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Solvability of a nonlinear integral equation arising

in kinetic theory

A.Kh.Khachatryan, Kh.A.Khachatryan

Abstract. In the paper the question of solvability of an Urysohn type nonlinear
integral equation arising in kinetic theory of gases has been studied. We prove the
existence of a positive and bounded solution and also suggest an approach for the
construction of a solution. We also show that there is a qualitative difference between
solutions in the linear and nonlinear cases. In the nonlinear case the solution is a posi-
tive and bounded function, while the corresponding linear equation has an alternating
solution, which possesses linear growth at infinity.
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1 Introduction

The paper is devoted to the study and solution of the following Urysohn nonlinear
integral equation

F (x) = g(x) +

∞
∫

0

W (x, t, F (t))dt, (1.1)

with respect to the unknown function F (x), where

g(x) =
2εc

3
√

π

∞
∫

0

e−xse
− 1

s2 (s2 + 1)
ds

s4
, (1.2)

W (x, t, F (t)) =
2

3
√

π

√

F (t)×

×
∞

∫

0

[

e−|x−t|s + (1 − ε)e−(x+t)s
]

e
− 1

s2F (t)

[

1

s2F (t)
+ 1

]

ds

s
.

(1.3)

Equation (1.1), as well as its intrinsic mathematical interest, has important applica-
tions in kinetic theory of gases (see [1–3]). Equation (1.1) may be derived from the
Boltzmann model equation. By equation (1.1) the flow of a rarefied gas in the half-
space x > 0 bounded by flat plate x = 0 is described. The function F (x) represents

temperature distribution near the wall. Here x is the distance from the wall, c =
β

α
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(0 < c ≤ 1), where α is the mean value of density in the boundary layer and β is
the density of particles reflected from the wall. We will assume that c is previously
known. ε is the accomodation coefficient (0 < ε ≤ 1).

In the present note we prove the existence theorem of a positive and bounded
solution of equation (1.1) and also suggest the approach for the construction of
a solution. We also show that there is a qualitative difference between solutions
in the nonlinear and linear cases. In the nonlinear case the solution is a positive
and bounded function, while the corresponding linear equation has an alternating
solution, which possesses linear growth at infinity.

2 The existence of a bounded solution for an Urysohn type

nonlinear integral equation

Below we formulate the theorem of global solvability of equation (1.1) in the
space of bounded functions for arbitrary values of c > 0 and α > 0.

We consider the following function

ξ(t) = t4 − ct3 − 1, t ∈ R
+ ≡ [0,+∞). (2.1)

We note that ξ(0) = −1, ξ′(t) = 4t3 − 3ct2 ≥ 0 if t ∈
[

3c

4
,+∞

)

and ξ′(t) ≤ 0 if

t ∈
[

0,
3c

4

]

, ξ(c) < 0, lim
t→∞

ξ(t) = +∞, then there exists a unique point t0 > c such

that ξ(t0) = 0, moreover, for t > t0, ξ(t) > 0.
We introduce the following iterations for equation (1.1):

Fn+1(x) = g(x) +

∞
∫

0

W (x, t, Fn(t))dt, (2.2)

F0(x) = t20 = c0. (2.3)

It is easy to verify that the function W defined by (1.3) is monotone increasing in
the third argument, i. e.

W (x, t, z) ↑ w.r.t.z. (2.4)

Indeed, since ρ(z) =
(

s
2

z
+ 1

)√
ze−

s
2

z ↑ w.r.t. z, z ≥ 0, then from the representation

of W it follows that W ↑ w.r.t. z.
Below we prove by induction that Fn(x) is monotone decreasing in n

1) F (n) ↓ w.r.t. n and 2) F (n)(x) ≥ g(x). (2.5)

Let n = 0. We have

F1(x) = g(x) +

∞
∫

0

W (x, t, F0(t))dt =

= J1(x) + c0 − J2(x) = F0(x) + J1(x) − J2(x),

(2.6)
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where

J1(x) =
2εc

3
√

π

∞
∫

0

e−xse
− 1

s2

(

1

s2
+ 1

)

ds

s2
, (2.7)

J2(x) =
2ε

3
√

π

√
c0

∞
∫

0

e−xse
− 1

s2c0

(

1

s2c0
+ 1

)

ds

s2
. (2.8)

We must prove that J2(x) ≥ J1(x) for each x ∈ R
+. It is sufficient to prove that for

each x ∈ R
+ the inequality holds

ce
− 1

s2

(

1

s2
+ 1

)

≤
√

1

c0
e
− 1

s2c0

(

c0 +
1

s2

)

. (2.9)

Let us consider the following function

ϕ(s2) = c
√

c0e
1
s2

(

1
c0

−1
) (

1

s2
+ 1

)

, s2 ∈ R
+. (2.10)

Note that s2
0 = c0 − 1 is the unique maximum point for ϕ. Therefore

ϕ(s2) ≤ ϕ(s2
0) = c

√
c0

(

1

c0 − 1
+ 1

)

e
− 1

c0 . (2.11)

Using the well-known inequality

e−x ≤ 1

1 + x
, x ≥ 0, (2.12)

from (2.11) we obtain

ϕ(s2) ≤ cc2
0
√

c0

(c2
0 − 1)

. (2.13)

First we prove that
c
√

c0c0

(c2
0 − 1)

≤ 1. (2.14)

Since c0 = t20 > 1 (because t40 = ct30 + 1 > 1 ⇒ t20 > 1), then inequality (2.14) is
equivalent to the following inequality:

c
√

c0c0 ≤ (c2
0 − 1). (2.15)

As ξ(t) ↑ in t on [t0,+∞), then ξ(
√

c0) ≥ ξ(t0) = 0 or ξ(
√

c0) = c2
0 − c

√
c0c0 − 1 ≥ 0,

i. e. (2.14) is proved. Taking into consideration (2.14), from (2.13), we obtain

ϕ(s2) =
cc2

0
√

c0

(c2
0 − 1)

≤ c0 ≤ c0 +
1

s2
. (2.16)

From (2.16) follows (2.9). Therefore we have J2(x) ≥ J1(x). Considering the last
inequality and relation (2.6) we come to the inequality F1(x) ≤ F0(x). We assume
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that Fn(x) ≤ Fn−1(x) for some n ∈ N. Since W (x, t, z) monotonically increases in
the third argument z then from (2.2) it follows that

Fn+1(x) ≤ Fn(x). (2.17)

Now we prove that the sequence of functions {Fn(x)}∞
n=0 is bounded by g(x).

First, we show that t20 >
c

2
. Assume the contrary: t20 ≤ c

2
. Since t0 > c then we

have c <

√

c

2
or

c <
1

2
. (2.18)

On the other hand,
0 = t40 − ct30 − 1 < t40 − 1.

Hence, we obtain t20 > 1. But since t20 <
c

2
then we obtain inequality c > 2.

Taking into consideration (2.18), from the last inequality we come to contradic-
tion. Therefore,

t20 >
c

2
. (2.19)

Now, due to (2.19) from (2.3), we have

F0(x) = t20 >
c

2
≥ g(x),

because

g(x) ≤ 2

3
√

π
c

∞
∫

0

e
− 1

s2

(

s2 + 1

s4

)

ds =
c

2
.

Let Fn(x) ≥ g(x) for some n ∈ N. Then taking into consideration monotonicity and
nonnegativity of the function W , we obtain

Fn+1(x) ≥ g(x) +

∞
∫

0

W (x, t, g(t))dt ≥ g(x). (2.20)

Therefore the sequence of functions {Fn(x)}∞
n=0 has a pointwise limit as n → ∞.

In accordance with B.Levi‘s theorem the function F satisfies equation (1.1) and the
double inequalities

g(x) ≤ F (x) ≤ c0 ≡ t20. (2.21)

Thus the following theorem holds

Theorem 1. Let 0 < c ≤ 1 is a given number. Then nonlinear integral equation

(1.1) has a positive measurable and bounded solution F (x). The following inequalities

hold

g(x) ≤ F (x) ≤ c0 ≡ t20, (2.22)

where t0 is the unique positive root of the following algebraic equation t4−ct3−1 = 0.
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3 Linearization of a Urysohn nonlinear integral equation (1.1).
Qualitative difference between solutions in the linear and

nonlinear cases

Usually in kinetic theory in linear approximation the function F (x) is represented
as:

F (x) = 1 + ∆f(x), (3.1)

where ∆f(x) is the temperature perturbation (∆f(x) ≪ 1) . Taking into account
(3.1), expanding the function W (x, t, F (t)) by the third argument in a power series
about zero and holding the first expansion term, we obtain the following Wiener-
Hopf-Hankell type linear integral equation with respect to ∆f(x):

∆f(x) = g1(x) +

∞
∫

0

[K(x − t) + (1 − ε)K(x + t)]∆f(t)dt. (3.2)

Here

K(x) =

∞
∫

0

e−|x|sG(s)ds,

G(s) =
2

3

1√
π

1

s
e
− 1

s2

(

1

s4
+

1

2s2
+

1

2

)

,

(3.3)

g1(x) =

∞
∫

0

e−xsG1(s)ds,

G1(s) =
2ε

3
√

πs4
(c − 1)(s2 + 1)e−

1
s2 .

(3.4)

It is easy to check that kernel (3.3) satisfies the conservative condition

K ≥ 0,

+∞
∫

−∞

K(x)dx = 1. (3.5)

Due to linearity the solution of equation (3.2) can be written as:

△f(x) = −△f1(x) + △f2(x), (3.6)

where △f1(x) and △f2(x) are the solutions of inhomogeneous and homogeneous
equations, respectively

∆f1(x) = −g1(x) +

∞
∫

0

[K(x − t) + (1 − ε)K(x + t)]∆f1(t)dt (3.7)

(−g1(x) ≥ 0 because of c ∈ (0, 1]),

∆f2(x) =

∞
∫

0

[K(x − t) + (1 − ε)K(x + t)]∆f2(t)dt. (3.8)
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There are numerous works devoted to study and solutions of equations (3.7) and
(3.8) (see [4, 5] and references therein). Without going into details we note that
equation (3.7) has positive bounded solution, which possesses finite limit at infinity
(see [4, 6]).

The solution of corresponding homogeneous equation (3.8) has the form (see [5])

△f2(x) =
1√
ν2

x + q(x), (3.9)

here q(x) is the well-known Hopf function, and ν2 is the second moment of the kernel
K(x). Thus we have

△f(x) =
1√
ν2

x + q(x) −△f1(x) and

△f(x) ∼ 1√
ν2

x, as x → +∞.
(3.10)

Conclusion. Note that the linear equation (3.2) possesses an alternating so-
lution with the asymptotic O(x) as x tends to +∞, while the solution of initial
nonlinear equation (1.1) is a positive bounded function F (x). Moreover, g(x) ≤
F (x) ≤ c0, x ∈ R

+. The qualitative difference between the solutions is conditioned
by linearization of equation (1.1). In fact the linearization can distort the problem
and the corresponding linear equation can not adequately describe the problem from
a physical point of view.
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