A note on weak structures due to Császár

A. K. Das

Abstract. Weak structures has been introduced by A. Császár and it has been shown that every generalized topology and every minimal structure is a weak structure. Recently E. Ekici introduced and studied the structure r(w) in a weak structure w on X. In general the structure r(w) need not be a topology on X. In this paper we have shown that under some conditions r(w) is a topology on X. Further, comparison of two weak structures has been studied.

Mathematics subject classification: 54A05. Keywords and phrases: weak structures, generalized topology, r(w).

In [2], Császár introduced and studied generalized stuctures and in [1,3] introduced generalized operators. Recently in [4], Császár introduced a new notion called weak structures. Let X be a non-empty set and \mathcal{P} be its power set. A structure on X is a subset of \mathcal{P} and an operation on X is a function from \mathcal{P} to \mathcal{P} . A structure w on X is called a weak structure on X if and only if $\emptyset \in w$ [4]. Weak structures are briefly noted as WS. If w is a WS on X, then every member of w is known as w-open and complement of a w-open set is known as w-closed. Let w be a WS on X and $A \subset X$ then the union of all w-open subsets of A is denoted as $i_w A$ and the intersection of all w-closed sets containing A is denoted as $c_w A$. Further with the help of i_w and c_w , several other structures such as $\alpha(w)$, $\beta(w)$, $\sigma(w)$, $\pi(w)$ and $\rho(w)$ have been introduced and studied in [4]. E. Ekici in [5], studied properties of the structures $\alpha(w)$, $\beta(w)$, $\sigma(w)$, $\pi(w)$ and $\rho(w)$ and introduced r(w) and rc(w). It is also shown that if w is a WS on X then each of the structures $\alpha(w)$, $\beta(w)$, $\sigma(w)$, $\pi(w)$ and $\rho(w)$ is a generalized topology. So it is natural to ask which structure under which condition becomes topology. In this paper, we have shown that under some conditions r(w) is a topology.

Definition 1. [5] Let w be a WS on X and $A \subset X$. Then

- (i) $A \in r(w)$ if $A = i_w(c_w(A))$,
- (ii) $A \in rc(w)$ if $A = c_w(i_w(A))$.

Lemma 1. Let w be a WS on X, then $\emptyset \in r(w)$ if any one of the followings holds: (i) there exist $U, V \in w$ such that $(X - U) \cap (X - V) = \emptyset$.

(ii) $\bigcap_{\substack{X-U \in w \\ X-U \in w}} U = \emptyset$. (iii) for $\bigcap_{\substack{X-U \in w \\ X-U \in w}} U = V \neq \emptyset$ there does not exist any $W \in w$ such that $W \subset V$.

[©]A. K. Das, 2015

Proof. (i) Let w be a WS on X and $U, V \in w$ be such that $(X - U) \cap (X - V) = \emptyset$. Since (X - U) and (X - V) are two disjoint w-closed sets, $c_w(\emptyset) = \emptyset$. So $i_w(c_w(\emptyset)) = \emptyset$. Hence $\emptyset \in r(w)$.

(ii) If $\bigcap_{X-U \in w} U = \emptyset$, then $c_w(\emptyset) = \emptyset$. Thus $i_w(c_w(\emptyset)) = \emptyset$. Hence $\emptyset \in r(w)$.

(iii) If $\bigcap_{X-U\in w}^{X-U\in w} U = V \neq \emptyset$, then $c_w(\emptyset) = V$. Since there does not exist any $W \in w$ such that $W \subset V$, $i_w(V) = \emptyset$. Thus $i_w(c_w(\emptyset)) = i_w(V) = \emptyset = \emptyset$. Hence $\emptyset \in r(w)$. \Box

Lemma 2. Let w be a WS on X, then $X \in r(w)$ if either $X \in w$ or $\bigcup_{U \in U} U = X$.

Lemma 3. If w is a WS on X and $U \in w$ is such that for every $V \in w$, $V \subset (X-U)$, then $X \in rc(w)$.

Lemma 4. Let w be a WS on X in which every pair of members of w is disjoint and $\bigcup_{U \in w} U = X$. Then every member of w belongs to r(w).

Proof. Let w be a WS on X. Let every pair of members of w be disjoint and $\bigcup_{U \in w} U = X$. Then for every $A \in w$, $c_w A = \cap \{B : B \in w, A \subset (X - B)\} = A$. Since $A \in w$, $i_w c_w A = i_w A = A$. Thus $A \in r(w)$.

Lemma 5. Let w be a WS on X in which every pair of members of w is disjoint and $\bigcup_{U \in w} U = X$. Then arbitrary union of members of w belongs to r(w).

Proof. Let w be a WS on X and let A_{α} be a collection of members of w. Since $\bigcup_{U \in w} U = X$ and every pair of members of w, $c_w(\cup A_{\alpha}) = \cap \{B : (X - B) \in w, \cap A_{\alpha} \subset B\} = \cup A_{\alpha}$. So $i_w c_w(\cup A_{\alpha}) = i_w(\cup A_{\alpha}) = \cup A_{\alpha}$. Thus $\cup A_{\alpha} \in w$.

Theorem 1. Let w be a WS on X in which every pair of members of w is disjoint and $\bigcup_{U \in w} U = X$. Then r(w) is a topology on X.

Proof. Since every pair of members of w is disjoint and $\bigcup_{U \in w} U = X$, either (ii) or (iii) of Lemma 1 holds. Thus $\emptyset \in r(w)$. Since $\bigcup_{U \in w} U = X$, by Lemma 2, $X \in r(w)$. By Lemma 4, every member of w belongs to r(w) and arbitrary union of members of w also belogs to w by Lemma 5. Since the intersection of members of w is empty, finnite intersection of members of w belongs to r(w). Hence r(w) is a topology on X.

Remark 1. Let w be a WS on X in which every pair of members of w is disjoint and $\bigcup_{U \in w} U = X$. Then it can also be shown that rc(w) is a topology on X.

Let w and ν be two structures on X. The structure ν is said to be finer than w if for every member of w is a member of ν . The power set \mathcal{P} of X is the finest structure on X and $\{\emptyset\}$ is the weakest structure on X. Two structures w and ν are said to be non-comparable if neither w is finer than ν nor ν is finer than w.

Observation 1. Let w and ν be two WSs on X and ν is finer than w. Then r(w) and $r(\nu)$ are non-comparable.

Observation 2. Let w and ν be two WSs on X. Then

(i) $r(w) \cap r(\nu) \neq r(w \cap \nu)$. (ii) $r(w) \cup r(\nu) \neq r(w \cup \nu)$.

The above observations are established by the following example.

Example 1. Let $X = \{a, b, c\}$, $w = \{\emptyset, \{a\}, \{b\}\}$ and $\nu = \{\emptyset, \{a\}, \{b\}, \{b, c\}$.

(i) Then ν is finer than w but $r(w) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $r(\nu) = \{\emptyset, \{a\}, \{b, c\}, X\}$ are non-comparable.

(ii) $r(w \cap \nu) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $r(w) \cap r(\nu) = \{\emptyset, \{a\}\}.$ (iii) $r(w \cup \nu) = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $r(w) \cup r(\nu) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$

Lemma 6. Let w and ν be two WSs on X and ν is finer than w. Then $r(w) \cap r(\nu) \subset r(w \cap \nu)$ and $r(w \cup \nu) \subset r(w) \cup r(\nu)$.

If WSs w and ν are non-comparable then the above result need not hold can be seen from the following example.

Example 2. Let $X = \{a, b, c\}, w = \{\emptyset, \{a\}, \{b\}\}$ and $\nu = \{\emptyset, \{a\}, \{c\}, r(w) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $r(\nu) = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$. $r(w \cup \nu) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$ and $r(w) \cup r(\nu) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}.$

References

- [1] Å. CSÁSZÁR, Generalized open sets, Acta Math. Hungar., 75 (1-2) (1997), 65-87.
- [2] Á. CSÁSZÁR, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (4) (2002), 351-357.
- [3] Á. CSÁSZÁR, Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (1-2) (2005), 53-66.
- [4] Å. CSÁSZÁR, Weak structures, Acta Math. Hungar., 131 (1-2) (2011), 193-195,
- [5] E. Ekici, On weak structures due to Császár, Acta Math. Hungar., 134 (4) (2012), 565-570.

Received May 5, 2012

A. K. DAS School of Mathematics, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir-182320, INDIA E-mail: ak.das@smvdu.ac.in, akdasdu@yahoo.co.in