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One subfamily of cubic systems with invariant lines

of total multiplicity eight and with two distinct real

infinite singularities

Cristina Bujac

Abstract. In this article we classify a subfamily of differential real cubic systems
possessing eight invariant straight lines, including the line at infinity and including
their multiplicities. This subfamily of systems is characterized by the existence of two
distinct infinite singularities, defined by the linear factors of the polynomial C3(x, y) =
yp3(x, y) − xq3(x, y), where p3 and q3 are the cubic homogeneities of these systems.
Moreover we impose additional conditions related with the existence of triplets and/or
couples of parallel invariant lines. This classification, which is taken modulo the action
of the group of real affine transformations and time rescaling, is given in terms of affine
invariant polynomials. The invariant polynomials allow one to verify for any given real
cubic system whether or not it has invariant straight lines of total multiplicity eight,
and to specify its configuration of straight lines endowed with their corresponding real
singularities of this system. The calculations can be implemented on computer and
the results can therefore be applied for any family of cubic systems in this class, given
in any normal form.

Mathematics subject classification: 34G20, 34A26, 14L30, 34C14.
Keywords and phrases: Cubic differential system, configuration of invariant
straight lines, multiplicity of an invariant straight line, group action, affine invari-
ant polynomial.

1 Introduction and the statement of the Main Theorem

We consider here real polynomial differential systems

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)

where P, Q are polynomials in x, y with real coefficients, i. e. P, Q ∈ R[x, y]. We
say that systems (1) are cubic if max(deg(P ),deg(Q)) = 3.

Let

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y

be the polynomial vector field associated to systems (1).

A straight line f(x, y) = ux+ vy + w = 0, (u, v) 6= (0, 0) satisfies

X(f) = uP (x, y) + vQ(x, y) = (ux+ vy + w)R(x, y)
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for some polynomial R(x, y) if and only if it is invariant under the flow of the
systems. If some of the coefficients u, v, w of an invariant straight line belong to
C\R, then we say that the straight line is complex; otherwise the straight line is real.
Note that, since systems (1) are real, if a system has a complex invariant straight
line ux+ vy + w = 0, then it also has its conjugate complex invariant straight line
ūx+ v̄y + w̄ = 0.

To a line f(x, y) = ux + vy + w = 0, (u, v) 6= (0, 0) we associate its projective
completion F (X,Y,Z) = uX + vY + wZ = 0 under the embedding C2 →֒ P2(C),
(x, y) 7→ [x : y : 1]. The line Z = 0 in P2(C) is called the line at infinity of
the affine plane C

2. It follows from the work of Darboux (see, for instance [10])
that each system of differential equations of the form (1) over C yields a differential
equation on the complex projective plane P2(C) which is the compactification of the
differential equation Qdx− Pdy = 0 in C

2. The line Z = 0 is an invariant manifold
of this complex differential equation.

Definition 1 (see [27]). We say that an invariant affine straight line f(x, y) =
ux+ vy + w = 0 (respectively the line at infinity Z = 0) for a cubic vector field X
has multiplicity m if there exists a sequence of real cubic vector fields Xk converging
to X, such that each Xk has m (respectively m−1) distinct invariant affine straight
lines f j

k = uj
kx + vj

ky + wj
k = 0, (uj

k, v
j
k) 6= (0, 0), (uj

k, v
k
i , w

j
k) ∈ C3 (j ∈ {1, . . . m}),

converging to f = 0 as k → ∞ (with the topology of their coefficients), and this
does not occur for m+ 1 (respectively m).

We mention here some references on polynomial differential systems possessing
invariant straight lines. For quadratic systems see [11, 24, 25, 27–30] and [31]; for
cubic systems see [15–18, 26, 34] and [35]; for quartic systems see [33] and [36]; for
some more general systems see [13,21,22] and [23].

According to [2] the maximum number of invariant straight lines taking into
account their multiplicities for a polynomial differential system of degree m is 3m
when we also consider the infinite straight line. This bound is always reached if we
consider the real and the complex invariant straight lines, see [9].

So the maximum number of the invariant straight lines (including the line at
infinity Z = 0) for cubic systems is 9. A classification of all cubic systems possessing
the maximum number of invariant straight lines taking into account their multiplic-
ities have been made in [16]. We also remark that a subclass of the family of cubic
systems with eight invariant lines was discussed in [34] and [35].

It is well known that for a cubic system (1) with finite number of infinite sin-
gularities there exist at most 4 different slopes for invariant affine straight lines, for
more information about the slopes of invariant straight lines for polynomial vector
fields, see [1].

Definition 2 (see [31]). Consider a planar cubic system (1). We call configuration
of invariant straight lines of this system, the set of (complex) invariant straight
lines (which may have real coefficients) of the system, each endowed with its own
multiplicity and together with all the real singular points of this system located on
these invariant straight lines, each one endowed with its own multiplicity.
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Remark 1. In order to describe the various kinds of multiplicity for infinite singu-
lar points we use the concepts and notations introduced in [24]. Thus we denote
by ’(a, b)’ the maximum number a (respectively b) of infinite (respectively finite)
singularities which can be obtained by perturbation of the multiple point.

Suppose that a cubic system (1) possesses 8 distinct invariant straight lines
(including the line at infinity). We say that these lines form a configuration of type
(3, 3, 1) if there exist two triplets of parallel lines and one additional line, every
set with different slopes. And we say that these lines form a configuration of type
(3, 2, 1, 1) if there exist one triplet and one couple of parallel lines and two additional
lines, every set with different slopes. Similarly configurations of types (3, 2, 2) and
(2, 2, 2, 1) are defined and these four types of the configurations exhaust all possible
configurations formed by 8 invariant lines for a cubic system.

Note that in all configurations the invariant straight line which is omitted is the
infinite one.

Suppose a cubic system (1) possesses 8 invariant straight lines, including the
infinite one, and taking into account their multiplicities. We say that these lines form
a potential configuration of type (3, 3, 1) (respectively, (3, 2, 2); (3, 2, 1, 1); (2, 2, 2, 1))
if there exists a sequence of vector fields Xk as in Definition 1 having 8 distinct lines
of type (3, 3, 1) (respectively, (3, 2, 2); (3, 2, 1, 1); (2, 2, 2, 1)).

It is well known that the infinite singularities (real or complex) of cubic systems
are determined by the linear factors of the polynomial C3(x, y) = yp3(x, y)−xq3(x, y)
where p3 and q3 are the cubic homogeneities of these systems.

In this paper we consider the family of cubic systems possessing two distinct
infinite singularities defined by one triple and one simple factors of the invariant
polynomial C3(x, y). This family univocally is determined by affine invariant criteria
(see Lemma 7). Moreover we impose some additional conditions related with the
existence of triplets and/or couples of parallel invariant lines of these systems (see
Theorem 1 and Main Theorem). As a result we investigate the obtained subfamily
of cubic systems and determine necessary and sufficient affine invariant conditions
for the existence of eight invariant straight lines, including the line at infinity and
taking into account their multiplicities.

Our results are stated in the following theorem.

Main Theorem. We consider here the family of cubic systems for which the con-
ditions D1 = D3 = D4 = 0, D2 6= 0 hold, i.e. the infinite singularities of these
systems are determined by one triple and one simple factors of the invariant poly-
nomial C3(x, y). Moreover we assume in addition that for this family the condition
V1 = V3 = 0 is satisfied. Then:

(A) This family of cubic systems could be brought via an affine transformation
and time rescaling to the systems

ẋ = a+ cx+ dy + 2hxy + ky2 + x3, ẏ = b+ ex+ fy + lx2 + 2mxy + ny2, (2)

which could possess one of the 16 possible configurations Config. 8.23 – Config. 8.38
of invariant lines given in Figure 1.
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(B) The condition K5 = N1 = 0 is necessary for a system (2) to have invariant
lines of total multiplicity 8, including the line at infinity. Assuming this condition
to be satisfied, a system (2) possesses the specific configuration Config. 8.j (j ∈
{23, 24, . . . , 38}) if and only if the corresponding additional conditions included below
are fulfilled. Moreover this system can be brought via an affine transformation and
time rescaling to the canonical form, written below next to the configuration:

• Config.8.23 ⇔ N2N3 6= 0, N4 =N5 =N6 = N7 =0 :

{
ẋ=(x−1)x(1+x),
ẏ=x−y+x2+3xy;

• Config. 8.24 - 8.27 ⇔ N2 6= 0, N3 = 0, N4 = N6 = N8 = 0, N9 6= 0:

{
ẋ = x(r + 2x+ x2),

ẏ = (r + 2x)y, r(9r − 8) 6= 0;





Config.8.24 ⇔ N11 < 0 (r < 0);
Config.8.25 ⇔ N10>0, N11>0 (0<r<1);
Config.8.26 ⇔ N10 = 0 (r = 1);
Config.8.27 ⇔ N10 < 0 (r > 1);

• Config. 8.28 - 8.30 ⇔ N2 6= 0, N3 = 0, N5 = N8 = N12 = 0, N13 6= 0:
{
ẋ=x(r−2x+x2), (9r−8) 6= 0

ẏ=2y(x−r), r(r − 1) 6= 0;





Config.8.28 ⇔ N15 < 0 (r < 0);
Config.8.29 ⇔ N14<0, N15>0 (0<r<1);
Config.8.30 ⇔ N14 > 0 (r > 1);

• Config. 8.31, 8.32 ⇔ N2 = N3 = 0, N17 = N18 = 0, N10N16 6= 0:{
ẋ = x(r + x2),

ẏ = x− 2ry, r ∈ {−1, 1};

{
Config.8.31 ⇔ N10 < 0 (r = −1);
Config.8.33 ⇔ N10 > 0, (r = 1);

• Config. 8.33 ⇔ N2 =N3 = 0, N10 =N17 =N18 =0, N16 6= 0:

{
ẋ = x3,

ẏ = 1 + x;

• Config.8.34 - 8.38 ⇔ N2 = N3 = 0, N16 = N19 = 0, N18 6= 0:

{
ẋ = x(r + x+ x2),

ẏ = 1 + ry, (9r−2) 6=0;





Config. 8.34 ⇔ N21 < 0 (r < 0);
Config. 8.35 ⇔ N20 > 0, N21 > 0 (0 < r < 1/4);
Config. 8.36 ⇔ N20 = 0 (r = 1/4);
Config. 8.37 ⇔ N20 < 0 (r > 1/4);
Config. 8.38 ⇔ N21 = 0 (r = 0).

Remark 2. If in a configuration an invariant straight line has multiplicity k > 1,
then the number k appears near the corresponding straight line and this line is in
bold face. Real invariant straight lines are represented by continuous lines, whereas
complex invariant straight lines are represented by dashed lines. We indicate next
to the real singular points of the system, located on the invariant straight lines, their
corresponding multiplicities.
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Figure 1. The configurations of invariant straight lines of cubic systems (2)

2 Preliminaries

Consider real cubic systems, i.e. systems of the form:

ẋ = p0 + p1(x, y) + p2(x, y) + p3(x, y) ≡ p(x, y),

ẏ = q0 + q1(x, y) + q2(x, y) + q3(x, y) ≡ q(x, y)
(3)

with real coefficients and variables x and y. The polynomials pi and qi (i = 0, 1, 2, 3)
are homogeneous polynomials of degree i in x and y:

p0 = a00, p3(x, y) = a30x
3 + 3a21x

2y + 3a12xy
2 + a03y

3,

p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q3(x, y) = b30x
3 + 3b21x

2y + 3b12xy
2 + b03y

3,

q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.



CUBIC SYSTEMS WITH MAXIMUM NUMBER OF INVARIANT LINES 53

Let a = (a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03) be the 20-tuple of the coefficients
of systems (3) and denote R[a, x, y] = R[a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03, x, y].

2.1 The main invariant polynomials associated to configurations

of invariant lines

It is known that on the set CS of all cubic differential systems (3) the group
Aff(2,R) of affine transformations acts on the plane [27]. For every subgroup
G ⊆ Aff(2,R) we have an induced action of G on CS. We can identify the set
CS of systems (3) with a subset of R

20 via the map CS −→ R
20 which associates

to each system (3) the 20-tuple a = (a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03) of its
coefficients.

For the definitions of an affine or GL-comitant or invariant as well as for the
definition of a T -comitant and CT -comitant we refer the reader to [27]. Here we shall
only construct the necessary T− and CT−comitants associated to configurations of
invariant lines for the family of cubic systems mentioned in the statement of Main
Theorem.

Let us consider the polynomials

Ci(a, x, y) = ypi(a, x, y) − xqi(a, x, y) ∈ R[a, x, y], i = 0, 1, 2, 3,

Di(a, x, y) =
∂

∂x
pi(a, x, y) +

∂

∂y
qi(a, x, y) ∈ R[a, x, y], i = 1, 2, 3,

which in fact are GL-comitants, see [32]. Let f, g ∈ R[a, x, y] and

(f, g)(k) =

k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
.

(f, g)(k) ∈ R[a, x, y] is called the transvectant of index k of (f, g) (cf. [12],[19])

We apply a translation x = x′ + x0, y = y′ + y0 to the polynomials
p(a, x, y) and q(a, x, y) and we obtain p̃(ã(a, x0, y0), x

′, y′) = p(a, x′ + x0, y
′ + y0),

q̃(ã(a, x0, y0), x
′, y′) = q(a, x′ +x0, y

′ + y0). Let us construct the following polynomi-
als:

Ωi(a, x0, y0) ≡ Res x′

(
Ci

(
ã(a, x0, y0), x

′, y′
)
, C0

(
ã(a, x0, y0), x

′, y′
))
/(y′)i+1,

G̃i(a, x, y) = Ωi(a, x0, y0)|{x0=x, y0=y} ∈ R[a, x, y] (i = 1, 2, 3).

Remark 3. We note that the constructed polynomials G̃1(a, x, y), G̃2(a, x, y) and
G̃3(a, x, y) are affine comitants of systems (3) and are homogeneous polynomials in
the coefficients a00, . . . , b02 and non-homogeneous in x, y and

dega G1 = 3, dega G2 = 4, dega G3 = 5,
deg(x,y) G1 = 8, deg(x,y) G2 = 10, deg(x,y) G3 = 12.
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Notation 1. Let Gi(a,X, Y, Z) (i = 1, 2, 3) be the homogenization of G̃i(a, x, y), i.e.

G1(a,X, Y, Z) = Z8G̃1(a,X/Z, Y/Z), G2(a,X, Y, Z) = Z10G̃2(a,X/Z, Y/Z),

G3(a,X, Y, Z) = Z12G̃3(a,X/Z, Y/Z),

and H(a,X, Y, Z) = gcd
(
G1(a,X, Y, Z), G2(a,X, Y, Z), G3(a,X, Y, Z)

)
in

R[a,X, Y, Z].

The geometrical meaning of the above defined affine comitants is given by the
two following lemmas (see [16]):

Lemma 1. The straight line f(x, y) ≡ ux+ vy + w = 0, u, v,w ∈ C, (u, v) 6= (0, 0)
is an invariant line for a cubic system (3) if and only if the polynomial f(x, y) is a
common factor of the polynomials G̃1(a, x, y), G̃2(a, x, y) and G̃3(a, x, y) over C, i.e.

G̃i(a, x, y) = (ux+ vy + w)W̃i(x, y) (i = 1, 2, 3), where W̃i(x, y) ∈ C[x, y].

Lemma 2. Consider a cubic system (3) and let a ∈ R
20 be its 20-tuple of coefficients.

1) If f(x, y) ≡ ux+vy+w = 0, u, v,w ∈ C, (u, v) 6= (0, 0) is an invariant straight
line of multiplicity k for this system then [f(x, y)]k | gcd(G̃1, G̃2, G̃3) in C[x, y], i.e.
there exist Wi(a, x, y) ∈ C[x, y] (i = 1, 2, 3) such that

G̃i(a, x, y) = (ux+ vy +w)kWi(a, x, y), i = 1, 2, 3. (4)

2) If the line l∞ : Z = 0 is of multiplicity k > 1 then Zk−1 | gcd(G1,G2,G3), i.e.
we have Zk−1 | H(a,X, Y, Z).

Consider the differential operator L = x ·L2−y ·L1 constructed in [4] and acting
on R[a, x, y], where

L1 =3a00
∂

∂a10
+ 2a10

∂

∂a20
+ a01

∂

∂a11
+

1

3
a02

∂

∂a12
+

2

3
a11

∂

∂a21
+ a20

∂

∂a30
+

3b00
∂

∂b10
+ 2b10

∂

∂b20
+ b01

∂

∂b11
+

1

3
b02

∂

∂b12
+

2

3
b11

∂

∂b21
+ b20

∂

∂b30
,

L2 =3a00
∂

∂a01
+ 2a01

∂

∂a02
+ a10

∂

∂a11
+

1

3
a20

∂

∂a21
+

2

3
a11

∂

∂a12
+ a02

∂

∂a03
+

3b00
∂

∂b01
+ 2b01

∂

∂b02
+ b10

∂

∂b11
+

1

3
b20

∂

∂b21
+

2

3
b11

∂

∂b12
+ b02

∂

∂b03
.

Using this operator and the affine invariant µ0 = Resultantx

(
p3(a, x, y), q3(a, x, y)

)
/y9

we construct the following polynomials

µi(a, x, y) =
1

i!
L(i)(µ0), i = 1, .., 9,

where L(i)(µ0) = L(L(i−1)(µ0)) and L(0)(µ0) = µ0.
These polynomials are in fact comitants of systems (3) with respect to the group

GL(2,R) (see [4]). The polynomial µi(a, x, y), i ∈ {0, 1, . . . , 9} is homogeneous
of degree 6 in the coefficients of systems (3) and homogeneous of degree i in the
variables x and y. The geometrical meaning of these polynomial is revealed in the
next lemma.
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Lemma 3 (see [3, 4]). Assume that a cubic system (S) with coefficients ã belongs
to the family (3). Then:

(i) The total multiplicity of all finite singularities of this system equals 9 − k if
and only if for every i ∈ {0, 1, . . . , k − 1} we have µi(ã, x, y) = 0 in the ring R[x, y]

and µk(ã, x, y) 6= 0. In this case the factorization µk(ã, x, y) =

k∏

i=1

(uix− viy) 6= 0

over C indicates the coordinates [vi : ui : 0] of those finite singularities of the system
(S) which ”have gone” to infinity. Moreover the number of distinct factors in this
factorization is less than or equal to four (the maximum number of infinite singu-
larities of a cubic system) and the multiplicity of each one of the factors uix − viy
gives us the number of the finite singularities of the system (S) which have collapsed
with the infinite singular point [vi : ui : 0].

(ii) The system (S) is degenerate (i.e. gcd(P,Q) 6= const) if and only if
µi(ã, x, y) = 0 in R[x, y] for every i = 0, 1, . . . , 9.

In order to define the needed invariant polynomials we first construct the follow-
ing comitants of second degree with respect to the coefficients of the initial system:

S1 = (C0, C1)
(1) , S10 = (C1, C3)

(1) , S19 = (C2,D3)
(1) ,

S2 = (C0, C2)
(1) , S11 = (C1, C3)

(2) , S20 = (C2,D3)
(2) ,

S3 = (C0,D2)
(1) , S12 = (C1,D3)

(1) , S21 = (D2, C3)
(1) ,

S4 = (C0, C3)
(1) , S13 = (C1,D3)

(2) , S22 = (D2,D3)
(1) ,

S5 = (C0,D3)
(1) , S14 = (C2, C2)

(2) , S23 = (C3, C3)
(2) ,

S6 = (C1, C1)
(2) , S15 = (C2,D2)

(1) , S24 = (C3, C3)
(4) ,

S7 = (C1, C2)
(1) , S16 = (C2, C3)

(1) , S25 = (C3,D3)
(1) ,

S8 = (C1, C2)
(2) , S17 = (C2, C3)

(2) , S26 = (C3,D3)
(2) ,

S9 = (C1,D2)
(1) , S18 = (C2, C3)

(3) , S27 = (D3,D3)
(2) .

We shall use here the following invariant polynomials constructed in [16] to char-
acterize the family of cubic systems possessing the maximal number of invariant
straight lines:

D1(a) = 6S3
24 −

[
(C3, S23)

(4)
]2
, D2(a, x, y) = −S23,

D3(a, x, y) = (S23, S23)
(2) − 6C3(C3, S23)

(4), D4(a, x, y) = (C3,D2)
(4),

V1(a, x, y) = S23 + 2D2
3, V2(a, x, y) = S26, V3(a, x, y) = 6S25 − 3S23 − 2D2

3,

V4(a, x, y) = C3

[
(C3, S23)

(4) + 36 (D3, S26)
(2)

]
,

V5(a, x, y) = 6T1(9A5 − 7A6) + 2T2(4T16 − T17) − 3T3(3A1 + 5A2) + 3A2T4+

+ 36T 2
5 − 3T44,

L1(a, x, y) = 9C2 (S24 + 24S27) − 12D3 (S20 + 8S22) − 12 (S16,D3)
(2)

− 3 (S23, C2)
(2) − 16 (S19, C3)

(2) + 12 (5S20 + 24S22, C3)
(1) ,
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L2(a, x, y) = 32 (13S19 + 33S21,D2)
(1) + 84 (9S11 − 2S14,D3)

(1) +

+ 8D2 (12S22 + 35S18 − 73S20) − 448 (S18, C2)
(1) −

− 56 (S17, C2)
(2) − 63 (S23, C1)

(2) + 756D3S13 − 1944D1S26+

+ 112 (S17,D2)
(1) − 378 (S26, C1)

(1) + 9C1 (48S27 − 35S24) ,

U1(a) = T31 − 4T37,

U2(a, x, y) = 6 (T30 − 3T32, T36)
(1) − 3T30 (T32 + 8T37)−

− 24T 2
36 + 2C3 (C3, T30)

(4) + 24D3 (D3, T36)
(1) + 24D2

3T37.

K2(a, x, y) = T74, K4(a, x, y) = T13 − 2T11,

K1(a, x, y) =
(
3223T 2

2 T140 + 2718T4T140 − 829T 2
2 T141, T133

)(10)
/2,

K5(a, x, y) = 45T42 − T2T14 + 2T2T15 + 12T36 + 45T37 − 45T38 + 30T39,

K6(a, x, y) = 4T1T8(2663T14 − 8161T15) + 6T8(178T23 + 70T24 + 555T26)+

+ 18T9(30T2T8 − 488T1T11 − 119T21) + 5T2(25T136 + 16T137)−
− 15T1(25T140 − 11T141) − 165T142,

K8(a, x, y) = 10A4T1 − 3T2T15 + 4T36 − 8T37.

However these invariant polynomials are not sufficient to characterize the cubic
systems with invariant lines of the total multiplicity 8. So we construct here the
following new invariant polynomials:

N1(a, x, y) =S13, N2(a, x, y) = C2D3 + 3S16, N3(a, x, y) = T9,

N4(a, x, y) = − S2
14 − 2D2

2(3S14 − 8S15) − 12D3(S14, C1)
(1)+

+D2(−48D3S9 + 16(S17, C1)
(1)),

N5(a, x, y) =36D2D3(S8 − S9) +D1(108D
2
2D3 − 54D3(S14 − 8S15))+

+ 2S14(S14 − 22S15) − 8D2
2(3S14 + S15)−9D3(S14, C1)

(1)−16D4
2 ,

N6(a, x, y) =40D2
3(15S6 − 4S3) − 480D2D3S9 − 20D1D3(S14 − 4S15)+

+ 160D2
2S15 − 35D3(S14, C1)

(1) + 8
(
(S23, C2)

(1), C0

)(1)
,

N7(a, x, y) =18C2D2(9D1D3 − S14) − 2C1D3(8D
2
2 − 3S14 − 74S15)−

− 432C0D3S21 + 48S7(8D2D3 + S17) − 51S10S14+

+ 6S10(12D
2
2 + 151S15) − 162D1D2S16 + 864D3(S16, C0)

(1),

N8(a, x, y) = − 32D2
3S2 − 108D1D3S10 + 108C3D1S11 − 18C1D3S11−

− 27S10S11 + 4C0D3(9D2D3 + 4S17) + 108S4S21,

N9(a, x, y) =11S2
14 − 2592D2

1S25 + 88D2(S14, C2)
(1)−

− 16D1D3(16D
2
2 + 19S14 − 152S15) − 8D2

2(7S14 + 32S15),

N10(a, x, y) = − 24D1D3 + 4D2
2 + S14 − 8S15,

N11(a, x, y) =S2
14 + 8D1D3[2D

2
2 − (S14 − 8S15)] − 2D2

2(5S14 − 8S15)+

+ 8D2(S14, C2)
(1),
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N12(a, x, y) = 135D1D3[8D
2
2 − (S14 − 20S15)] − 5D2

2(39S14 − 32S15)+

+ 5S2
14 − 160D4

2 − 1620D2
3S3 + 85D2(S14, C2)

(1)+

+ 81
(
(S23, C2)

(1), C0

)(1)
,

N13(a, x, y) = 2(136D2
3S2 − 126D2D3S4 + 60D2D3S7 + 63S10S11)−

− 18C3D1(S14 − 28S15) − 12C1D3(7S11 − 20S15)+

+ 4C0D3(21D2D3 + 17S17)+3C2(S14, C2)
(1)−192C2D2S15,

N14(a, x, y) = − 6D1D3 − 15S12 + 2S14 + 4S15,

N15(a, x, y) = 216D1D3(63S11 − 104D2
2 − 136S15) + 4536D2

3S6+

+ 4096D4
2 + 120S2

14 + 992D2(S14, C2)
(1)+

+ 135D3

[
28(S17, C0)

(1) + 5(S14, C1)
(1)

]
,

N16(a, x, y) = 2C1D3 + 3S10, N17(a, x, y) = 6D1D3 − 2D2
2 − (C3, C1)

(2),

N18(a, x, y) = 2D3
2 − 6D1D2D3 − 12D3S5 + 3D3S8,

N19(a, x, y) = C1D3(18D
2
1 − S6) − 3C0D3(4D1D2 + 6S5 − 3S8)+

+ 6C2D1S82D2(9D3S1 − 4D2S2) + 2D1(12D3S2 − 9C3S6)+

+ 4C0D
3
2 − 18D3(S4, C0)

(1),

N20(a, x, y) =3D4
2 − 8D1D

2
2D3 − 8D2

3S6 − 16D1D3S11 + 16D2D3S9,

N21(a, x, y) =2D1D
2
2D3 − 4D2

3S6 +D2D3S8 +D1(S23, C1)
(1)

where

A1 =S24/288, A2 = S27/72, A3 = (72D1A2 + (S22,D2)
(1)/24,

A4 =[9D1(S24−288A2)+4(9S11−2S14,D3)(2)+8(3S18−S20−4S22,D2)
(1)]/2733

are affine invariants, whereas the polynomials

T1 = C3, T2 = D3, T3 = S23/18, T4 = S25/6, T5 = S26/72,

T6 =
[
2C3(2D

2
2 − S14 + 8S15) − 3C1M1 − 2C2M2

]
/24/32,

T8 =
[
5D2(D

2
3 + 27T3 − 18T4) + 20D3S19+12

(
S16,D3

)(1)−8D3S17

]
/5/25/33,

T9 =
[
9D1M1 + 2D2(D2D3 − 3S17 − S19 − 9S21) + 18

(
S15, C3

)(1)−
− 6C2(2S20 − 3S22) + 18C1S26 + 2D3S14

]
/24/33,

T11 =
[
6
(
M1,D2

)(1) −
(
M1, C2

)(2) − 12
(
S26, C2

)(1)
+ 12D2S26+

+ 432(A1 − 5A2)C2

]
/27/34,

T13 =
[
27(T3, C2)

(2) − 18(T4, C2)
(2) + 48D3S22 − 216(T4,D2)

(1) + 36D2S26−
− 1296C2A1 − 7344C2A2 + (D2

3 , C2)
(2)

]
/27/34,

T14 =
[(

8S19 + 9S21,D2

)(1) −D2(8S20 + 3S22) + 18D1S26 + 1296C1A2

]
/24/33,
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T15 = 8
(
9S19+2S21,D2

)(1)
+3

(
M1, C1

)(2)−4
(
S17, C2

)(2)
+

+4
(
S14−17S15,D3

)(1)−8
(
S14+S15, C3

)(2)
+432C1(5A1+11A2)+

+36D1S26−4D2(S18+4S22)
]
/26/33,

T21 =
(
T8, C3

)(1)
, T23 =

(
T6, C3

)(2)
/6, T24 =

(
T6,D3

)(1)
/6,

T26 =
(
T9, C3

)(1)
/4, T30 =

(
T11, C3

)(1)
, T31 =

(
T8, C3

)(2)
/24,

T32 =
(
T8,D3

)(1)
/6, T36 =

(
T6,D3

)(2)
/12, T37 =

(
T9, C3

)(2)
/12,

T38 =
(
T9,D3

)(1)
/12, T39 =

(
T6, C3

)(3)
/24/32, T42 =

(
T14, C3

)(1)
/2,

T44 =
(
(S23, C3)

(1),D3

)(2)
/5/26/33,

T74 =
[
27C0M

2
1 − C1

(
2835T11C3 + 3M1M2

)
+ 2834T11C

2
2+

+ C2M1(8D
2
2 + 54D1D3 − 27S11 + 27S12 − 4S14 + 32S15)−

− 54D1M1S16 − 54C3M1(2D1D2 − S8 + 2S9) − 2632T6M2

]
/28/34,

T133 =(T74, C3)
(1), T136 =

(
T74, C3

)(2)
/24, T137 =

(
T74,D3

)(1)
/6,

T140 =
(
T74,D3

)(2)
/12, T141 =

(
T74, C3

)(3)
/36, T142 =

(
(T74, C3)

(2), C3

)(1)
/72

where M1 = 9T3−18T4−D2
3 , M2 = 2D2D3−S17 +2S19−6S21 and Ti, i = 1, ..., 142

are T -comitants of cubic systems (3) (see for details [27]). We note that these
invariant polynomials are the elements of the polynomial basis of T -comitants up to
degree six constructed by Iu. Calin [8].

2.2 Preliminary results

In order to determine the degree of the common factor of the polynomials
G̃i(a, x, y) for i = 1, 2, 3, we shall use the notion of the kth

subresultant of two
polynomials with respect to a given indeterminate (see for instance [14,19]).

Following [16] we consider two polynomials f(z) = a0z
n+a1z

n−1+· · ·+ an, g(z) =
b0z

m +b1z
m−1 + · · ·+bm, in the variable z of degree n and m, respectively. Thus the

k–th subresultant with respect to variable z of the two polynomials f(z) and g(z)

will be denoted by R
(k)
z (f, g).

We say that the k–th subresultant with respect to variable z of the two polyno-
mials f(z) and g(z) is the (m+ n− 2k) × (m+ n− 2k) determinant

R(k)
z (f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0a1 a2 . . . . . .am+n−2k−1

0a0 a1 . . . . . .am+n−2k−2

00 a0 . . . . . .am+n−2k−3

. . . . . . . . . . . . . . . . . . . . . . . .

00 b0 . . . . . .bm+n−2k−3

0b0 b1 . . . . . .bm+n−2k−2

b0b1 b2 . . . . . .bm+n−2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣





(m− k) − times





(n− k) − times

(5)
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in which there are m− k rows of a’s and n− k rows of b’s, and ai = 0 for i > n, and
bj = 0 for j > m.

For k = 0 we obtain the standard resultant of two polynomials. In other words
we can say that the k–th subresultant with respect to the variable z of the two
polynomials f(z) and g(z) can be obtained by deleting the first and the last k rows
and the first and the last k columns from its resultant written in the form (5) when
k = 0.

The geometrical meaning of the subresultant is based on the following lemma.

Lemma 4 (see [14,19]). Polynomials f(z) and g(z) have precisely k roots in com-
mon (considering their multiplicities) if and only if the following conditions hold:

R(0)
z (f, g) = R(1)

z (f, g) = R(2)
z (f, g) = · · · = R(k−1)

z (f, g) = 0 6= R(k)
z (f, g).

For the polynomials in more than one variables it is easy to deduce from Lemma
4 the following result.

Lemma 5. Two polynomials f̃(x1, x2, ..., xn) and g̃(x1, x2, ..., xn) have a common
factor of degree k with respect to the variable xj if and only if the following conditions
are satisfied:

R(0)
xj

(f̃ , g̃) = R(1)
xj

(f̃ , g̃) = R(2)
xj

(f̃ , g̃) = · · · = R(k−1)
xj

(f̃ , g̃) = 0 6= R(k)
xj

(f̃ , g̃),

where R
(i)
xj

(f̃ , g̃) = 0 in R[x1, . . . xj−1, xj+1, . . . , xn].

In paper [16] 23 configurations of invariant lines (one more configuration is con-
structed in [5]) are determined in the case, when the total multiplicity of these lines
(including the line at infinity) equals nine. For this purpose in [16] the authors
proved some lemmas concerning the number of triplets and/or couples of parallel
invariant straight lines which could have a cubic system. In [6] these results have
been completed.

Theorem 1 (see [6]). If a cubic system (3) possesses a given number of triplets
or/and couples of invariant parallel lines real or/and complex, then the following
conditions are satisfied, respectively:

(i) 2 triplets ⇒ V1 = V2 = U 1 = 0;
(ii) 1 triplet and 2 couples ⇒ V3 = V4 = U2 = 0;
(iii) 1 triplet and 1 couple ⇒ V4 = V5 = U2 = 0;
(iv) one triplet ⇒ V4 = U 2 = 0;
(v) 3 couples ⇒ V3 = 0;
(vi) 2 couples ⇒ V5 = 0.

In papers [6] and [7] all the possible configurations of invariant straight lines
of total multiplicity 8, including the line at infinity with its own multiplicity are
determined for cubic systems with at least three distinct infinite singularities. In
particular the next result is obtained.
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Lemma 6 (see [6]). A cubic system with four distinct infinite singularities could not
possess configuration of invariant lines of type (3, 2, 2). And it possesses a configura-
tion or potential configuration of a given type if and only if the following conditions
are satisfied, respectively

(3, 3, 1) ⇔ V1 = V2 = L1 = L2 = K1 = 0, K2 6= 0;
(3, 2, 1, 1) ⇔ V5 = U2 = K4 = K5 = K6 = 0, D4 6= 0;
(2, 2, 2, 1) ⇔ V3 = K4 = K2 = K8 = 0, D4 6= 0.

Let L(x, y) = Ux + V y + W = 0 be an invariant straight line of the family of
cubic systems (3). Then, we have

UP (x, y) + V Q(x, y) = (Ux+ V y +W )(Ax2 + 2Bxy + Cy2 +Dx+Ey + F ),

and this identity provides the following 10 relations:

Eq1 =(a30 −A)U + b30V = 0, Eq2 = (3a21 − 2B)U + (3b21 −A)V = 0,

Eq3 =(3a12 − C)U + (3b12 − 2B)V = 0, Eq4 = (a03 − C)U + b03V = 0,

Eq5 =(a20 −D)U + b20V −AW = 0,

Eq6 =(2a11 − E)U + (2b11 −D)V − 2BW = 0,

Eq7 =a22U + (b22 − E)V − CW = 0, Eq8 = (a10 − F )U + b10V −DW = 0,

Eq9 =a01U + (b01 − F )V − EW = 0, Eq10 = a00U + b00V − FW = 0.

(6)

As it was mentioned earlier, the infinite singularities (real or complex) of systems
(3) are determined by the linear factors of the polynomial C3. So in the case of two
distinct infinite singularities they are determined either by one triple and one simple
real or two double real (or complex) factors of the polynomial C3(x, y). We consider
here the first case.

Lemma 7 (see [20]). A cubic system (3) possesses the infinite singularities deter-
mined by one triple and one simple factors of the invariant polynomial C3(x, y) if
and only if the conditions D1 = D3 = D4 = 0, D2 6= 0 hold. Moreover the cu-
bic homogeneities of this system could be brought via a linear transformation to the
canonical form

x′ =(u+ 1)x3 + vx2y + rxy2,

y′ =ux2y + vxy2 + ry3, with C3 = x3y.
(7)

3 The proof of the Main Theorem

Assume that a cubic system possesses two distinct infinite singularities which
are determined by one simple and one triple real factors of the polynomial C3. Then
considering Lemma 7 we obtain that systems (3) via a linear transformation become:

x′ = p0 + p1(x, y) + p2(x, y) + (u+ 1)x3 + vx2y + rxy2,
y′ = q0 + q1(x, y) + q2(x, y) + ux2y + vxy2 + ry3 (8)
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with C3 = x3y. Hence, the infinite singular points are located at the “ends” of the
following straight lines: x = 0 and y = 0.

The proof of the Main Theorem proceeds in 4 steps.

First we construct the cubic homogeneous parts (P̃3, Q̃3) of systems for which
the corresponding necessary conditions provided by Theorem 1 in order to have the
given number of triplets or/and couples of invariant parallel lines in the respective
directions are satisfied.

Secondly, taking cubic systems ẋ = P̃3, ẏ = Q̃3 we add all quadratic, linear and
constant terms and using the equations (6) we determine these terms in order to get
the needed number of invariant lines in the needed configuration. Thus the second
step ends with the construction of the canonical systems possessing the needed
configuration.

The third step consists in the determination of the affine invariant conditions
necessary and sufficient for a cubic system to belong to the family of systems (con-
structed at the second step) which possess the corresponding configuration of invari-
ant lines.

And finally, in the case of the existence of multiply invariant lines in a potential
configuration we construct the corresponding perturbed systems possessing 8 distinct
invariant lines (including the line at infinity).

3.1 Construction of the corresponding cubic homogeneities

In what follows we construct the cubic homogeneous parts of systems (8) for
each one of the possible configurations mentioned in Lemma 6.

a) The case of the configuration (3, 3, 1). In this case we have two triplets of
parallel invariant straight lines and according to Theorem 1 the condition V1 = V2 =
U1 = 0 is necessary for systems (8). A straightforward computation of the value of

V1 provides V1 = 16

4∑

j=0

V1jx
4−jyj, where

V10 = u(2u+ 3), V12 = 4ru+ 3r + 2v2,

V11 = v(4u + 3), V13 = 4vr, V14 = 2r2.

Therefore from V1 = 0 it results v = r = 0 and u(2u+ 3) = 0, and we consider two
subcases: u = 0 and u = −3/2. For u = 0 we get the cubic homogeneous system:

ẋ = x3, ẏ = 0 (9)

whereas for u = −3/2, after the time rescaling t→ −2t, we have

ẋ = x3, ẏ = 3x2y. (10)

It has to be underlined that for systems (9) and (10) the relation V2 = U1 = 0
holds.
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b) The case of the configuration (3, 2, 1, 1). According to Theorem 1, if a cu-
bic system possesses 7 invariant straight lines in the configuration (3, 2, 1, 1), then
necessarily the conditions V4 = V5 = U2 = 0 hold.

We consider again systems (8). A straightforward computation of the value of

V5 yields: V5 =
9

32

4∑

j=0

V5jx
4−jyj, where

V50 = −u(3r + ru− v2), V52 = 6r2u,

V51 = 4ruv, V53 = 0, V54 = −r3.

Hence r = 0 which gives V 4 = 0 and U2 = −12288v2x2(ux+ vy)2. So the condition
U2 = 0 is equivalent to v = 0 and in this case we have V 5 = V 4 = U 2 = 0. As a
result we get the family of systems

ẋ = (u+ 1)x3, ẏ = ux2y (11)

if u 6= 0, whereas if u = 0 we arrive at system (9).

c) The case of the configuration (2, 2, 2, 1). According to Theorem 1 if a cubic
system possesses 7 invariant straight lines in the configuration (2, 2, 2, 1), then
necessarily the condition V3 = 0 holds.

So we shall consider the family of systems (8) and we force the condition V3 = 0
to be satisfied. We have:

V30 = u(3 + u), V31 = 2uv, V32 = −3r + 2ru+ v2, V33 = 2rv, V34 = r2

where V3j are the elements of V3 = −32

4∑

j=0

V3jx
4−jyj. So the condition V34 = 0 is

equivalent to r = 0 and, in consequence, V33 = V34 = 0 and V32 = v2. So v = 0
and the condition V30 = 0 gives u(u + 3) = 0. Therefore if u = −3 due to the time
rescaling t→ −t we arrive at the cubic homogeneities

ẋ = 2x3, ẏ = 3x2y (12)

whereas in the case u = 0 we get system (9).
So we get three specific systems (9), (10) and (12) and one-parameter family of

systems (11). As it can be observed, the first three systems belong to this family
for some values of the parameter u: system (9) for u = 0, system (10) for u = −3/2
(after the time rescaling t → −2t) and system (12) for u = −3 (after the time
rescaling t→ −t).

On the other hand for systems (11) we have V1 = 16u(3+2u)x4, V3 = −32u(3+
u)x4 and therefore we arrive at the next proposition.

Proposition 1. Assume that for a cubic homogeneous system the conditions D1 =
D3 = D4 = 0 and D2 6= 0 hold. Then this system can be brought to one of the
canonical systems indicated below if and only if the corresponding conditions are
satisfied, respectively:
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(i) V1 = V3 = 0, ⇒ system (9), (ii) V1 = 0, V3 6= 0 ⇒ system (10),

(iii) V1 6= 0, V3 = 0 ⇒ system (12), (iv)V1V3 6= 0, V5 = U2 = 0 ⇒ system (11).

Thus for the further investigation four different homogeneous systems remain:
(9), (10), (11) and (12). However in this article, we will consider only the cubic
systems with cubic homogeneities of the form (9), as in the statement of the Main
Theorem we assume the additional condition V1 = V3 = 0.

We observe that if for perturbed systems some condition K(x, y) = 0 holds,
where K(x, y) is an invariant polynomial, then this condition must hold also for
the initial (unperturbed) systems. So considering Lemma 6 we arrive at the next
remark.

Remark 4. Assume that a cubic system with two distinct infinite singularities pos-
sesses a potential configuration of a given type. Then for this system the following
conditions must be satisfied, respectively:

(a1) ( 3, 3, 1 ) ⇒ V1 = V2 = L1 = L2 = K1 = 0;

(a2) ( 3, 2, 1, 1 ) ⇒ V5 = U2 = K4 = K5 = K6 = 0;

(a3) ( 2, 2, 2, 1 ) ⇒ V3 = K4 = K2 = K8 = 0.

3.2 Construction of the configurations and of the corresponding

normal forms

In this case, considering (8) and (9) via a translation of the origin of coordinates
we can consider g = 0 and hence we get the cubic systems

ẋ = a+ cx+ x3 + dy + 2hxy + ky2, ẏ = b+ ex+ lx2 + fy + 2mxy + ny2 (13)

for which we have H(X,Y,Z) = Z (see Notation 1).
Now we force the necessary conditions given in Remark 4 which correspond to

each type of configuration. We claim that if any of the conditions (a1), (a2) or (a3)
are satisfied for a system (13) then k = h = n = 0 and this condition is equivalent
to K5 = 0. We divide the proof of this claim in three subcases defined by (a1)–(a3).

(a1). For systems (13) we calculate: L1 = 0 and

Coefficient[L2, xy] = −20736(12h2 + 7km− 6hn + 3n2) = 0,

Coefficient[K1, y
2] = 3967 · 21839547319k6 = 0.

Therefore we get k = 0 and as the discriminant of the binary form 4h2 − 2hn + n2

is negative we obtain h = n = 0 (and this implies L2 = K1 = 0).
(a2). In the same manner in the case of the configuration (3, 2, 1, 1) we determine

K4 = K6 = 0 and

K5 = −180m(h − n)x4 + 60(4h2 − 3km− 2hn + n2)x3y − 240k2xy3.
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From K5 = 0 it results k = 0 and we get the same binary form 4h2 −2hn+n2 which
leads to h = n = 0. Consequently K5 = 0 if and only if k = h = n = 0.

(a3). We calculate K4 = 0 and Coefficient[L2, x
2y7] = 2k3 = 0, i.e. k = 0. Then

calculations yield

Coefficient[K2, x
5y4] = −2n(h−n)2 =0, Coefficient[K8, x

3y] = 2(4h2 +14hn+n2)=0

and evidently we obtain h = n = 0 (then K2 = K8 = 0) and this completes the proof
of the claim.

Remark 5. Since infinite singularities of systems (8) are located on the ”ends” of
the axis x = 0 and y = 0, the invariant affine lines must be either of the form
Ux + W = 0 or V y + W = 0. Therefore we can assume U = 1 and V = 0 (for
the direction x = 0) and U = 0 and V = 1 (for the direction y = 0). In this case,
consideringW as a parameter, six equations among (6) become linear with respect to
the parameters {A,B,C,D,E, F} (with the corresponding non–zero determinant)
and we can determine their values, which annulate some of the equations (6). So
in what follows we will examine only the non-zero equations containing the last
parameter W .

Since for systems (8) the condition k = h = n = 0 is equivalent to K5 = 0 we
assume this condition to be fulfilled.

We begin with the examination of the direction x = 0 (U = 1, V = 0). So,
considering (6) and Remark 5 for systems (13) we have: Eq9 =d, Eq10 =a−cW−W 3.
So in the direction x = 0 we could have three invariant lines (which could coincide)
and this occurs if and only if d = 0. Thus we arrive at the family of systems

ẋ = a+ cx+ x3, ẏ = b+ ex+ lx2 + fy + 2mxy (14)

for which we calculate

H(X,Z) = Z(X3 + cXZ2 + aZ3). (15)

Remark 6. Any invariant line of the form x+ α = 0 (i.e. in the direction x = 0) of
cubic systems (3) must be a factor of the polynomials P (x, y), i.e. (x+α) | P (x, y).

Indeed, according to the definition, for an invariant line ux + vy + w = 0 we
have uP + vQ = (ux + vy + w)R(x, y), where the cofactor R(x, y) generically is a
polynomial of degree two. In our particular case (i.e. u = 1, v = 0, w = α) we obtain
P (x) = (x+ α)R(x), which means that (x+ α) divides P (x).

This remark could be applied for any cubic systems when we examine the direc-
tion x = 0. Similarly, for an invariant line y + β = 0 in the the direction y = 0 it is
necessary (y + β = 0) | Q(x, y).
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Considering systems (14) we calculate

G1/H =lX4 +X3
[
4mY + 2(e − lm)Z)

]
+X2

[
(3f − 4m2)Y Z + (3b− cl − lf−

+ −2em)Z2
]
+X

[
− 4fmY Z2 + (−2al − ef − 2bm)Z3

]
+ (cf − f2−

− 2am)Y Z3 + (bc− ae− bf)Z4 ≡ F1(X,Y,Z),

G2/H =(X3 + cXZ2 + aZ3)
{
2lX3 +

[
X2(6mY + (3e − 2lm)Z

]
+X

[
(3f−

− 4m2)Y Z + (3b− cl − 2em)Z2
]
− 2fmY Z2 + (−al − 2bm)Z3

]
≡

≡ P ∗(X,Z)F2(X,Y,Z),

G3/H =24(lX2 + 2mXY + eXZ + fY Z + bZ2)(X3 + cXZ2 + aZ3)2 ≡
≡ 24Q∗(X,Y,Z) [P ∗(X,Z)]2 ,

(16)
where P ∗(X,Z) and Q∗(X,Y,Z) are the homogenization of the polynomials P (x)
and Q(x, y) of systems (14). It is clear that these systems are degenerate if and only
if the polynomials P (x) and Q(x, y) have a nonconstant common factor (depending
on x) and this implies the existence of such a common factor (depending on X and
Z) of the polynomials P ∗(X,Z) and Q∗(X,Y,Z). So for non-degenerate systems
the condition

R
(0)
X (P ∗(X,Z), Q∗(X,Y,Z)) 6= 0 (17)

must hold. We have the next lemma.

Lemma 8. For a non-degenerate system (14) the polynomial P ∗(X,Z) could not be
a factor of G1/H, i.e. P ∗(X,Z) does not divide F1(X,Y,Z).

Proof. Suppose the contrary that P ∗(X,Z) divides F1(X,Y,Z). Then considering
the form of the polynomial P ∗(X,Z) (which contains the term X3) by Lemma 5

the following conditions are necessary and sufficient: R
(0)
X (F1, P

∗)=R
(1)
X (F1, P

∗)=

R
(2)
X (F1, P

∗) = 0. We calculate R
(2)
X (F1, P

∗) =
[
(3f − 4m2)Y + (3b − 2cl − lf −

2em)
]
Z = 0 and this implies f = 4m2/3 and b = 2(3cl + 3em + 2lm2)/9. Then we

obtain

R
(1)
X (F1, P

∗) =
Z4

81

[
12m(3c+4m2)Y +(27al+18ce− 6clm+24em2 +8lm3)Z

]2
= 0

and we consider two cases: m 6= 0 and m = 0.

1) If m 6= 0 then we may assume m = 1 and e = 0 due to the change (x, y, t) →
(mx, y−e/2m, t/m2) and in this case the above condition gives us c = −4/3 and a =

−16/27. However in this case we have R
(0)
X (P ∗, Q∗) = 0, i.e. we get a contradiction

with the condition (17).

2) Assume now m = 0. In this case we obtain

R
(1)
X (F1, P

∗) = (3al + 2ce)2Z6 = 0,

R
(0)
X (F1, P

∗) = (27a2 + 4c3)
[
27a2l3 + 27ae(cl2 − e2) + 2c2l(cl2 + 9e2)

]
Z12/27 = 0,

R
(0)
X (P ∗, Q∗) =

[
27a2l3 + 27ae(cl2 − e2) + 2c2l(cl2 + 9e2)

]
/27 6= 0
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and this implies c 6= 0, otherwise the second equality yields a = 0 and then

R
(0)
X (P ∗, Q∗) = 0. So c 6= 0 and the first equation gives e = −3al/(2c) and then we

arrive at the contradiction:

R
(0)
X (F1, P

∗) =
l3Z12

216c3
(27a2 + 4c3)3 = 0, R

(0)
X (P ∗, Q∗) =

l3Z6

216c3
(27a2 + 4c3)2 6= 0.

This completes the proof of the lemma.

Now we examine the direction y = 0. The following proposition holds.

Proposition 2. For the existence of an invariant line of systems (14) in the direc-
tion y = 0 it is necessary and sufficient

l = 0, ef − 2bm = 0, f2 +m2 6= 0. (18)

Proof. Indeed, considering the equations (6) for a system (14) we obtain

Eq5 = l, Eq8 = e− 2mW, Eq10 = b− fW.

Clearly, Eq5 = 0 is equivalent to l = 0. On the other hand in order to have a line in
the direction y = 0 the condition f2 +m2 6= 0 is necessary. Therefore the condition
Res W (Eq8, Eq10) = ef − 2bm = 0 is necessary and sufficient for the existence of a
common solution W = W0 of the equations Eq8 = 0 and Eq10 = 0. This completes
the proof of the proposition.

3.2.1 The case m 6= 0, l 6= 0

By Proposition 2 we could not have invariant line in the direction y = 0. So after
the transformation (x, y, t) → (mx,−e/2m + ly, t/m2) we can consider l = m = 1
and e = 0. As a result we arrive at the family of systems

ẋ =a+ cx+ x3 ≡ P (x), ẏ = b+ x2 + fy + 2xy ≡ Q(x, y). (19)

Proposition 3. Systems (19) possess invariant lines of total multiplicity 8 if and
only if

a = 0, f = c = −4

9
, b =

4

27
. (20)

Proof. Sufficiency. Assume that (20) are satisfied. Then for the system (19)
we calculate H(X,Y,Z) = −3−8X2(3X − 2Z)3Z(3X + 2Z) and hence, we have 8
invariant straight lines (including the line at infinity).

Necessity. Consider systems (19) for which the polynomial H has the form (15).
The degree of this polynomial equals four, but should be seven . Therefore we have
to find out the conditions to increase the degree of the polynomial H up to seven,
namely we have to find out additionally a common factor of degree three of the
polynomials Gi, i = 1, 2, 3 (see Lemma 2 and Notation 1).

Considering (16) for systems (19) we obtain G1/H|Z=0 = X3(X+4Y ). Therefore
we conclude that all three polynomials could only have common factors of the form
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X + α = 0, which by Remark 6 must be factors of the polynomial P ∗(X,Z). We
observe that P ∗(X,Z) is a common factor of the polynomials G2/H and G3/H and,
moreover, in the last one this factor is of the second degree.

According to Lemma 8 the polynomial P ∗(X,Z) could not be a factor of G1/H,
i.e. of the polynomial F1(X,Y,Z). Thus not all the factors of the polynomial
P ∗(X,Z) are also the factors in F1(X,Y,Z). This leads us to the conclusion that
the polynomial F2(X,Y,Z) must have a common factor with P ∗(X,Z), i.e. the
condition

R
(0)
X (F2, P

∗) = (8 + 27a+ 18c)Z3R
(0)
X (P ∗, Q∗) = 0

has to be fulfilled. Due to (17) this gives c = −(8 + 27a)/18 and we obtain that the
polynomial ψ = (3X − 2Z) is a common factor of the polynomials F2(X,Y,Z) and
P ∗(X,Z). On the other hand it must be a factor in F1(X,Y,Z). We calculate

R
(0)
X (F1, ψ) = − (8 + 27a+ 18f)Z3(12Y + 9fY + 4Z + 9bZ)/2 = 0,

R
(0)
X (P ∗, Q∗) =(12Y + 9fY + 4Z + 9bZ)Ψ(Y,Z) 6= 0,

where Ψ(Y,Z) is a polynomial. So the above conditions give us the equality a =
−2(4 + 9f)/27 and then we obtain f = c. In this case calculations yield

G1/H =
1

27
(3X − 2Z)

[
9X3 + 12X2(3Y − Z) + 3(9c − 4)XY Z+

+ (27b − 18c− 8)XZ2 − 2(4 + 9c)Y Z2
]
≡ 1

27
(3X − 2Z)F ′

1(X,Y,Z),

G2/H =
1

729
(3X − 2Z)2

[
18X2 + 54XY − 6XZ + 27cY Z + (27b − 9c− 4)Z2

]
×

× (9X2 + 6XZ + 4Z2 + 9cZ2) ≡ 1

729
(3X − 2Z)2F ′

2(X,Y,Z)P̃ (X,Y,Z)

and we obtain

R
(0)
X

(
F ′

1, F̃
′
2

)
= − 729Z2

[
36Y 2 − 3(4 + 9c)Y Z + (4 − 27b + 9c)Z2

]
Γ(Y,Z),

R
(0)
X

(
F ′

1, P̃
)

=729(4 + 9c)Z4Γ(Y,Z),

R
(0)
X (P ∗, Q∗) =

1

729
Z3(12Y + 9cY + 4Z + 9bZ)Γ(Y,Z),

where Γ(Y,Z) is a polynomial. Since R
(0)
X

(
F ′

1, F̃
′
2

)
6= 0 due to R

(0)
X (P ∗, Q∗) 6= 0,

we deduce that for the existence of a common factor of degree 3 of the polynomials

G1/H and G2/H the condition R
(0)
X

(
F ′

1, P̃
)

= 0 is necessary, i.e. c = −4/9 and we

get c = f = −4/9 and a = 0. In this case we obtain

G1/H =
1

9
X(3X − 2Z)(3X2 + 12XY − 4XZ − 8Y Z + 9bZ2) ≡ 1

9
X(3X − 2Z)F ′′

1 ,

P ∗(X,Z) = X(3X − 2Z)(3X + 2Z)/9
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and since X could not be a factor of F ′′
1 (X,Y,Z) and, moreover, as it was proved

earlier the polynomial P ∗(X,Z) could not divide G1/H, we deduce that the factor
of F ′′

1 (X,Y,Z) must be 3X − 2Z. So the condition

R
(0)
X

(
F ′′

1 , 3X − 2Z
)

= 3(27b − 4)Z2 = 0

is necessary and this implies b = 4/27, i.e. we arrive at the conditions (20) and this
completes the proof of Proposition 3.

Considering the conditions (20) we obtain the family of systems which after the
suitable transformation (x, y, t) → (2x/3, y + 1/3, 9t/4) becomes

ẋ =(x− 1)x(1 + x), ẏ = x− y + x2 + 3xy (21)

with H(X,Y,Z) = −X2(X −Z)3Z(X + Z). We observe that these systems possess
3 finite singularities: (0, 0), (1,−1) and (−1, 0). On the other hand considering
Lemma 3 for systems (21) we calculate:

µ0 = µ1 = µ2 = µ3 = µ4 = µ5 = 0, µ6 = 8x6 6= 0.

So by Lemma 3 all other 6 finite singular points have gone to infinity and collapsed
with the singular point [0, 1, 0] located on the “end” of the invariant line x = 0.

Thus this system possesses 3 real distinct invariant affine lines (besides the double
infinite line) and namely: one triple, one double and one simple, all real and distinct.
Therefore we obtain the configuration Config. 8.23.

3.2.2 The case m 6= 0, l = 0

As it was mentioned earlier we may assume m = 1 and e = 0 due to the change
(x, y, t) → (mx, y − e/2m, t/m2). So we get the family of systems

ẋ =a+ cx+ x3, ẏ = b+ fy + 2xy (22)

which by Proposition 2 possess invariant line in the direction y = 0 if and only
if b = 0.

1) The subcase b 6= 0. We claim that in this case the above systems could
not have invariant lines of total multiplicity 8. Indeed, due to the rescaling y → by
we can consider b = 1 and we obtain that for systems (22) the polynomial H of the
form (15) has the degree 4, but should be 7. Moreover we have G1/H|Z=0 = 4X3Y
and hence the polynomials Gk/H, k = 1, 2, 3 (see their values (16) for m = b = 1
and l = e = 0) could have only the common factors of the form X + αZ.

Considering Remark 6 and Lemma 8 we arrive again at the conclusion that the
polynomial F2(X,Y,Z) must have a common factor with P ∗(X,Z). We determine
that for systems (22) F2(X,Y,Z) = (3X − 2Z)P ∗(X,Z)Q∗(X,Y,Z) and hence due
to the condition (17) and according to Lemma 8 (which says that P ∗(X,Z) could not
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divide G1/H) we conclude that 3X − 2Z must be a double factor in G1/H. However
we obtain

R
(1)
X

(
(3X − 2Z)2,G1/H

)
= 162Z3 6= 0,

i. e. for systems (22) we could not increase the degree of H(X,Y,Z) up to 7 and
this completes the proof of our claim.

2) The subcase b = 0. We obtain the family of systems

ẋ = a+ cx+ x3 ≡ P (x), ẏ = y(f + 2x) ≡ yQ̃(x). (23)

Proposition 4. Systems (23) possess invariant lines of total multiplicity 8 if and
only if one of the following sets of conditions holds:

f = c, a = −2(4 + 9c)

27
, (4 + 3c)(4 + 9c) 6= 0; (24)

f =
−2(3c + 2)

3
, a =

2(4 + 9c)

27
, (4 + 3c)(4 + 9c) 6= 0. (25)

Proof. Sufficiency. Assume that (24)
(
respectively (25)

)
are satisfied. Then consid-

ering systems (23) we calculate H(X,Y,Z) = 3−8Y (3X−2Z)3Z(9X2+6XZ+4Z2+
9cZ2) ( respectivelyH(X,Y,Z) = 3−92Y Z(3X+2Z)(9X2−6XZ+4Z2+9cZ2)2) and
hence, we have 8 invariant straight lines, including the line at infinity. Moreover for

the corresponding systems we calculate R
(0)
X (G2/H,G1/H) = 3112(4+3c)2(4+9c)Z3

(respectively R
(0)
X (G2/H,G1/H) = −315(4 + 3c)2(4 + 9c)Z3) and this leads to the

condition (4 + 3c)(4 + 9c) 6= 0 which does not allow us to have 9 invariant lines.
Necessity. For systems (23) we have H(X,Y,Z) = Y Z(X3 + cXZ2 + aZ3).

Thus according to Lemma 2 we conclude that we need additionally a non-constant
factor of the second degree of H. For systems (23) we calculate (see Notation 1)

G1/H =4X3 − (4 − 3f)X2Z − 4fXZ2 − (2a− cf + f2)Z3,

G2/H =(3X − 2Z)(2X + fZ)(X3 + cXZ2 + aZ3) ≡ (3X − 2Z)Q̃∗(X,Z)P ∗(X,Z),

G3/H =24(2X + fZ)(X3 + cXZ2 + aZ3)2 ≡ Q̃∗(X,Z) [P ∗(X,Z)]2 ,

where P ∗(X,Z) and Q̃∗(X,Z) are the homogenization of the polynomial P (x) and
Q̃(x) from (23).

We observe that G1/H|Z=0 = 4X3 and we conclude that all three polynomials
could not have as a common factor Z. On the other hand these polynomials do not
depend on Y . So common factors of the above polynomials could be only factors
of the form X + αZ, which by Remark 6 must be also factors in P ∗(X,Z). So
considering this remark and Lemma 8 we arrive at the two possibilities: the linear
form 3X − 2Z either is a common factor of the polynomials G1/H and P ∗(X,Z) or
it is not.

a) Assume first that 3X − 2Z is a common factor of G1/H and P ∗(X,Z). Then
the following condition must be satisfied:

R
(0)
X (3X − 2Z,P ∗) =(8 + 27a+ 18c)Z3 = 0
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and this implies a = −2(4 + 9c)/27. Herein we have

R
(0)
X (3X − 2Z,G1/H, ) =9(c− f)(4 + 3f)Z3 = 0,

R
(0)
X (P ∗(X,Z), Q∗(X,Z)) =(4 + 3f)(16 + 36c− 12f + 9f2)Z3/27 6= 0

and hence the condition f = c must hold, which leads to the first two conditions
(24).

b) Suppose now that 3X − 2Z is not a common factor of G1/H and P ∗(X,Z).
Then clearly these polynomials must have a common factor of the second degree.
So the conditions

R
(0)
X (P ∗,G1/H)=(8a− 4cf − f3)Φ1(a, c, f)Z9 =0, R

(1)
X (P ∗,G1/H)=Φ2(a, c, f)4 =0,

R
(0)
X (P ∗, Q∗)=(4cf + f3 − 8a)Z3 6=0

must hold, where Φ1 = 8a+27a2+4c2+4c3+18af−f3−cf(4+3f), Φ2 = 16c2+

2c(8 + 6f + 3f2) + 3(6af − 8a+ 4f2 + f3). Due to R
(0)
X (P ∗, Q∗) 6= 0 we must have

Φ1 = Φ2 = 0 and we calculate

R(0)
a (Φ1,Φ1) = 3(4 + 6c+ 3f)2(4c+ 3f2)(16 + 16c+ 3f2) = 0.

We claim that the condition 4 + 6c + 3f = 0 has to be satisfied for non-degenerate
systems (23). Indeed assuming c = −3f2/4 (respectively c = −(16 + 3f2)/16)) we
get that 4a + f3 (respectively 32a + 16f − f3) is a common factor of Φ1 and Φ2,

however in this case the polynomial R
(0)
X (P ∗, Q∗) gives the value −2(4a+f3)Z3 6= 0

(respectively −(32a+ 16f − f3)Z3/4 6= 0).

So 4+6c+3f = 0, i.e f = −2(2+3c)/3 and in this case the common factor of Φ1

and Φ2 is (8−27a+18c). Hence the condition Φ1 = Φ2 = 0 implies a = 2(4+9c)/27
and this leads to the conditions (25).

Next we construct the respective canonical forms of systems (23) when either
the conditions (24) or (25) of Proposition 4 are satisfied.

(i) Conditions (24). We observe that in this case due to a translation and an
additional notation, namely r = (4 + 3c)/3, we arrive at the family of systems

ẋ =x(r + 2x+ x2), ẏ = (r + 2x)y (26)

for which we have H(X,Y,Z) = X3Y Z(X2 + 2XZ + rZ2). So the polynomial
H(X,Y,Z) has the degree 7 and by Lemma 2 the above systems possess invariant
lines of total multiplicity 8 (including the line at infinity, which is double). Now
we need an additional condition under the parameter r which conserves the degree

of the polynomial H(X,Y,Z). For systems (26) we calculate R
(0)
X (G3/H,G1/H) =

48r3(8 − 9r)2Z5 6= 0. Consequently we get the condition r(8 − 9r) 6= 0 which for
systems (23) is equivalent to (4 + 3c)(4 + 9c) 6= 0 (see the last condition from (24)).
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Besides the infinite line Z = 0 (which is double) systems (26) possess six affine
invariant lines, namely:

L1,2,3 = x, L4 = y, L5,6 = r + 2x+ x2.

We detect that the lines L5,6 = 0 are either complex or real distinct or real coinciding,
depending on the sign of the discriminant of the polynomial x2+2x+r, which equals
∆ = 4(1− r). We also observe that systems (26) possess 3 finite singularities: (0, 0)
and (−1 ±

√
1 − r, 0) which are located on the invariant line y = 0. On the other

hand considering Lemma 3 for systems (26) we calculate:

µ0 = µ1 = µ2 = µ3 = µ4 = µ5 = 0, µ6 = r3x6 6= 0.

So by Lemma 3 all other 6 finite singular points have gone to infinity and collapsed
with the singular point [0, 1, 0] located on the “end” of the invariant line x = 0.
Moreover by this lemma systems (26) became degenerate only if r = 0, and we
observe that in this case the system indeed is degenerate.

We consider the three possibilities given by the value of the discriminant ∆.

a) The possibility ∆ > 0. Then 1 − r > 0, i. e. r < 1. We set the notation
1 − r = u2 (i. e. r = 1 − u2) which leads to the systems

ẋ = (1 − u+ x)x(1 + u+ x), ẏ = (1 − u2 + 2x)y

possessing one triple and three simple distinct real invariant lines. Comparing the
line x = ∓u − 1 with x = 0 we conclude that if |u| > 1 (i. e. r < 0) then in the
direction x = 0 the triple invariant line is situated in the domain between two simple
ones, whereas in the case |u| < 1 (i. e. 0 < r < 1) the triple line is located outside
this domain. As a result we get Config. 8.24 in the case of r < 0 and Config. 8.25
in the case of 0 < r < 1.

b) The possibility ∆ = 0. Then r = 1 and we obtain the configuration
Config. 8.26.

c) The possibility ∆ < 0. In this case r > 1 and we get systems possessing two
complex, one simple and one triple real all distinct invariant lines and this leads to
the configuration Config. 8.27.

(ii) Conditions (25). In this case after the translation of the origin of coordinates
to the singular point (−2/3,−e/2) and setting a new parameter r = (4 + 3c)/3 we
obtain the systems

ẋ =(r − 2x+ x2)x, ẏ = 2(x− r)y. (27)

For these systems we have H(X,Y,Z) = 2XY Z(X2 − 2XZ + rZ2)2. Besides the
double infinite line systems (27) possess 4 affine invariant lines:

L1 = x, L2 = y, L3,4 = x2 − 2x+ r,
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where the lines L3,4 = 0 are double ones. We denote by ∆ = 4(1−r) the discriminant
of the polynomial x2−2x+r and we observe that for ∆ = 0 (i.e. r = 1) the systems
become degenerate.

We also observe that systems (27) possess 3 finite singularities: (0, 0) and
(1 ±

√
1 − r, 0) which are located on the invariant line y = 0. On the other hand

considering Lemma 3 for systems (26) we calculate:

µ0 = µ1 = µ2 = µ3 = µ4 = µ5 = 0, µ6 = 8(1 − r)r2x6.

If r(r − 1) 6= 0 by Lemma 3 all other 6 finite singular points have gone to infinity
and collapsed with the singular point [0, 1, 0] located on the “end” of the invariant
line x = 0. Moreover by this lemma systems (27) became degenerate only if either
r = 0 or r = 1 and in both cases we get degenerate systems.

Thus we have the following two possibilities:

a) The possibility ∆ > 0. Then r < 1 and denoting r = 1 − v2 we obtain the
systems

ẋ =(1 + v − x)x(1 − v − x), ẏ = 2(v2 − 1 + x)y (28)

with H(X,Y,Z) = 2XY Z(X−Z−vZ)2(X−Z+vZ)2. Examining the lines x = 1±v
and x = 0 we conclude that if |v| > 1 then we get a simple invariant line between two
double real lines in the directions x = 0 and consequently we arrive at Config. 8.28.
In the case of |v| < 1 these two double real lines are located on the right–hand side
of the simple invariant line. So we get Config. 8.29.

b) The possibility ∆ > 0. In this case r > 1 and systems (27) possess 2 real
simple, 2 complex double invariant lines, all distinct ⇒ Config. 8.30.

3.2.3 The case m = 0, l 6= 0

We claim that in this case systems (14) could not possess invariant lines of total
multiplicity 8.

Indeed, since l 6= 0 by Proposition 2 we could not have a line in the direction
y = 0. Via the rescaling (x → x, y → ly, t → t) we can consider l = 1 and therefore
we arrive at the systems

ẋ =a+ cx+ x3, ẏ = b+ ex+ x2 + fy (29)

for which the polynomial H has the form (15) and Gi/H (i = 1, 2, 3) are the polyno-
mials (16) for the particular case m = 0 and l = 1. We observe that G1/H|Z=0 = X4

and hence Z could not be a common factor of these polynomials. Since we have no
invariant lines in the direction y = 0, in what follows we shall examine only the con-
ditions given by resultants with respect to X. According to (16) and condition (17)
the polynomial F1(X,Y,Z) must have a common factor of degree 3 with

[
P ∗(X,Y )]2.

For systems (29) we calculate Coefficient[R
(2)
X

(
F1,

[
P ∗]2

)
, Y 4Z4] = 81f4. Clearly the

condition f = 0 is necessarily to get a common factor of the degree 3. Then we have

R
(0)
X

(
F1,

[
P ∗]2

)
=(27a2+4c3)2[Φ(a, b, c, e)]2Z24 =0, R

(0)
X (Q∗, P ∗)=Φ(a, b, c, e)Z6 6=0
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where Φ(a, b, c, e) is a polynomial. So the above conditions imply 27a2 + 4c3 = 0.
First we examine the possibility a = 0 and we get c = 0. Then we calculate

R
(0)
X (Q∗, P ∗) =b3Z6 6= 0, R

(2)
X

(
F1,

[
P ∗]2

)
= 81b4Z8 = 0

and we arrive at the contradictory condition (0 6= b = 0). So it remains to examine
the case when a 6= 0. Since in this case c 6= 0 we denote a = 2a1c which implies
c = −27a2

1. We calculate

R
(0)
X (Q∗, P ∗) =(9a2

1 + b− 3a1e)
2(36a2

1 + b+ 6a1e)Z
6 6= 0,

R
(1)
X

(
F1,

[
P ∗]2

)
=23310a5

1(9a
2
1 + b− 3a1e)

3(36a2
1 + b+ 6a1e)

2Z15 = 0

and we also get a contradiction which completes the proof of our claim.

3.2.4 The case m = 0, l = 0

We divide our examination in two subcases: e 6= 0 and e = 0.

1) The subcase e 6= 0. Then due to the rescaling (x, y, t) → (ex, y, t/e2) we
can consider e = 1 and therefore we arrive at the systems

ẋ = a+ cx+ x3, ẏ = b+ x+ fy. (30)

Proposition 5. Systems (30) possess invariant lines of total multiplicity 8 if and
only if the following conditions hold:

f = −2c, a = 0. (31)

Proof. Sufficiency. Assume that (31) is satisfied. Then considering systems (30)
we calculate H(X,Y,Z) = XZ2(X2 + cZ2)2 and hence, we have invariant straight
lines of total multiplicity 8 (including the line at infinity). On the other hand we

could not have 9 lines, because R
(0)
X (G2/H,G1/H) = −27(2cY − bZ)3 = 0 if and

only if b = c = 0. However in this case we get a degenerate system.
Necessity. For systems (30) we have H(X,Y,Z) = Z2(X3+cXZ2+aZ3) and we

observe that the degree of the polynomial H is 5. So we have to increase the degree
of H up to 7. In other words we have to determine the conditions under which the
three polynomials G1/H, G2/H and G3/H have a common factor of degree 2. For
these systems we calculate

G1/H =2X3 + 3fX2Y + 3bX2Z − fXZ2 + f(c− f)Y Z2 + (bc− a− bf)Z3,

G2/H =3X(X + fY + bZ)(X3 + cXZ2 + aZ3) ≡ 3XQ∗P ∗,

G3/H =24(X + fY + bZ)(X3 + cXZ2 + aZ3)2 ≡ 24Q∗[P ∗]2.

We observe that G1/H|Z=0 = 2X3 + 3fX2Y and hence Z could not be a com-

mon factor of these polynomials. For systems (30) we get R
(0)
Y (G3/H,G1/H) =

−24f(X3 + cXZ2 + aZ3)3 which vanishes if and only if f = 0 and since m = 0,
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considering Proposition 2, we conclude that in this case we could not have a line in
the direction y = 0. Thus all three mentioned polynomials could only have common
factors of the form X + α = 0, which by Remark 6 must be factors of the poly-
nomial P ∗(X,Z). So considering this remark and Lemma 8 we arrive at the two
possibilities: the linear form X either is not a common factor of the polynomials
G1/H = F1(X,Y,Z) and P ∗(X,Z) (i.e. a 6= 0) or it is (i.e. a = 0).

a) Assume first that X is not a factor of P ∗(X,Z), i.e. we have to consider
a 6= 0. According to (16) and condition (17) the polynomial F1(X,Y,Z) must have
a common factor of degree 2 with P ∗(X,Y ). Then considering systems (30) the
following conditions must be satisfied:

R
(0)
X (F1, P

∗) = [27a2 + (c− f)(2c+ f)2]Z6Ψ(Y,Z) = 0, R
(0)
X (Q∗, P ∗) = Ψ(Y,Z) 6= 0

where Ψ(Y,Z) is a polynomial. So the condition 27a2 + (c − f)(2c + f)2 = 0 is
necessary for the existence of a common factor of the polynomials F1 and P ∗. Then
(c− f)(2c+ f) 6= 0 (due to a 6= 0) and denoting u = 2c+ f 6= 0 (i.e. f = u− 2c) we
obtain c = u/3− 9a2/u2 and f = u− 2c = (54a2 + u3)/(3u2). In this case we obtain

F1 =(uX+3aZ)F ∗
1 (X,Y,Z)/(3u4), P ∗=(uX+3aZ)(3uX2−9aXZ+u2Z2)/(3u2)

where F ∗
1 (X,Y,Z) is a polynomial of the second degree. Assume first that uX+3aZ

is a factor in F ∗
1 . In this case it must be a factor in 3uX2−9aXZ+u2Z2 and therefore

the following condition must hold:

R
(0)
X (uX + 3aZ, 3uX2 − 9aXZ + u2Z2) = u(54a2 + u3)Z2 = 0.

Since u 6= 0 we can set a = a1u and thus, we get u = −54a2
1. Then

R
(0)
X (F ∗

1 , uX+3aZ)=18a1(3a1−b)Z2 =0, R
(0)
X (P ∗, Q∗)=(b−3a1)

2(6a1+b)Z3 6=0

and we arrive at the contradiction.
Now we consider that uX + 3aZ is not a factor in F ∗

1 . Then the polynomials F ∗
1

and 3uX2 − 9aXZ +u2Z2 must have a common factor, i.e. the following conditions
hold:

R
(0)
X (F ∗

1 , 3uX
2 − 9aXZ + u2Z2) = 27u5Z2F ∗∗

1 (Y,Z) = 0,

R
(0)
X (P ∗, Q∗) = [(3a− bu)3uZ − (54a2 + u3)Y ]F ∗∗

1 (Y,Z)/(27u6) 6= 0

where F ∗∗
1 (Y,Z) is a polynomial of the second degree. Since c 6= 0 in this case we

also arrive at the contradictory condition.

b) Assume now thatX is a common factor of P ∗(X,Z), i.e. we have the condition
a = 0 which implies G2/H = 3X2(X2 + cZ2)Q∗. Therefore either X2 or X2 + cZ2

must be a factor of F1. In order to have X2 as a common factor of the mentioned
polynomial the condition R

(0)
X (X2, F1) = R

(1)
X (X2, F1) = 0 must be satisfied. We

calculate

R
(1)
X (X2, F1) = −fZ2 = 0, R

(0)
X (X2, F1) = (c− f)2Z4(fY + bZ)2 = 0
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and R
(0)
X (P ∗, Q∗) |{c=f=0}= −b(b2 + c)Z3. It is evident that in order to have X2 as

a factor of the polynomial F1 it is necessary the conditions f = c = 0 and b 6= 0 to
be satisfied, i.e. we get a particular case of the conditions (31). Since b 6= 0, due to
the rescaling {x → bx, y → y/b, t → t/b2} we can consider b = 1. So we arrive at
the system

ẋ =x3, ẏ = 1 + x (32)

for which H(X,Z) = X5Z2. This system possesses the affine invariant line of the
multiplicity 5 in the direction x = 0 and the infinite invariant line is of the multi-
plicity 3. Considering Lemma 3 for these systems we get

µ0 = µ1 = µ2 = µ3 = µ4 = µ5 = µ6 = µ7 = µ8 = 0, µ9 = 9x9 6= 0.

Therefore by Lemma 3 all 9 finite singular points have gone to infinity and collapsed
with the singular point [0, 1, 0] located on the “end” of the invariant line x = 0.
Consequently we get the configuration Config. 8.33.

Now we assume that X2 +cZ2 is a factor of the polynomial F1, i.e. the condition

R
(0)
X

(
X2 +cZ2, F1 |{a=0}

)
= R

(1)
X

(
X2+cZ2, F1 |{a=0}

)
= 0 must hold. We calculate

R
(1)
X

(
X2 + cZ2, F1 |{a=0}

)
= −(2c+ f)Z2 = 0

from which it results f = −2c 6= 0 and we obtain the conditions (31). Since c 6= 0
we may assume b = 0 (applying the translation of the origin of coordinates at the
point x0 = 0, y0 = b/2c). Therefore we arrive at non-degenerate systems depending
on the parameter c = {−1, 1} (applying a rescaling)

ẋ =x(c+ x2), ẏ = x− 2cy. (33)

For the above systems we have H(X,Z) = XZ2(X2 + cZ2)2. Thus beside the triple
infinite invariant line systems (37) possess 5 invariant affine lines. More precisely,
we have one simple and two double, all real and distinct if c = −1 and one simple
real and two double complex if c = 1.

On the other hand we observe that systems (33) possess 3 finite singularities:
(0, 0) and

(
±
√
−c,∓1/(2

√
−c)

)
. Considering Lemma 3 for these systems we calcu-

late:

µ0 = µ1 = µ2 = µ3 = µ4 = µ5 = 0, µ6 = −8c3x6 6= 0.

Therefore by Lemma 3 all other 6 finite singular points have gone to infinity and
collapsed with the singular point [0, 1, 0] located on the “end” of the invariant line
x = 0. Thus we get Config. 8.31 if c = −1 and Config. 8.32 if c = 1.

2) The subcase e = 0. Then we get the family of systems

ẋ =a+ cx+ x3, ẏ = b+ fy (34)
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for which H(a,X, Y Z) = Z2(fY + bZ)(X3 + cXZ2 + aZ3). So the degree of H
is six but should be seven. Therefore we need an additional common factor of
Gi, i = 1, 2, 3. We calculate

G1/H =3X2 + cZ2 − fZ2, G2/H = 3X(X3 + cXZ2 + aZ3),

G3/H =24(X3 + cXZ2 + aZ3)2

and we observe that these polynomials could not have as a common factor neither
Z nor Y. So we examine their resultants with respect to X. We calculate

R
(0)
X (G1/H,P

∗) =[27a2 + (c− f)(2c+ f)2]Z6 = 0,

R
(0)
X (P ∗, Q∗) =(fY + bZ)3 6= 0,

which implies 27a2 + (c − f)(2c + f)2 = 0. We observe that (c − f)(2c + f) 6=
0, otherwise we get a = 0 and this leads to systems with invariant lines of total
multiplicity 9.

Denoting u = 2c + f 6= 0 (i.e. f = u − 2c) we obtain c = u/3 − 9a2/u2 and
f = u− 2c = (54a2 + u3)/(3u2). So we get the family of systems

ẋ =
1

3u2
(3a+ ux)(u2 − 9ax+ 3ux2), ẏ = b+

54a2 + u3

3u2
y. (35)

Without loss of generality we may assume b 6= 0, because in the case b = 0 we
must have 54a2 + u3 6= 0 (otherwise we get degenerate systems) and then via a
translation y → y + y0 (with y0 6= 0) we obtain b 6= 0. So applying the translation
of the origin of coordinates at the point (−3a/u, 0), after the suitable rescaling
{x→ −(9ax)/u, y → bu2y/(81a2), t → tu2/81a2} systems (35) become

ẋ =rx+ x2 + x3, ẏ = 1 + ry, (36)

where r = (54a2 + u3)/(243a2). For these systems we calculate H = X2(rY +

Z)Z2(X2 + XZ + rZ2) and R
(0)
X (G2/H,G1/H) = 3(9r − 2)Z3 6= 0 and this leads

to the condition 9r − 2 6= 0 which guarantee the non-existence of nine invariant
lines. We observe that the infinite invariant line Z=0 is triple if r 6= 0 and it has
multiplicity four in the case r = 0.

a) The possibility r 6= 0. In this case the geometry of the configuration depends
on the sign of the discriminant ∆ of the polynomial x2 + x + r, i.e. ∆ = 1 − 4r.
Accordingly we conclude that besides the double infinite invariant line the systems
(35) possess 5 affine lines which are as follows:

∆ > 0 (i.e. 0 6= r < 1/4) ⇒ 3 simple, 1 double, all real and distinct,
∆ = 0 (i.e. r = 1/4) ⇒ 1 simple, 2 double, all real and distinct,
∆ < 0 (i.e. r > 1/4) ⇒ 2 real simple, 1 complex double.

On the other hand considering Lemma 3 we calculate:

µ0 = µ1 = µ2 = µ3 = µ4 = µ5 = 0, µ6 = r3x6, µ7 = r2x6(3x− ry),

µ8 = rx6(3x2 − 2rxy + r3y2), µ9 = 9x7(x2 − rxy + r3y2).
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Since r 6= 0 by Lemma 3 only 6 finite singular points have gone to infinity and
collapsed with the singular point [0, 1, 0] located on the “end” of the invariant line
x = 0. Other three finite points are (0,−1/r) and

(
(−1±

√
1 − 4r)/2,−1/r

)
(located

on the invariant line ry + 1 = 0).

Moreover, in the case of ∆ > 0, denoting 1 − 4r = v2 (i.e. r = (1 − v2)/4 ) we
obtain the systems

ẋ =(1 − v + 2x)x(1 + v + 2x)/4, ẏ = 1 + (1 − v2)y/4.

We compare the lines x = (−1 ± v)/2 with x = 0 and conclude that if |v| > 1 , i.e.
r < 0 (respectively 0 < |v| < 1/4, i.e. 0 < r < 1/4) then the double real invariant
line is located (respectively is not located) between two simple ones and we arrive
at the configuration Config. 8.34 (respectively Config. 8.35.).

Additionally, we have the configuration Config. 8.36 in the case of ∆ = 0 ( i.e.
r = 1/4) and Config. 8.37 in the case of ∆ < 0 ( i.e. r > 1/4).

b) The possibility r = 0. In this case we get the system

ẋ = x2(x+ 1), ẏ = 1 (37)

with H(X,Z) = X3Z3(X+Z). Therefore besides the infinite line of the multiplicity
four this system possesses 2 distinct affine invariant lines (one of the multiplicity 3
and one simple), and namely: L1,2,3 = x, L4 = x+ 1.

Since in this case we obtain µi = 0 (i = 0, 1, . . . , 8) and µ9 = 9x9 6= 0, by
Lemma 3 all 9 finite singular points have gone to infinity and collapsed with the the
same singular point [0, 1, 0]. As a result we get the configuration Config. 8.38 Thus
considering the above results we arrive at the following proposition.

Proposition 6. The systems (34) possess invariant lines of total multiplicity eight
if and only if

27a2 + (c− f)(2c+ f)2 = 0, a 6= 0. (38)

3.3 Invariant conditions for the configurations Config. 8.23–

Config. 8.38

By Lemma 7 the conditions D1 = D3 = D4 = 0, D2 6= 0 are necessary and suffi-
cient for a cubic system to have two real distinct infinite singularities, and namely
they are determined by one triple and one simple factors of C3(x, y). After a lin-
ear transformation a cubic system could be brought to the form (8). According to
Proposition 1, the condition V1 = V3 = 0 gives systems (13) (via a linear transfor-
mation and time rescaling). At the beginning of Subsection 3.2 it was proved that
for these systems the condition K5 = 0 is equivalent to k = h = n = 0. Moreover,
for the existence of invariant lines in the direction x = 0 the additional condition
d = 0 has to be satisfied. So considering the condition K5 = 0 (i.e. k = h = n = 0)
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for systems (13) we calculate N1 = 12d and evidently N1 = 0 is equivalent to d = 0
and we arrive at systems (14). For these systems we calculate

N2 = −m2x4, N3 = −12lx5.

We remark that in the previous subsections the examination of systems (14) was
divided in the cases determined by the parameters m and l. In addition it was
proved (see Subsection 3.2.3) that in the case m = 0 and l 6= 0 (i.e. N2 = 0 and
N3 6= 0) systems (14) could not have invariant lines of total multiplicity 8. So in
what follows we split our examination here in three cases, defined by the invariant
polynomials N2 and N3:

(i) N2N3 6= 0; (ii) N2 6= 0, N3 = 0; (iii) N2 = N3 = 0.

3.3.1 The case N2N3 6= 0

Then l ·m 6= 0 and as it was shown earlier systems (14) could be brought via an
affine transformation to systems (19). According to Proposition 3 the last systems
possess invariant lines of total multiplicity 8 if and only if the conditions (3) are
satisfied. We prove that these conditions are equivalent to N4 = N5 = N6 = N7 = 0,
i.e.

a = 0, f = c = −4

9
, b =

4

27
⇔ N4 = N5 = N6 = N7 = 0.

Indeed, for systems (19) we calculate

N4 = 5184(c − f)x4 and N5 = 2592(4 + 6c+ 3f)x4

and clearly the condition N4 = N5 = 0 is equivalent to f = c = −4/9. Then
considering the last conditions we calculate N6 = 8640ax4 and hence N6 = 0 gives
a = 0. It remains to determine the invariant condition which governs the parameter b.
Considering the obtained conditions for systems (19) we calculate N7 = 288(27b−
4)x6 = 0 which is equivalent to b =

4

27
. So if for systems (14) the conditions

N2N3 6= 0, N4 = N5 = N6 = N7 = 0 are satisfied then we arrive at the system (21)
possessing the configuration Config. 8.23.

3.3.2 The case N2 6= 0, N3 = 0

These conditions imply m 6= 0 and l = 0, and as it was proved in Subsection
3.2.2 the condition ef − 2bm = 0 is necessary to be fulfilled for systems (17) in
order to have invariant lines of total multiplicity 8. On the other hand for these
systems we calculate N8 = 1296(ef − 2bm)x6 and the last condition is equivalent to
N8 = 0. Due to a rescaling we may assume m = 1 and then we get b = ef/2 and
this leads to systems (23). By Proposition 4 these systems possess invariant lines of
total multiplicity 8 if and only if either the conditions (24) or (25) are satisfied.
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In what follows we consider each one of these sets of conditions and construct
the corresponding equivalent invariant conditions as well as the additional invariant
conditions for the realization of the respective configurations.

(a) Conditions (24). We clam that for a system (23) the following conditions
are equivalent:

f = c, a = −2(4 + 9c)

27
, (4 + 3c)(4 + 9c) 6= 0 ⇔ N4 = N6 = 0, N9 6= 0.

Indeed, for systems (23) we calculate N4 = 5184(c−f)x4 and therefore N4 = 0 gives
f = c. Then we have N6 = 320(27a + 18c + 8)x4 and N9 = 2304(4 + 3c)(4 + 9c)x4

which imply the condition a = −2(4 + 9c)

27
if N6 = 0 and (4 + 3c)(4 + 9c) 6= 0 if

N9 6= 0.

Thus if the conditions N4 = N6 = 0 are satisfied then systems (23) via a transla-
tion and a suitable notation can be brought to systems (26), for which the condition
N9 = 6912r(9r − 8)x4 6= 0 holds. Now for these systems we need to determine the
invariant polynomials which govern the conditions under parameter r in order to
get different configurations of invariant straight lines.

We calculate N10 = 144(1− r)x2 and N11 = 3456rx4. Therefore, considering the
obtained earlier for systems (26) configurations (see page 70) we conclude that if
for a system (14) the conditions N3 = N4 = N6 = N8 = 0, N2N9 6= 0 are satisfied
then we get the configuration Config. 8.24 if N11 < 0; Config. 8.25 if N10 > 0 and
N11 > 0; Config. 8.26 if N10 = 0 and Config. 8.27 in the case N10 < 0.

(b) Conditions (25). We clam that for a system (23) the next conditions are
equivalent:

f = −2(2 + 3c)

3
, a =

2(4 + 9c)

27
, (4+3c)(4+9c) 6= 0 ⇔ N5 = N12 = 0, N13 6= 0.

Indeed, for (23) we calculate N5 = 2592(4+6c+3f)x4 and hence N5 = 0 implies

f = −2(2 + 3c)

3
. Then we have N12 = 3240(27a − 18c − 8)x4 and, clearly, N12 = 0

gives a =
2(4 + 9c)

27
. For N5 = N12 = 0 we calculate N13 = 1008(4 + 3c)(4 + 9c)x5y

and therefore N13 6= 0 ⇔ (4 + 3c)(4 + 9c) 6= 0.

So, considering the above relations among the parameters a, c and f of systems
(23) it was shown earlier that these systems can be brought (via a translation and
additional notation) to systems (27).

It remains to determine the invariant polynomial which gives the expression of
the discriminant ∆ = 4(1 − r) . For these systems we calculate N14 = 288(r − 1)x2

and N15 = 2937rx4.

Therefore if for a system (14) the conditions N3 = N5 = N8 = N12 = 0, N2N13 6=
0 are satisfied then we get the configuration Config. 8.28 ifN15 < 0; the configuration
Config. 8.29 if N14 < 0, N15 > 0 and the configuration Config. 8.30 if N14 > 0.
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3.3.3 The case N2 = N3 = 0

Then l = m = 0 and we get systems for which we calculate N16 = −12ex4. In
what follows we split our examination here in two subcases, defined by the polyno-
mial N16.

1) The subcase N16 6= 0. Then e 6= 0 and systems (14) could be brought via a
rescaling (i. e. assuming e = 1) to systems (30). According to Proposition 5 the
last systems possess invariant lines of total multiplicity 8 if and only if the
conditions (31) are satisfied. We prove that these conditions are equivalent to
N17 = N18 = 0, i. e.

f = −2c, a = 0 ⇔ N17 = N18 = 0.

Indeed, for the corresponding systems we calculate N17 = 12(2c + f)x2 = 0, N18 =
216ax3 = 0 and evidently, the above equalities are equivalent to f = −2c, a = 0.

It remains to determine the invariant condition which governs the value of c.
For the last systems we determine N10 = 72cx2. Next we split our examinations
according to the parameter c.

a) The possibility N10 6= 0. Then c 6= 0 and assuming b = 0 after a translation
we arrive at the system (33). So, if for systems (14) the conditions N2 = N3 =
N17 = N18 = 0, N10N16 6= 0 are satisfied then we get the configuration Config. 8.31
if N10 < 0 and Config. 8.32 if N10 > 0.

b) The possibility N10 = 0. Then f = c = 0 and after a rescaling we assume
b = 1 and we get the systems (32). So, if for systems (14) the conditions N2 =
N3 = N10 = N17 = N18 = 0, N16 6= 0 are satisfied then we get the configuration
Config. 8.33.

2) The subcase N16 = 0. Then e = 0 and systems (14) became of the form (34).

According to Proposition 6 the last systems possess invariant lines of total mul-
tiplicity 8 if and only if the conditions (38) hold. We prove that these conditions
are equivalent to N19 = 0, N18 6= 0, i.e.

27a2 + (c− f)(2c+ f)2 = 0, a 6= 0 ⇔ N19 = 0, N18 6= 0.

Indeed, for systems (34) we have N19 = 24[27a2 + (c − f)(2c + f)2]x3y and,
evidently, N19 = 0 implies 27a2 + (c− f)(2c+ f)2 = 0. On the other hand we have
N18 = 216ax3 and thus, the condition N18 6= 0 is equivalent to a 6= 0. Therefore if the
conditions N19 = 0, N18 6= 0 are satisfied then systems (34) via a transformation
and a suitable notation (see page 76) can be brought to systems (36). For these
systems we calculate N20 = 48(1 − 4r)x4, N21 = 48rx4.
Therefore if for a system (14) the conditions N2 = N3 = N16 = N19 = 0 and
N18 6= 0 hold then we obtain the configuration Config. 8.34 if N21 < 0; Config. 8.35
if N20 > 0, N21 > 0; Config. 8.36 if N20 = 0 and Config. 8.37 in the case N20 < 0.
Moreover if N21 = 0, i.e. r = 0 we obtain Config. 8.38.
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3.3.4 Perturbations of normal forms

To finish the proof of the Main Theorem it remains to construct for the nor-
mal forms given in this theorem the corresponding perturbations, which prove that
the respective invariant straight lines have the indicated multiplicities. In this
section we construct such perturbations and for each configuration Configs. 8.j,
j = 23, 24, . . . , 38 we give: (i) the corresponding normal form and its invariant
straight lines; (ii) the respective perturbed normal form with its invariant straight
lines and (iii) the configuration Configs. 8.jε, j = 23, 24, . . . , 38 corresponding to
the perturbed system.

Config. 8.23

{
ẋ = (x− 1)x(1 + x),

ẏ = x− y + x2 + 3xy;

Invariant lines: L1,2 = x, L3,4,5 = x− 1, L6 = x+ 1, L7 : Z = 0;

Config. 8.23ε:

{
ẋ = x(1 + x)(x+ 3xε− 1),
ẏ = (1 + 3εy)(x + x2 − y + 3xy − 3εy + 3εxy − 6εy2 − 9ε2y2);

Invariant lines:

{
L1 = x, L2 = x− 3εy, L3 = x+ 3εx− 1, L4 = x− 3εy − 1,
L5 = x− 3ε− 6εy − 9ε2y − 1, L6 = 1 + x, L7 = 1 + 3εy.

Config. 8.24-8.26

{
ẋ = x(1 − u+ x)(1 + u+ x),

ẏ = (1 − u2 + 2x)y, |u| 6= 1,





|u| > 1 ⇒ Config. 8.24;
|u| < 1 ⇒ Config. 8.25;
u = 0 ⇒ Config. 8.26;

Invariant lines: L1,2,3 = x, L4 = x+ 1 + u, L5 = x+ 1 − u, L6 = y, L7 : Z = 0;

Config. 8.24ε-8.26ε:

{
ẋ = x(1 − u+ ε2 + x)(1 + u− ε2 + x),
ẏ = y(1 + εy)

[
1 − (u− ε2)2 + 2x+

(
ε2(u− ε2)2 − ε2

)
y
]
;

Invariant lines:

{
L1 = x, L2 = x− ε(u+ 1)y, L3 = x− ε(u− 1)y − yε3,
L4 = x+ 1 + u− ε2, L5 = x+ 1 − u+ ε2, L6 = y, L7 = 1 + εy.
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Config. 8.27 :

{
ẋ = x

[
(x+ 1)2 + u2

]
,

ẏ = (1 + u2 + 2x)y, u 6= 0;

Invariant lines: L1,2,3 = x, L4 = x+ 1 + iu, L5 = x+ 1− iu, L6 = y, L7 : Z = 0;

Config. 8.27ε:

{
ẋ = x

[
(x+ 1)2 + u2

]
,

ẏ = y(1 − yε)(1 + u2 + 2x+ yε+ u2yε);

Invariant lines: L1 =x, L2,3 =x+εy±iuεy, L4,5 =x+1 ± iu, L6 =y, L7 =−1+yε.

Config. 8.28, 8.29

{
ẋ = (1 − x+ u)x(1 − x− u),

ẏ = 2(u2 + x− 1)y, |u| 6= 1,

{
|u| > 1 ⇒ Config. 8.28;
|u| < 1 ⇒ Config. 8.29;

Invariant lines: L1 = x, L2,3 = 1 − x+ u, L4,5 = 1 − x− u, L6 = y, L7 : Z = 0;

Config. 8.28ε, 8.29ε:

{
ẋ = (1 − x+ u)x(1 − x− u),
ẏ = y(1 + u− εy)(2u2 + 2x+ εy − uεy − 2)/(1 + u);

Invariant lines:

{
L1 = x, L2 = 1 − x+ u, L3 = 1 − x+ u− εy, L4 = 1 − x− u,
L5 = x− 1 + u2 + ux+ εy − uεy, L6 = y, L7 = 1 + u− εy.

Config. 8.30 :

{
ẋ = x(1 + u2 − 2x+ x2),

ẏ = 2y(x− 1 − u2), u 6= 0;

Invariant lines: L1 =x, L2,3 =x−1−iu, L4,5 =x−1+iu, L6 =y, L7 : Z=0;
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Config. 8.30ε:

{
ẋ = x(1 + u2 − 2x+ x2),
ẏ = y(1 − εy)(2x − 2 − 2u2 + εy + u2εy);

Invariant lines:

{
L1 = x, L2 =x− 1 − iu, L3 =x− 1 − iu+ yε+ iuεy,
L4 =x−1+iu, L5 =x−1+iu+εy−iuεy, L6 = y, L7 =εy−1.

Config. 8.31, 8.32

{
ẋ = x(x2 + r),

ẏ = x− 2ry,

{
r = −1 ⇒ Config. 8.31;
r = 1 ⇒ Config. 8.32;

Invariant lines: L1 = x, L2,3 =x−√−r, L4,5 =x+
√−r, L6 =y, L6,7 : Z=0;

Config. 8.31ε, 8.32ε:





ẋ = (2r − ε4 + ε6)(4r + 4x2 − 4rε2 − 3ε4 + 6ε6 − 3ε8)×
(x− xε+ 6ryε+ 2ryε2 − 3yε5 − yε6 + 3yε7 + yε8)/(8r),
ẏ = (x− 2ry + ε4y − yε6)(4r − 4rε2 + 16r2ε2y2 − 3ε4+
+6ε6−16rε6y2−3ε8+16rε8y2+4ε10y2−8ε12y2+4ε14y2)/(4r);

Config. 8.33 :
{
ẋ = x3, ẏ = 1 + x;

Invariant lines: L1,2,3,4,5 = x, L6,7 : Z = 0;

Config. 8.33ε:

{
ẋ = x(9x− 6ε+ 4ε2)(9x+ 6ε− 10ε2 + 4ε3)/81,
ẏ = (3−2ε+yε2)(3−2ε−yε2)(9+9x−15ε+6ε2−ε2y+ε3y)/81;

Invariant lines:





L1 = x, L2 = x− 6ε+ 4ε2, L3 = x+ 6ε− 10ε2 + 4ε3,
L4 = x− 3ε+ 2ε2 + ε3y, L5 =x+3ε−5ε2+2ε3−ε3y+ε4y,
L6 = 3 − 2ε+ ε2y, L7 = −3 + 2ε+ ε2y.
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Config. 8.34-8.37

{
ẋ = x(r + x+ x2),

ẏ = ry, r 6= 0,





r < 0 ⇒ Config. 8.34;
0 < r < 1/4 ⇒ Config. 8.35;
r = 1/4 ⇒ Config. 8.36;
r > 1/4 ⇒ Config. 8.37;

Invariant lines: L1,2 = x, L3,4 = r + x+ x2, L5 = y, L6,7 : Z = 0;

Config. 8.34ε-8.37ε:

{
ẋ = x(r − ε2 + x+ x2),
ẏ = y(r − ε2 − εy + ε2y2);

Invariant lines:

{
L1 = x, L2 = x− εy, L3,4 = r + x+ x2 − ε2,
L5,6 = r − εy − ε2 + ε2y2, L7 = y.

Config. 8.38 :
{
ẋ = x2(x+ 1), ẏ = 1;

Invariant lines: L1,2,3 = x, L4 = x+ 1, L5,6,7 : Z = 0;

Config. 8.38ε:

{
ẋ = x(x− ε)(1 + x+ ε− 2εy),
ẏ = (εy − 1)(2εy − 1)(1 − 2εy + 2ε2y);

Invariant lines:

{
L1 =x, L2 =x−ε, L3 =x+ε−2yε2, L4 =1+x−ε−2yε+2yε2,
L5 = yε− 1, L6 = 2yε− 1, L7 = 1 − 2yε+ 2yε2.
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No.2(75), 102-105.

[6] Bujac C., Vulpe N. Cubic systems with invariant lines of total multiplicity eight and with

four distinct infinite singularities. Journal of Mathematical Analysis and Applications, 2015,
423, 1025–1080.

[7] Bujac C., Vulpe N. Cubic systems with invariant straight lines of total multiplicity eight

and with three distinct infinite singularities. Qual. Theory Dyn. Syst., 2015, 14, No. 1, 109-
–137.

[8] Calin Iu. Private communication. Chişinău, 2010.
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Bulletin de Sciences Mathématiques, 2me série, 2(1) (1878), 60–96; 123–144; 151–200.

[11] Druzhkova T.A. Quadratic differential systems with algebraic integrals. Qualitative theory
of differential equations, Gorky Universitet, 1975, 2, 34–42 (in Russian).

[12] Grace J. H., Young A. The algebra of invariants. New York, Stechert, 1941.

[13] Suo Guangjian, Sun Jifang. The n-degree differential system with (n−1)(n+1)/2 straight

line solutions has no limit cycles. Proc. of Ordinary Differential Equations and Control Theory,
Wuhan, 1987, 216–220 (in Chinese).

[14] Householder A. S. Bigradients and the problem of Routh and Hurwitz. SIAM Review, 1968,
10, 166–178.

[15] Kooij R. Cubic systems with four line invariants, including complex conjugated lines. Math.
Proc. Camb. Phil. Soc., 1995, 118, No. 1, 7–19.

[16] Llibre J., Vulpe N. I. Planar cubic polynomial differential systems with the maximum

number of invariant straight lines. Rocky Mountain J. Math., 2006, 38, 1301–1373.

[17] Lyubimova R.A. On some differential equation possesses invariant lines. Differential and
integral equations, Gorky Universitet, 1977, 1, 19–22 (in Russian).

[18] Lyubimova R.A. On some differential equation possesses invariant lines. Differential and
integral equations, Gorky Universitet, 1984, 8, 66–69 (in Russian).

[19] Olver P. J. Classical Invariant Theory. London Mathematical Society student texts, 44,
Cambridge University Press, 1999.

[20] Popa M.N. The number of comitants that are involved in determining the number of integral

lines of a cubic differential system. Izv. Akad. Nauk Moldav. SSR Mat., 1990, No. 1, 67–69
(in Russian).



86 CRISTINA BUJAC

[21] Popa M. N. Application of invariant processes to the study of homogeneous linear particular

integrals of a differential system. Dokl. Akad. Nauk SSSR, 1991, 317, 834–839 (in Russian);
translation in Soviet Math. Dokl., 1991, 43, 550–555.

[22] Popa M. N. Conditions for the maximal multiplicity of an integral line of a differential system

with homogeneities of mth order. Izv. Akad. Nauk Respub. Moldova, Mat., 1992, No. 1(7),
15–17 (Russian).

[23] Popa M.N., Sibirskii K. S. Conditions for the existence of a homogeneous linear par-

tial integral of a differential system. Differentsial’nye Uravneniya, 1987, 23, 1324–1331
(in Russian).

[24] Popa M.N., Sibirskii K. S. Conditions for the prezence of a nonhomogeneous linear partial

integral in a quadratic differential system. Izv. Akad. Nauk Respub. Moldova, Mat., 1991,
No. 3(6), 58–66 (in Russian).

[25] Popa M. N., Sibirskii K. S. Integral line of a general quadratic differential system. Izv.
Akad. Nauk Moldav.SSR, Mat., 1991, No. 1(4), 77–80 (in Russian).
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