tilde{x}_n) \in B(\mathcal{R}_{i_0}, 1/n)$ for all $n \in \mathbb{N}$, where $\tilde{T}'_n := T'_n - T_n > 0$.

Since $x_n \in B(\mathcal{R}_{i_0}, 1/n)$, $T_n \to +\infty$ and (X, T, π) is compactly dissipative, then the sequence $\{\tilde{x}_n\}$ is relatively compact and without loss of generality we can suppose that it is convergent. Denote by $\tilde{x} := \lim_{n \to \infty} \tilde{x}_n$ and consider $\gamma \in \Phi_{\tilde{x}}$, where $\gamma(t) := \lim_{n \to \infty} \pi(t + T_n, x_n)$ for all $t \in \mathbb{S}$.

Note that $\tilde{T}'_n \to +\infty$ as $n \to \infty$. In fact, if we suppose that it is not true, then without loss of generality we can consider that $\{\tilde{T}'_n\}$ is bounded, for example, $\tilde{T}'_n \in [0, L]$ for all $n \in \mathbb{N}$, where L is some positive number. Let $l := \lim_{n \to \infty} \tilde{T}'_n$, then $l \in [0, L]$ (it is necessary that we can extract a convergent subsequence from $\{\tilde{T}'_n\}$). Then from (iii) we obtain $\pi(l, \tilde{x}) \in \mathcal{R}_{i_0}$ and, consequently, $\tilde{x} \in \mathcal{R}_{i_0}$ because \mathcal{R}_{i_0} is invariant. The obtained contradiction proves our statement.

We will show that $\gamma(t) \in J$ for all $t \in \mathbb{S}$. In fact
\[
\rho(\pi(t + T_n, x_n), J) \leq \beta(\pi(t + T_n, K), J) \to 0
\]
as $n \to \infty$, where $K := \overline{\{x_n\}}$ and by bar the closure in the space X is denoted. Now we note that $\gamma(t) \in B(\mathcal{R}_{i_0}, \delta_0)$ for all $t < 0$. Since the set \mathcal{R}_{i_0} is local maximal, then without loss of generality we can suppose that in $B(\mathcal{R}_{i_0}, \delta_0)$ the invariant set \mathcal{R}_{i_0} is maximal and, consequently, $\alpha_x \subseteq \mathcal{R}_{i_0}$. On the other hand $\omega_x \subseteq \mathcal{R}(J)$ and, consequently, there exists a number $i_1 \in \{1, 2, \ldots, k\}$ such that $\omega_x \subseteq \mathcal{R}_{i_1}$. Since the collection $\{\mathcal{R}_1, \mathcal{R}_2, \ldots, \mathcal{R}_k\}$ has not r-cycles ($r \geq 1$), then $i_1 \neq i_0$.

Since $\tilde{x}_n \to \tilde{x}$ as $n \to \infty$ and $\omega_x \subseteq \mathcal{R}_{i_1}$, then by integral continuity for all $n \in \mathbb{N}$ there exists a number $T'_n > 0$ such that $\pi(T'_n, \tilde{x}_n) \in B(\mathcal{R}_{i_1}, 1/n)$. Taking into account that $\tilde{T}'_n \to +\infty$ as $n \to \infty$ and Theorem 8 we can consider that $T'_n \leq \tilde{T}'_n$.

On the other hand by Theorem 8 for all $n \in \mathbb{N}$ there exists $T^2_n \in (T'_n, \tilde{T}'_n)$ such that $\pi(T^2_n, \tilde{x}_n) \notin B(\mathcal{R}_{i_1}, \delta_0)$. Repeating the reasoning above for the set \mathcal{R}_{i_1} and the
sequence \(\{\tilde{x}_n\} \) we can find a full trajectory \(\gamma_1 \) so that \(\alpha_{\gamma_1} \subseteq R_{i_1} \) and \(\omega_{\tilde{x}_1} \subseteq R_{i_2} \), where \(i_2 \neq i_0, i_1 \) and \(\tilde{x}_1 := \gamma_1(0) \).

Reasoning analogously we will construct a sequence \(\{\gamma, \gamma_1, \ldots, \gamma_p\} \) \((p \leq k - 1)\) so that \(\alpha_{\gamma_p} \subseteq R_{i_p} \) and \(\omega_{\tilde{x}_p} \subseteq R_{i_{p+1}} \) \((\gamma_0 := \gamma)\). Since the family \(\{R_1, R_2, \ldots, R_k\} \) contains a finite number of sets \(R_p \), then after the finite number \(q \) of steps we will have \(R_{i_p} = R_{i_0} \), i.e., we will obtain a \(q \)-cycle. The obtained contradiction proves our Theorem.

\[\square \]

Corollary 6. Suppose that the following conditions hold:

1. \((X, \mathbb{T}, \pi)\) is a bounded dissipative dynamical system and \(J \) its Levinson center;
2. \((X, \mathbb{T}, \pi)\) is a gradient system;
3. \(\text{Fix}(\pi) = \{p_1, p_2, \ldots, p_m\} \);
4. \(\text{Fix}(\pi) \) does not contain any \(k \)-cycle \((k \geq 1)\).

Then for every \(\tilde{\delta} > 0 \) there exists \(\delta \in (0, \tilde{\delta}) \) such that for every \(x \in B(R_i, \delta) \) \((i = 1, k)\) with \(\pi(t, x) \in B(R_i, \delta) \) for all \(t \in [0, T) \) and \(\pi(T, x) \notin B(R_i, \delta) \) we have \(\pi(t, x) \notin B(R_i, \delta) \) for each \(t \geq T \) (i.e., never returns again in \(B(R_i, \delta) \) for all \(t \geq T \)).

Proof. This statement follows from Theorems 8 and 9.

\[\square \]

Acknowledgements. Author was partially supported by grant FP7-PEOPLE-2012-IRSES-316338.

References

Am. Math. Soc., Providence, RI.

David Cheban
Department of Fundamental Mathematics
State University of Moldova
Faculty of Mathematics and Informatics
A. Mateevich Street 60, MD–2009 Chişinău
Moldova
E-mail: cheban@usm.md, davidcheban@yahoo.com

Received January 24, 2014