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On the distinction between one-dimensional Euclidean

and hyperbolic spaces

Alexandru Popa

Abstract. The difference between Euclidean and hyperbolic spaces is clear starting
with dimension two. However, the difference between elliptic space and both Euclidean
and hyperbolic ones can be described also for dimension one. Does it mean that
there is no difference between one-dimensional Euclidean and hyperbolic lines, or
it is necessary to better define the difference between them? This paper proposes
one possible way to draw clear distinction between one-dimensional Euclidean and
hyperbolic lines.
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1 Introduction

The difference between hyperbolic (named also Lobachevsky in Russian litera-
ture) and Euclidean spaces is space curvature — zero in Euclidean case and negative
in hyperbolic case. The space curvature is intrinsic space property starting with di-
mension two [1], it cannot be used to distinguish one-dimensional Euclidean and
hyperbolic spaces.

Another approach is to distinguish geometries. Hyperbolic geometry differs from
Euclidean one by Parallel axiom [2]:
Euclidean Parallel axiom: On the plane with given line l, through a point P 6∈ l

exactly one line a goes so that a ∩ l = ∅.
Hyperbolic Parallel axiom: On the plane with given line l, through a point P 6∈ l

at least two lines a, b go so that a ∩ l = ∅, b ∩ l = ∅.
These axioms, as well as all their equivalents, assume the existence of two parallel

lines, triangles or other figures, that are essentially two-dimensional.
On the other hand, there exists a clear distinction between one-dimensional ellip-

tic and both Euclidean and hyperbolic spaces. Define points of some line separable

if among any three different points A,B,C one (let it be B) divides the line into two
half–lines, and remaining two points A,C lie on different half–lines. In this case we
can speak that B lies between A and C. Otherwise, we call points non-separable.

The elliptic points are non-separable, because no point devides elliptic line into
two half–lines and among any three points no one lies between two others [3]. Eu-
clidean and hyperbolic points are separable. In order to make the difference between
them, we refine the point separability property.
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2 Uniform model of elliptic, Euclidean and hyperbolic lines

Before we can speak about the tuning of points separability property, we need
one universal model for all three one-dimensional spaces constructed in spirit of [7].

Definition 1. Define a characteristic to be a number k ∈ {1, 0,−1}. The charac-
teristic is elliptic if k = 1, linear or parabolic if k = 0 and hyperbolic if k = −1.

Definition 2. For x, y ∈ R
2 define x ⊙ y = x0y0 + kx1y1. Define the metaplane

M
2 = {R2,⊙}.

Definition 3. Define the line B
1 = {x ∈M

2 |x⊙ x = 1, −x ≡ x} (Figure 1).

O x1

x0

k = 1

k = 0

k = −1

Figure 1. One-dimensional models of elliptic, Euclidean and hyperbolic spaces.

Definition 4. Define generalized by k cosine, sine and tangent functions as:

C(t) =
∞

∑

n=0

(−k)n
t2n

(2n)!
=











cos t, k = 1,

1, k = 0,

cosh t, k = −1;

S(t) =

∞
∑

n=0

(−k)n
t2n+1

(2n + 1)!
=











sin t, k = 1,

t, k = 0,

sinh t, k = −1;

T (t) =
S(t)

C(t)
=











tan t, k = 1,

t, k = 0,

tanh t, k = −1.

Definition 5. Define the translation by ϕ in B
1 to be the transformation with the

matrix

T(ϕ) =

(

C(ϕ) −kS(ϕ)
S(ϕ) C(ϕ)

)

.
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In these definitions we obtain circle model of one-dimensional elliptic space when
k = 1. When k = 0, the model is identical to one-dimensional Euclidean space
identified by the equation x0 = 1 in the metaspace M

2. When k = −1 we have
hyperbola model of hyperbolic one-dimensional space. This model is equivalent to
Beltrami–Klein model of hyperbolic space if instead of coordinates x0, x1 use one:

x′ =
x1

x0

,

and is equivalent to Poincaré model in a disk if:

x′ =
x1

1 + x0

.

It is important to mention that whatever model or coordonate system is used for
one-dimensional space it is always possible to reconstruct its metaplane M

2 by fixing
some point O as origin with homogeneous coordonates (1 : 0) and for some line point
X coordonates will be (C(x) : S(x)), where x is the signed distance |OX|.

3 Point unconnectability and angle unmeasurability notions

Because a metaspace M
2 is not Euclidean unless k = 1, we need several more

important notions. These notions belong to geometry, not to space model construc-
tions. In order to see it, we obtain them from axioms of two-dimensional elliptic,
Euclidean and hyperbolic geometries using duality operation. We can generalize
Parallel axiom in the following way (Figure 2):

l

b1 b2
b3

P

a)

l

a1

b1 b2
b3

P

b)

l

a4a1

a3a2 b1 b2

P

c)

Figure 2. Parallel axiom: a) elliptic, b) Euclidean and c) hyperbolic.

Generalized Parallel axiom: On the plane with given line l, through a point
P 6∈ l 0k lines {ai} go so that ai ∩ l = ∅.

Remark. The symbol 0k is not used in calculus. Its value is:

0k =











0, k = 1,

1, k = 0,

∞, k = −1.
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Duality operation on a plane means exchanging the following relations:

Point P ←→ Line p,

P ∈ l←→ p ∋ L,

P 6∈ l←→ p 6∋ L,

l = AB ←→ L = a ∩ b,

|AB| = ϕ←→ ∡ab = ϕ,

a ‖ b←→ A,B have no common line.

The relation “A,B have no common line” is dual to line parallelism. Such geometries
were proposed in [4, 5]. Several of them are described in [6–9].

Definition 6. Two points A,B are unconnectable if they have no common line.

In order to see different types of points unconnectability, we need new axiom.
Let formulate Connectability axiom, dual to Parallel axiom (Figure 3):
Connectability axiom: On the plane with given point L, in the line p 6∋ L 0k

points {Ai} lie so that Ai, L are unconnectable.

L

B1 B2 B3

p

a)

L

B1 B2
A1

p

b)

L

A2 A3A1 A4B1 B2

p

c)

Figure 3. Connectability axiom: a) elliptic, b) parabolic and c) hyperbolic.

Remark. As in the case of hyperbolic Parallel axiom (Figure 2, c), the limit case
between non-intersected and intresected lines is two parallel lines (bold ones), for
hyperbolic Connectability axiom (Figure 3, c), the limit case between connectable
and unconnectable points is two unconnectable points (also marked with bold).

Remark. Elliptic variant of Connectability axiom is equivalent to the following state-
ment: “Any two different points can be connected by a line”, that holds for elliptic,
Euclidean and hyperbolic geometries.

Definition 7. Define some angle to be measurable if any point from its interior
(including the rays) is either connectable or unconnectable with the vertex. Define an
angle to be unmeasurable if its interior (including the rays) contains both connectable
and unconnectable points with the vertex.

4 Points separability in a line

In order to draw the difference between Euclidean and hyperbolic cases of sep-
arable points, give more precise definition [10]. This definition is based only on
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points connectability notion. Although the Connectability axiom also assumes at
least two-dimensional plane, this plane is nothing more than extended space of one-
dimensional line — its metaplane. No geometric objects are involved other than
objects of an one-dimensional line with its structure.

Definition 8. We call points on a line non-separable if all points on this line are
connectable with any point on the metaplane. We call points on a line separable

if for any three points A,B,C on this line and some point D on the metaplane,
connectable with A,C and unconnectable with B, the angle ∠ADC is unmeasurable
(Figure 4).

A B C

DA

D

DC

Figure 4. Points separability on a line.

Remark. For separable points A,B,C only a single point (B) has the described
property. For other points (A,C) and some unconnectable with them points DA,DC ,
the angles ∠BDAC and ∠ADCB are measurable.

If points of some line are separable, then the point B devides the line into two
half–lines and points A and C lie on different half–lines defined by B. When points
of some line are non-separable, then no point devides the line into half–lines.

Definition 9. In the case of separable points we say that the point B lies between

points A and C.

Remark. In the case of non-separable points on a line, among any three points no
one divides the line into half–lines, and it is impossible to talk about the position of
some point between other two.

Definition 10. We call points on some line weak separable (Figure 5, left) if any
point D of the line metaplane, being unconnectable with point B (that lies between
A and C) and connectable with both A,C, is also connectable with all points from
some neighborhood of B. We call points on some line strong separable (Figure 5,
right) if in the same conditions any point D is unconnectable not only with B, but
also with all points from some its neighborhood.
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Figure 5. Points separability on a plane: weak (left) and strong (right).

In this definitions, points of elliptic line are non-separable, points of Euclidean
line are weak separable, and points of hyperbolic line are strong separable.
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