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Stability radius bounds in multicriteria Markowitz

portfolio problem with venturesome investor criteria
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Abstract. The lower and upper bounds on the stability radius are obtained in mul-
ticriteria Boolean Markowitz investment problem with criteria of extreme optimism
(MAXMAX) about portfolio return in the case when portfolio and financial mar-
ket states spaces are endowed with Hölder metric, and criteria space of economical
efficiency of investment projects is endowed with Chebyshev metric.
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1 Introduction

In the papers [1,2], vector investment Boolean problems with Savage and Wald’s
criteria are formulated based on Markowitz portfolio theory [3]. Stability radius
bounds are obtained only for particular cases, when three-dimensional problem pa-
rameters space is equipped with different combinations of l1 and l∞ metric. In the
present paper, multicriteria portfolio problem with venturesome investor under the
same Markowitz model framework is considered. The investor maximizes various
portfolio efficiency types when financial market is in the most favorable state, i.e.
with criteria of extreme optimism (MAXMAX). We investigate such a kind of stabil-
ity of the problem which is a discrete analogue of the property to be semicontinuous
from above in Hausdorff’s sense of a point-set mapping which transforms any set of
parameters of the investment problem into the corresponding Pareto set. As a re-
sult of the conducted parametric analysis, power and upper bounds on the stability
radius of the problem are obtained in the case when portfolio space and financial
market spaces are endowed with Hölder metric lp, 1 ≤ p ≤ ∞, and criteria space of
economical efficiency of investment projects is endowed with Chebyshev metric l∞.

2 Problem statement and definitions

Based on [2,4], consider multicriteria variant of Markowitz investment manage-
ment problem [3].

Let m be the number of possible financial market states (A1, A2, . . . , Am), n be
the number of alternative investment projects (B1, B2, . . . , Bn) and s be the number
of types (measures) of the project economical efficiency (C1, C2, . . . , Cs). Given
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the expected evaluation of economical efficiency eijk for an arbitrary investment
project Bj of type Ck in the case when market is in the state Ai. We denote three-
dimensional matrix [eijk] ∈ Rm×n×s by E and its k-th cut by Ek ∈ Rm×n. Let
x = (x1, x2, . . . , xn)T ∈ En be an investment portfolio where E = {0, 1}, xj = 1
if the investor chooses the project Bj and xj = 0 otherwise; X ⊆ En be the set
of all possible investment portfolios, i.e. those realization of which does not exceed
investor’s initial budget and admissible level of risk.

Note that there are several approaches to evaluate efficiency of investment
projects (see e.g. the bibliography in [2]).

In the portfolio space X we introduce vector objective function

f(x,E) = (f1(x,E1), f2(x,E2), . . . , fs(x,Es)),

components of which are well known in the decision making theory criteria of extreme
optimism (MAXMAX)

fk(x,Ek) = max
1≤i≤m

eikx = max
1≤i≤m

n
∑

j=1

eijkxj → max
x∈X

, k ∈ Ns = {1, 2, . . . , s},

where eik = (ei1k, ei2k, . . . , eink) is the i-th row of the cut Ek. Using this criteria
venturesome investor optimizes the efficiency eikx of the portfolio x under the as-
sumption that market is in the most favorable state for him. In other words when a
portfolio return is maximal. It is evident that the approach is based on the behavior
stereotype of reckless optimism (”make or mar”, ”who does not risk cannot win”
etc.). It is worth to notice that such situations in economics when we have to behave
this way are common. Such dealing is inherent in not only optimist but investors
with his (her) back to the wall.

Under a multicriteria Boolean investment problem Zs(E), s ∈ N we understand
the problem of searching the Pareto set P s(E), i.e. the set of Pareto optimal invest-
ment portfolio

P s(E) = {x ∈ X : X(x,E) = ∅},

where

X(x,E) = {x′ ∈ X : f(x,E) ≤ f(x′, E) & f(x,E) 6= f(x′, E)}.

It is obvious that P s(E) 6= ∅ for any matrix E ∈ Rm×n×s.
For any natural number d in the real space Rd we define Hölder metric lp, p ∈

[1,∞], i.e. under the norm of vector y = (y1, y2, . . . , yd)
T ∈ Rd we understand the

number

‖y‖p =











(
d
∑

i=1
|yi|

p)1/p if 1 ≤ p <∞,

max
1≤i≤d

|yi| if p = ∞.

It is well known that for any vectors a, b ∈ Rn the Hölder inequality holds

|aT b| ≤ ‖a‖p‖b‖q, (1)
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and for numbers p and q the following relation is true

1/p + 1/q = 1.

Here q = 1 if p = ∞ and q = ∞ if p = 1. Thereby suppose 1/p = 0 for p = ∞.
Further we assume that the domain of variation of p and q is the segment [1,∞].

In the portfolio space Rn and financial market states space Rm define an arbi-
trary Hölder metric lp, p ∈ [1,∞], and in the criteria space of measures of project
economical efficiency Rs define Chebyshev metric l∞, since under the norm of a
matrix E ∈ Rm×n×s we understand the number

‖E‖pp∞ = ‖(‖E1‖pp, ‖E2‖pp, . . . , ‖Es‖pp)‖∞,

where
‖Ek‖pp = ‖(‖e1k‖p, ‖e2k‖p, . . . , ‖emk‖p)‖p, k ∈ Ns.

Obviously,
‖eik‖p ≤ ‖Ek‖pp ≤ ‖E‖pp∞, i ∈ Nm, k ∈ Ns. (2)

Therefore using Hölder inequality (1), it is easy to see that for any portfolios
x, x′ ∈ X and matrix E ∈ Rm×n×s the following inequalities are valid

eikx− ei′kx
′ ≥ −‖E‖pp∞‖x+ x′‖

1/q
1 , i, i′ ∈ Nm, k ∈ Ns. (3)

Indeed
eikx− ei′kx

′ ≥ −(‖eik‖p‖x‖q + ‖ei′k‖p‖x
′‖q) ≥

−‖(‖eik‖p, ‖ei′k‖p)‖p‖(‖x‖q, ‖x
′‖q)‖q ≥ −‖E‖pp∞‖x+ x′‖

1/q
1 .

Moreover, it is easy to see that for vector a = (a1, a2, . . . , an)T ∈ Rn with
conditions |ai| = α, i ∈ Nn, for any number p ∈ [1,∞] the following equality holds

‖a‖p = αn1/p. (4)

According to [1, 2, 5], with respect to the metrics defined, under the stability
radius of the problem Zs(E), s ∈ N, we understand the number

ρ = ρ(m,n, s, p) =

{

supΞp if Ξp 6= ∅,
0 if Ξp = ∅,

where
Ξp = {ε > 0 : ∀E′ ∈ Ωp(ε) (P s(E + E′) ⊆ P s(E))},

Ωp(ε) = {E′ ∈ Rm×n×s : ‖E′‖pp∞ < ε}

be the set of perturbed matrices, P s(E+E′) be the Pareto set of perturbed problem
Zs(E +E′). Thus the stability radius of problem Zs(E) is the limit level of pertur-
bations of matrix E elements in normed vector space Rm×n×s which do not lead to
appearance of new Pareto optimal portfolios. It is obvious that for P s(E) = X the
stability radius of the problem is supposed to be infinite. The problem for which
P s(E) 6= X is called nontrivial.
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3 Bounds on the stability radius of the problem

For the nontrivial problem Zs(E) put

ϕ = ϕ(m,n, s, p) = min
x/∈P s(E)

max
x′∈P (x,E)

γ(x′, x)

‖x′ + x‖
1/q
1

,

ψ = ψ(m,n, s) = min
x/∈P s(E)

max
x′∈P (x,E)

γ(x′, x)

‖x′ − x‖1
,

where
γ(x′, x) = min{fk(x

′, Ek) − fk(x,Ek) : k ∈ Ns},

P (x,E) = X(x,E) ∩ P s(E).

It is easy to see that ϕ, ψ ≥ 0.

Theorem 1. For any m,n, s ∈ N and p ∈ [1,∞] for the stability radius ρ(m,n, s, p)
of the multicriteria nontrivial investment problem Zs(E) the following bounds are

valid

ϕ(m,n, s, p) ≤ ρ(m,n, s, p) ≤ (mn)1/pψ(m,n, s). (5)

Proof. Let us first show that the inequality ρ ≥ ϕ is valid. For ϕ = 0 it is evident.
Let ϕ > 0 and the perturbed matrix E′ ∈ Rm×n×s with cuts E′

k, k ∈ Ns, belongs to
the set Ωp(ϕ), i.e. ‖E′‖pp∞ < ϕ. According to the definition of number ϕ for any
portfolio x /∈ P s(E) there exists portfolio x0 ∈ P (x,E) such that

γ(x0, x) ≥ ϕ‖x0 + x‖
1/q
1 ,

i.e. the inequalities

fk(x
0, Ek) − fk(x,Ek) ≥ ϕ‖x0 + x‖

1/q
1 , k ∈ Ns

hold.
Therefore, taking into account inequality (3), for any index k ∈ Ns we obtain

fk(x
0, Ek + E′

k) − fk(x,Ek + E′
k) = max

1≤i≤m
(eik + e′ik)x

0 − max
1≤i≤m

(eik + e′ik)x =

= min
1≤i≤m

max
1≤i′≤m

(ei′kx
0 − eikx+ e′i′kx

0 − e′ikx) ≥

≥ min
1≤i≤m

max
1≤i′≤m

(ei′kx
0 − eikx) − ‖E′‖pp∞‖x0 + x‖

1/q
1 =

= fk(x
0, Ek) − fk(x,Ek) − ‖E′‖pp∞‖x0 + x‖

1/q
1 ≥ (ϕ− ‖E′‖pp∞)‖x0 + x‖

1/q
1 > 0,

where e′ik is the i-th row of the cut E′
k. Thus, any portfolio x, which is not in

P s(E), is not a Pareto optimal portfolio on the perturbed problem Zs(E + E′).
Therefore we conclude that for any perturbed matrix E′ ∈ Ωp(ϕ) the inclusion
P s(E + E′) ⊆ P s(E) is valid. Hence the inequality ρ ≥ ϕ is true.
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Further we prove the inequality ρ ≤ (mn)1/pψ.
According to the definition of the number ψ there exists portfolio x0 /∈ P s(E)

such that for any portfolio x ∈ P (x0, E) there exists l = l(x) ∈ Ns, for which

fl(x,El) − fl(x
0, El) ≤ ψ‖x− x0‖1. (6)

Assuming ε > (mn)1/pψ, we define the k-th cut E0
k, k ∈ Ns elements e0ijk of the

perturbed matrix E0 by the rule

e0ijk =

{

δ if i ∈ Ns, x
0
j = 1

−δ otherwise,

where ε/(mn)1/p > δ > ψ. Then according to (4) we have

‖e0ik‖p = n1/pδ, ‖E0
k‖pp = (mn)1/pδ, i ∈ Nm, k ∈ Ns,

‖E0‖pp∞ = (mn)1/pδ.

This means that E0 ∈ Ωp(ε). Moreover, all rows e0ik, i ∈ Nm, of the cut E0
k , k ∈ Ns,

are the same and consist of the components δ and −δ. Therefore, assuming A = e0ik,
i ∈ Nm, k ∈ Ns, we have

A(x− x0) = −δ‖x− x0‖1. (7)

Hence, taking into account (6), we conclude that for any portfolio x ∈ P (x0, E)
there exists l ∈ Ns, satisfying the relations

fl(x,El + E0
l ) − fl(x

0, El + E0
l ) = max

1≤i≤m
(eil + e0il)x− max

1≤i≤m
(eil + e0il)x

0 =

= min
1≤i≤m

max
1≤i′≤m

(ei′lx− eilx
0 + e0i′lx− e0ilx

0) = fl(x,El) − fl(x
0, El) +A(x− x0) ≤

≤ (ψ − δ)‖x − x0‖1 < 0.

Thus the formula
∀x ∈ P (x0, E) (x /∈ X(x0, E + E0)) (8)

is valid. If X(x0, E + E0) = ∅ then x0 ∈ P s(E +E0). Recall that x0 /∈ P s(E).
Now suppose that X(x0, E + E0) 6= ∅.
Then due to the external stability of the set P s(E + E0) (see e.g. [6, 7]) there

exists portfolio x∗ ∈ P (x0, E + E0). We show that x∗ /∈ P s(E).
We assume the contrary: x∗ ∈ P s(E). According to (8) the inclusion

x∗ ∈ P s(E) \ P (x0, E)

holds. Therefore only two following cases are possible.
Case 1. f(x∗, E) = f(x0, E). Then for any k ∈ Ns from equality (7) it follows

fk(x
∗, Ek + E0

k) − fk(x
0, Ek + E0

k) = fk(x
∗, Ek) − fk(x

0, Ek)+
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+A(x∗ − x0) = −δ‖x∗ − x0‖1 < 0.

Case 2. There exists q ∈ Ns such that fq(x
∗, Eq) < fq(x

0, Eq). Then again
using (7) we obtain

fq(x
∗, Eq + E0

q ) − fq(x
0, Eq + E0

q ) = fq(x
∗, Eq) − fq(x

0, Eq) +A(x∗ − x0) < 0.

Consequently both cases contradict the inclusion x∗ ∈ P (x0, E+E0). Therefore
it is proved that x∗ /∈ P s(E). Recall that x∗ ∈ P s(E + E0).

Thus for any number ε > (mn)1/pψ it is guaranteed that there exists a perturbing
matrix E0 ∈ Ωp(ε) such that there exists portfolio (x0 or x∗) which is not Pareto
optimal portfolio for Zs(E) but becomes Pareto optimal in the perturbed problem
Zs(E + E0). Hence the formula

∀ε > (mn)1/pψ ∃E0 ∈ Ωp(ε) (P s(E + E0) * P s(E))

is valid.
Consequently, ρ ≤ (mn)1/pψ.

The well known result follows from Theorem 1.
Corollary 1 [8]. ϕ(m,n, s,∞) ≤ ρ(m,n, s,∞) ≤ ψ(m,n, s).

The following evident statement confirms attainability on these bounds
Corollary 2. If for any pair x 6∈ P s(E) and x′ ∈ P (x,E) the equality

{j ∈ Nn : xj = x′j = 1} = ∅

holds then the formula

ρ(m,n, s,∞) = ϕ(m,n, s,∞) = ψ(m,n, s)

is valid.

Attainability of the upper bound in (5) for m = 1 and p = ∞ follows from the
following known theorem.
Theorem 2 [9]. ρ(1, n, s,∞) = ψ(1, n, s), n, s ∈ N.

Remark 1. From theorem 1 it follows that the upper bound on the stability radius
of the problem ρ(m,n, s, p) decreases mn times with number p increasing from 1
to ∞. That is the upper bound decreases from mnψ(m,n, s) to ψ(m,n, s). At the
same time the lower bound also decreases from

ϕ(m,n, s, 1) = min
x/∈P s(E)

max
x′∈P (x,E)

γ(x′, x)

to

ϕ(m,n, s,∞) = min
x/∈P s(E)

max
x′∈P (x,E)

γ(x′, x)

‖x′ + x‖1
.

As follows from Corollary 2, when its conditions hold the lower values of the
lower and upper bounds on the stability radius are identical:

ϕ(m,n, s,∞) = ψ(m,n, s).

The present paper is prepared with partial support of the Belarusian republican
fund of fundamental research (Projects F11K-095, F13K-078).
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