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On fixed point subalgebras of some local algebras

over a field
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Abstract. Fixed point subalgebras of some local algebras obtained as quotients of
polynomial algebras over an arbitrary field F with respect to all F -algebra automor-
phisms are described.
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Introduction

The notion of infinitely near points was initially part of the intuitive foundations
of differential calculus. In the simplest terms, two points which lie at an infinitesimal
distance apart are considered infinitely near [17]. Charles Ehresmann influenced by
language of Taylor polynomials (which precised the infinite nearness in calculus)
introduced the concept of r-jet in his paper [2] (1951). According to this, jets
of smooth mappings are defined as equivalence classes of mappings. Presumably
it was Ehresmann’s initiative which stimulated the paper of André Weil [16] in
which Weil, being experienced from his previous algebraic geometry research in the
use of methods of commutative algebra, introduced the concept of infinitely near
points on a smooth manifold as algebra homomorphisms from the algebra of smooth
real functions on the manifold into a local R-algebra (which is now called the Weil
algebra).

The Weil algebra is defined as local commutative (and associative) R-algebra A
with identity, the nilpotent ideal nA of which has a finite dimension as a vector space
and A/nA = R. André Weil in [15] commented on non-semisimple finite dimensional
algebras that ”. . . on sait qu’on ne sait rien sur cette sorte d’algèbre”; and Shafarevich
in [13] noted that Weil’s observation retains its validity up to this days. We remark
also that the ideas about Weil algebras enter into models for synthetic differential
geometry. Disentangling structures from geometric phenomena to their categorical
formulation was a long process and it is described in [11].

It is well known that the differential invariant is defined as a Gr
n-equivariant

mapping f : Y → Z from a Gr
n-manifold Y into a Gr

n-manifold Z ( see [4]), where
Gr

n = inv Jr
0 (Rn, Rn)0 (invertible r-th order jets from Rn into Rn with source and

target in 0 = (0, . . . , 0)); Gr
n is a Lie group (called usually the jet group or the

differential group), Y and Z are manifolds endowed with the left action of Gr
n and
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3



4 MIROSLAV KUREŠ

f(gy) = gf(y). However, Gr
n is (isomorphic to) the group of R-algebra automor-

phisms of the Weil algebra Dr
n = R[X1, . . . ,Xn]/mr+1, where m is the maximal ideal

in the algebra of real polynomials in n indeterminates. The group Gr
n can be gen-

eralized to AutR A for an arbitrary Weil algebra A and AutR A is, of course, a Lie
group, too. The study of differential invariants has many applications: differential
invariants completely characterize invariants systems of differential equations as well
as invariant variational principles, see the monograph [12] of Peter J. Olver.

The study of the subalgebra SA = {a ∈ A; φ(a) = a for all φ ∈ AutR A} of a Weil
algebra A, is motivated by some classifications problems in differential geometry, in
particular, in the classification of all natural operators lifting vector fields from m-
dimensional manifolds to bundles of Weil contact elements which was solved in [5].
Although in the known geometrically motivated examples is usually SA = R (such
SA is called trivial), there are some algebras for which SA % R and they call
attention to the geometry of corresponding bundles. Thus, the fundamental problem
is a classification of algebras having SA nontrivial. In this paper, we study only the
group of automorphisms of Dr

n; nevertheless we replace R by an arbitrary field F and
obtain new results — we come to a different situation in particular cases: for finite
fields the considered algebras are finite rings and there is the whole theory about this
topic. It is known the ring automorphism problem liying in a decision if a finite ring
has a non-identical automorphism or not. Results about fixed point subalgebras are
also qualitatively totally different from the real case and, for the finite fields, they
can have interesting applications in the coding theory and cryptography.

In the first section, we recall the real case and all definitions. The second section
is devoted to local algebras of the first order: so called dual numbers and their gener-
alizations plural numbers. Groups in question are general linear groups. The higher
order case is studied in the third section. Corresponding groups of automorphisms
are called (in the real case) jet groups. Possible applications are mentioned in the
last section.

1 The real field: Weil algebras and jet groups

We recall that the Weil algebra is a local commutative R-algebra A with identity,
the nilradical (nilpotent ideal) nA of which has a finite dimension as a vector space
and A/nA = R. Then we call the order of A the minimum ord(A) of the integers r
satisfying nr+1

A = 0 and the width w(A) of A the dimension dimR(nA/n2
A).

One can assume A is expressed as a finite dimensional quotient of the algebra
R[X1, . . . ,Xn] of real polynomials in several indeterminates. Thus, the main example
is

Dr
n = R[X1, . . . ,Xn]/mr+1,

m = (X1, . . . ,Xn) being the maximal ideal of R[X1, . . . ,Xn] and we observe that
ord(Dr

n) = r and w(Dr
n) = n. Every other such algebra A of order r can be expressed

in a form

A = R[X1, . . . ,Xn]/j = R[X1, . . . ,Xn]/i + mr+1,
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where the ideal i satisfies mr+1 $ i ⊆ m2 and is generated by a finite number of
polynomials. The fact i ⊆ m2 implies that the width of A is n as well. Clearly, A
can be expressed also as

A = Dr
n/i,

where i is an ideal in Dr
n.

As to the group of automorphisms AutR A of the algebra A, which is studied in
this paper, we recall the well known fact (see [3]) that

AutR Dr
n = Gr

n,

the n-dimensional jet (differential) group of the order r.

By a fixed point of A we mean every a ∈ A satisfying φ(a) = a for all φ ∈ AutR A.
Let

SA = {a ∈ A;φ(a) = a for all φ ∈ AutR A}

be the set of all fixed points of A. It is clear, that SA is a subalgebra of A containing
constants (of couse, every automorphism sends 1 into 1), i.e. SA ⊇ R. If SA = R,
we say that SA is trivial. For some classification results, see [8] and [9].

We will use the same terminology below although we will not focus only on the
real field 1.

2 Dual and plural numbers

2.1 Dual numbers

Let F be an arbitrary field and F [X] the ring of polynomials over F . Then
F [X] is an F -algebra thanks to the ring homomorphism mapping elements of F to
constant polynomials in F [X]. The indeterminate X generates the maximal ideal
(X) in F [X]. The quotient

DF = F [X]/(X)2

is also an F -algebra and it is usually called the algebra of dual numbers over F .
Then DF has the unique maximal ideal generated by X (and so DF is local). We
can express DF by

DF = {a0 + a1X; a0, a1 ∈ F, X2 = 0}.

We will describe automorphisms of DF . For every such an automorphism φ

φ(1F ) = 1F

1In algebraic literature, there exists also the denotation AAutF A for our SA assuming A is an
F -algebra over a field F . Following [14], we can say that A is a Galois extension of F with Galois

group AutF A if F = AAutF A. (This does not quite correspond with the definition in [14] where
the Galois group is considered finite.) Then the problem of a triviality of SA identifies with the
problem whether A is a Galois extension of F (with Galois group AutF A) or not.
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is satisfied and thus
φ(a0) = a0 for every a0 ∈ F.

Further, in general,
φ(X) = b0 + b1X; b0, b1 ∈ F.

We compute

0F = φ(0F ) = φ(X2) = φ(X)φ(X) = b2
0 + b0b1X + b1b0X + b2

1X
2 = b0(b0 + 2b1X),

thus, by a comparing of coefficients standing at 1 at X, b0 = 0, then, necessarily, b1

must be invertible and thus non-zero for φ be a bijection.

Proposition 1. Let A = DF . Then SA is nontrivial if and only if F = F2.

Proof. We have derived that every automorphism φ acts by

φ(a0 + a1X) = a0 + b1a1X; b1 ∈ F − {0F }.

Hence elements a1X are fixed if and only if b1 = 1F : so we must have a field with
only two elements 0F and 1F for it.

2.2 Plural numbers

It is easy to generalize the concept of dual numbers to the quotient of the poly-
nomial F -algebra in n indeterminates. We take the F -algebra

(DF )n = F [X1, . . . ,Xn]/(X1, . . . ,Xn)2

and call this F -algebra the algebra of plural numbers over F .
A general form of endomorphisms of (DF )n is

φ(1) = 1

φ(X1) = b10 + b11X1 + b12X2 + · · · + b1nXn

φ(X2) = b20 + b21X1 + b22X2 + · · · + b2nXn

. . .

φ(Xn) = bn0 + bn1X1 + bn2X2 + · · · + bnnXn.

However, we have

0F = φ(0F ) = φ(X2
1 ) = b2

10 + b2
11X

2
1 + · · · + b2

1nX2
n + 2b10b11X1 + · · · + 2b10b1nXn =

b10(b10 + 2b11X1 + · · · + 2b1nXn),

thus, b10 = 0, and analogously b20 = · · · = bn0 = 0. Now, the matrix

(
b11 b12 ... b1n

b21 b22 ... b2n
... ... ... ...
bn1 bn2 ... bnn

)

must be invertible for φ be a bijection. So, automorphisms of (DF )n form exactly
the group GL(n,F ).
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Remark 1. General linear groups are widely studied. Especially, for the finite case,
the order of GL(n, Fpk) (p a prime number, k ∈ N) is

n−1∏

i=0

(

pnk − pik
)

.

Proposition 2. Let n ∈ N, n > 2, A = (DF )n. Then SA is always trivial.

Proof. We show that the element a = a1X1 + · · ·+anXn cannot be fixed. Of course,
we can assume that one of ai, say a1, is non-zero. Let us consider the (diagonal)
automorphism φ

φ(1F ) = 1F

φ(X1) = bX1

φ(X2) = X2

. . .

φ(Xn) = Xn, where b 6= 0F .

Let us first suppose that b 6= 1F . Then evidently φ(a) 6= a. However, we have not
always a possibility to take b 6= 1F . It occurs in the case F = F2.

So, in the rest of this proof, let F = F2. Let i, j ∈ {1, . . . , n}, i 6= j. Then
φ(i,j) : (D2 )n → (D2 )n given by

φ(i,j)(1) = 1

φ(i,j)(Xi) = Xi + Xj

φ(i,j)(Xk) = Xk for all k ∈ {1, . . . , n}, k 6= i

belongs to AutF2 (DF2)n becasue it is clear that φ(i,j) meets the general form above.
First, let us suppose that a1 = · · · = an = 1 and prove that the element

X1 + X2 + · · · + Xn

is not fixed. For this, it suffices to take some automorphism φ(i,j), e.g. φ(1,2) sends
X1 + X2 + · · · + Xn onto X1 + X2 + X2 + X3 + · · · + Xn = X1 + X3 + · · · + Xn.
Second, let {k1, . . . , kh} be a (non-empty) proper subset of {1, . . . , n}, i.e. h < n.
We prove that the element

Xk1 + Xk2 · · · + Xkh

is not fixed, too. We take i ∈ {k1, . . . , kh} and j ∈ {1, . . . , n} − {k1, . . . , kh} and
apply φ(i,j): it sends Xk1 + Xk2 · · · + Xkh

onto Xk1 + Xk2 · · · + Xkh
+ Xj .

So, SA = F is always trivial.
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3 Higher order case

3.1 One indeterminate

Of course, the powers of the maximal ideal (X) represent notable class of ideals
in DF . For r ∈ N, r > 1, we will study the algebra

(DF )r = F [X]/(X)r+1.

Elements of (DF )r have a form

a0 + a1X + a2X
2 + · · · + arX

r; a0, a1, a2, . . . , ar ∈ F, Xr+1 = 0.

We start with the following lemma.

Lemma 1. Automorphisms φ : (DF )r → (DF )r have a form

φ(1) = 1

φ(X) = b1X + b2X
2 + · · · + brX

r; b1 ∈ F − {0F }, b2, . . . , br ∈ F.

Proof. It suffices to describe φ−1. We have

Y = φ(X) = b1X + b2X
2 + · · · + brX

r

Y 2 = b2
1X

2 + terms of degree > 2

. . .

Y r−1 = br−1
1 Xr−1 + a term of degree r

Y r = br
1X

r

The last equation provides Xr as b−r
1 Y r, the last but one provides (after the substi-

tution) Xr−1 and so on.

On the other hand, we cannot allow any more general form of automorphisms:
it is evident if we consider an endomorphism

φ(1) = 1

φ(X) = b1X + b2X
2 + · · · + brX

r

with b1 = 0 that its kernel is nontrivial and hence does not represent an automor-
phism.

For an F -algebra A in question and its nilradical nA, if an element a ∈ A has
the property au = 0 for all u ∈ nA, we call a the socle element of A. It is easy to
find that all socle elements constitute an ideal; this ideal is called the socle of A and
denoted by soc A.

Lemma 2. Let p be a prime number, k ∈ N, F = Fpk the finite field, l ∈ N,

r = l(pk − 1). Then for A = (DF )r all elements in soc A belong to SA.
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Proof. It is well known that for every x ∈ F , x 6= 0 the equality

xpk
−1 = 1

holds (the generalization of Little’s Fermat Theorem for finite fields). As Xr ∈ soc A
maps onto br

1X
r, for r which is the l-multiple of pk − 1 is br

1 = 1.

Example 1. Let us consider A = (DF2)
3. Then the element a = X2 + X3 belongs

to SA. We compute

φ(X2 + X3) = X2 + b2X
3 + b2X

3 + X3 = X2 + X3

and we see that a is fixed. Hence there exist elements of SA not belonging to socA,
cf. [10], Proposition 2.

Proposition 3. Let A = (DF )r. For fields of characteristic 0, SA is trivial. For
finite fields, SA is nontrivial and contains socA.

Proof. The proof follows directly from the previous two lemmas and their proofs.

3.2 More indeterminates

Let us consider the n-dimensional (n > 1) case now. Elements of the algebra

A = (DF )rn = F [X1, . . . ,Xn]/(X1, . . . ,Xn)r+1

have a form

a0 +

a1X1 + a2X2 + · · · + anXn +

a11X
2
1 + a12X1X2 + · · · + annX2

n +

· · · +

a 1...1
︸︷︷︸

r

Xr
1 + a1...12

︸︷︷︸
r

Xr−1
1 X2 + . . . an...n

︸︷︷︸
r

Xr
n;

a0, a1, . . . , an...n
︸︷︷︸

r

∈ F.

On basis of previous results we can find out nature of this general case now.

Proposition 4. For r ∈ N, n ∈ N, n > 1, let A = (DF )rn. Then the subalgebra SA
of fixed points of A is always trivial.

Proof. Obviously, elements of GL(n,F ) represent automorphisms also for (DF )r
n.

Of course, not all automorphisms, however, these (linear) automorphisms suffice for
our following considerations. In the proof, we use formally partial derivations ∂

∂Xj

for an expressing whether elements of A contain Xj in some non-zero power or not.
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Let u ∈ A and let exist i, j ∈ {1, . . . , n} such that ∂u
∂Xi

6= 0 and ∂u
∂Xj

= 0.

Analogously with the case r = 1, n > 1, we apply φ(i,j) for the demonstration that
u can not be fixed.

So, let v ∈ A be not of such a type and let σ be a permutation of n-tuple
(X1, . . . ,Xn) for which σ(v) 6= v. As permutations of (X1, . . . ,Xn) are also elements
of GL(n,F ), we find again that v can not be fixed.

Therefore we take w ∈ A such that ∂w
∂Xi

6= 0 for all i ∈ {1, . . . , n} and such
that does not exist any permutation of (X1, . . . ,Xn) yielding a transformation of
w. Nevertheless, a ”symmetry” of w will be again unbalanced by φ(i,j), e. g. φ(1,2).
Hence we have an automorphism for which not even w is fixed.

Thus, only zero power elements of A remain fixed with respect to all automor-
phisms: SA is trivial.

4 Comments to applications

We do not intend go into detail in this section and define at length every men-
tioned concept; just informative comments are here.

4.1 The real case: Weil contact elements

Now, let M be a smooth manifold and let the Weil algebra A have width w(A) =
k < m = dimM and order ord(A) = r. Every A-velocity V (see [3]) determines an
underlying D1

k-velocity V . We say V is regular if V is regular, i.e. having maximal
rank k (in its local coordinates). Let us denote reg TAM the open subbbundle of
TAM of regular velocities on M . The contact element of type A or briefly the Weil
contact element on M determined by X ∈ reg TAM is the equivalence class

AutR AM (X) = {φ(X);φ ∈ AutR A}.

We denote by KAM the set of all contact elements of type A on M . Then

KAM = reg TAM/AutR A

has a differentiable manifold structure and reg TAM → KAM is a principal fiber
bundle with the structure group AutR A. Moreover, KAM is a generalization of the
bundle of higher order contact elements Kr

kM = reg T r
k M/Gr

k introduced by Claude
Ehresmann. We remark that the local description of regular velocities and contact
elements is covered by the paper [6].

We have deduced in [5] and [7] the following results:
There is a one-to-one correspondence between all natural operators lifting vector
fields from m-manifolds to the bundle functor KA of Weil contact elements and the
subalgebra of fixed elements SA of A.
There is a one-to-one correspondence between all natural affinors on KA and the
subalgebra of fixed elements SA of A.
All natural operators lifting 1-forms from m-dimensional manifolds to the bundle
functor KA of Weil contact elements are classified for the case of dwindlable Weil
algebras: they represent constant multiples of the vertical lifting.
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4.2 The finite case: Cryptography, coding theory

Finite structures are extensively applied in cryptography. The problem of devel-
oping new public key cryptosystem had occupied the cryptographic research fields
for the last decades. So called multivariate cryptosystems use polynomial auto-
morphisms, in particular, there are known tame transformation methods using for
ciphering compositions of affine automorphisms and de Jonquières automorphisms.
The security of such systems is based on the difficulties in decomposition of a com-
posed polynomial automorphism.

So, the natural modification of these public key cryptosystems is a use of local
(finite) algebras instead polynomial. The role of automorphisms remains unchanged.
Surely, it is important to understand the subalgebra of fixed elements (which are
not transformed under any automorphism).

Example 2. As a toy exercise, we can consider A = (DF4)
2 and take e.g. poly-

nomials in two indeterminates Y1, Y2 over A, i.e. elements of (DF4)
2 [Y1, Y2]. In

multivariate public key cryptosystems, the cipher procedure is based on composed
polynomial automorphisms, which are used as the public key. Let us imagine a
simple scheme based on the composition π = λ2 ◦ τ ◦ λ1 of affine (λ1 and λ2) and
de Jonquières (τ) F4-automorphisms which play a role of a private key. Without a
decomposition of π, it is not easy to find π−1 which is necessary for decryption. Of
course, a descryption of fixed elements is the substantial feature of such a system.

We only remark that local finite algebras are used also in the coding theory, for
detail see [1].
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[3] Kolář I., Michor P. W., Slovák J. Natural Operations in Differential Geometry. Springer
Verlag, 1993.
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[9] Kureš M. Fixed point subalgebras of Weil algebras: from geometric to algebraic questions.
Complex and Differential Geometry, Springer Proceedings of Mathematics, 2011, 183–192.
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