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Algorithms for solving stochastic discrete optimal

control problems on networks
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Abstract. In this paper we consider the stationary stochastic discrete optimal
control problem with average cost criterion. We formulate this problem on networks
and propose polynomial time algorithms for determining the optimal control by using
a linear programming approach.
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1 Problem Formulation

Let a discrete dynamical system L with finite set of states X be given, where
|X| = n. At every discrete moment of time t = 0, 1, 2, . . . the state of L is x(t) ∈ X.
The dynamics of the system is described by a directed graph of states’ transitions
G = (X,E) where the set of vertices X corresponds to the set of states of the
dynamical system and an arbitrary directed edge e = (x, y) ∈ E expresses the
possibility of the system L to pass from the state x = x(t) to the state y = x(t+ 1)
at every discrete moment of time t. So, a directed edge e = (x, y) in G corresponds
to a stationary control of the system in the state x ∈ X which provides a transition
from x = x(t) to y = x(t+ 1) for every discrete moment of time t. We assume that
graph G does not contain deadlock vertices, i.e., for each vertex x there exists at
least one leaving directed edge e = (x, y) ∈ E. In addition, we assume that with
each edge e = (x, y) ∈ E a quantity ce ∈ R is associated, which expresses the cost
of the system L to pass from the state x = x(t) to the state y = x(t) for every
t = 0, 1, 2, . . . .

A sequence of directed edges E′ = {e0, e1, e2, . . . , et, . . . }, where et = (x(t),
x(t + 1)), t = 0, 1, 2, . . . , determines in G a control of the dynamical system with
a fixed starting state x0 = x(0). An arbitrary control in G generates a trajectory
x0 = x(0), x(1), x(2), . . . for which the average cost per transition can be defined in
the following way

f(E′) = lim
t→∞

1

t

t−1
∑

τ=0

ceτ
.

In [1] it is shown that this value exists and |fx0(E
′)| ≤ maxe∈E′ |ce|. Moreover,

in [1] it is shown that if G is strongly connected, then for an arbitrary fixed starting
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state x0 = x(0) there exists the optimal control E∗ = {e∗0, e
∗

1, e
∗

2 . . . } for which

f(E∗) = min
E′

lim
t→∞

1

t

t−1
∑

τ=0

ceτ

and this optimal control does not depend either on the starting state or on time.
Therefore, the optimal control for this problem can be found in the set of stationary
strategies S.

We assume that the set of states X of the dynamical system may admit states in
which the system L makes transitions to the next state in a random way according
to a given distribution function of probabilities on the set of possible transitions
from these states [2]. So, the set of states X is divided into two subsets XC and
XN (X = XC ∪XN , XC ∩XN = ∅), where XC represents the set of states x ∈ X
in which the transitions of the system to the next state y can be controlled by the
decision maker at every discrete moment of time t andXN represents the set of states
x ∈ X in which the decision maker is not able to control the transition because the
system passes to the next state y randomly. Thus, for each x ∈ XN a probability
distribution function px,y on the set of possible transitions (x, y) from x to y ∈ X(x)
is given, i. e.,

∑

y∈X(x)

px,y = 1, ∀x ∈ XN ; px,y ≥ 0, ∀y ∈ X(x). (1)

Here px,y expresses the probability of the system’s transition from the state x to the
state y for every discrete moment of time t.

We call the graph G, with the properties mentioned above, decision network
and denote it by (G,XC ,XN , c, p, x0). So, this network is determined by the di-
rected graph G with a fixed starting state x0, the subsets XC ,XN , the cost function
c : E → R and the probability function p : EN → [0, 1] on the subset of the edges
EN = {e = (x, y) ∈ E

∣

∣ x ∈ XN , y ∈ X}, where p satisfies the condition (1). If
the control problem is considered for an arbitrary starting state, then we denote the
network by (G,XC ,XN , c, p).

We define a stationary strategy for the control problem on networks as a map:

s : x→ y ∈ X(x) for x ∈ XC ,

where X(x) = {y ∈ X|e = (x, y) ∈ E}.
Let s be an arbitrary stationary strategy. Then we can determine the graph

Gs = (X, Es ∪ EN ), where Es = {e = (x, y) ∈ E |x ∈ XC , y = s(x)}. This graph
corresponds to a Markov process with the probability matrix P s = (ps

x,y), where

ps
x,y =











px,y if x ∈ XN and y = X;

1 if x ∈ XC and y = s(x);

0 if x ∈ XC and y 6= s(x).
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In the considered Markov process, for an arbitrary state x ∈ XC , the transition
(x, s(x)) from the states x ∈ XC to the states y = s(x) ∈ X is made with the
probability px,s(x) = 1 if the strategy s is applied. For this Markov process we can
determine the average cost per transition for an arbitrary fixed starting state xi ∈ X.
Thus, we can determine the vector of average costs ωs, which corresponds to the
strategy s, according to the formula ωs = Qsµs, where Qs is the limit matrix of the
Markov process, generated by the stationary strategy s, and µs is the corresponding
vector of the immediate costs, i.e., µs

x =
∑

y∈X(x) p
s
x,ycx,y [3]. A component ωs

x of
the vector ωs represents the average cost per transition in our problem with a given
starting state x and a fixed strategy s, i.e., fx(s) = ωs

x.
In such a way we can define the value of the objective function fx0(s) for the

control problem on a network with a given starting state x0, when the stationary
strategy s is applied.

The control problem on the network (G,XC ,XN , c, p, x0) consists of finding a
stationary strategy s∗ for which

fx0(s
∗) = min

s
fx0(s).

2 A Linear Programming Approach for Determining Optimal

Stationary Strategies on Perfect Networks

We consider the stochastic control problem on the network (G,XC ,XN , c, p, x0)
with XC 6= ∅, XN 6= ∅ and assume that G is a strongly connected directed graph.
Additionally, we assume that in G for an arbitrary stationary strategy s ∈ S the
subgraph Gs = (X,Es ∪ EN ) is strongly connected. This means that the Markov
chain induced by the probability transition matrix P s is irreducible for an arbitrary
strategy s. We call the decision network with such a condition a perfect network.
At first we describe an algorithm for determining the optimal stationary strategies
for the control problem on perfect networks.

So, in this section we consider the control problem that the average cost per
transition is the same for an arbitrary starting state, i. e., fx(s) = ωs, ∀x ∈ X.

Let s ∈ S be an arbitrary strategy. Taking into account that for every fixed
x ∈ XC we have a unique y = s(x) ∈ X(x), we can identify the map s with the set
of boolean values sx,y for x ∈ XC and y ∈ X(x), where

sx,y =

{

1 if y = s(x);

0 if y 6= s(x).

For the optimal stationary strategy s∗ we denote the corresponding boolean values
by s∗x,y.

Assume that the network (G,XC ,XN , c, p, x0) is perfect. Then the following
lemma holds.

Lemma 1. A stationary strategy s∗ is optimal if and only if it corresponds to an

optimal solution q∗, s∗ of the following mixed integer bilinear programming problem:
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Minimize

ψ(s, q) =
∑

x∈XC

∑

y∈X(x)

cx,ysx,yqx +
∑

z∈XN

µzqz (2)

subject to














































∑

x∈XC

sx,yqx +
∑

z∈XN

pz,yqz = qy, ∀y ∈ X;

∑

x∈XC

qx +
∑

z∈XN

qz = 1;

∑

y∈X(x)

sx,y = 1, ∀x ∈ XC ;

sx,y ∈ {0, 1}, ∀x ∈ XC , y ∈ X; qx ≥ 0, ∀x ∈ X,

(3)

where

µz =
∑

y∈X(z)

pz,ycz,y, ∀z ∈ XN .

Proof. Denote µx =
∑

y∈X(x) cx,ysx,y for x ∈ XC . Then µx for x ∈ XC and µz

for z ∈ XN represent, respectively, the immediate cost of the system in the states
x ∈ XC and z ∈ XN when the strategy s ∈ S is applied. Indeed, we can consider
the values sx,y for x ∈ XC and y ∈ X(x) as probability transitions from the state
x ∈ XC to the state y ∈ X(x).

Therefore, for fixed s the solution qs = (qs
xi1
, qs

xi2
, . . . , qs

xin
) of the system of linear

equations














∑

x∈XC

sx,yqx +
∑

z∈XN

pz,yqz = qy, ∀y ∈ X;

∑

x∈XC

qx +
∑

z∈XN

qz = 1;
(4)

corresponds to the vector of limit probabilities in the ergodic Markov chain deter-
mined by the graph Gs = (X,Es ∪ EN ) with the probabilities px,y for (x, y) ∈ EN

and px,y = sx,y for (x, y) ∈ EC (EC = E \ EN ). Therefore, for given s the value

ψ(s, qs) =
∑

x∈XC

µxqx +
∑

z∈XN

µzqz,

expresses the average cost per transition for the dynamical system if the strategy s
is applied, i. e.,

fx(s) = ψ(s, qs), ∀x ∈ X.

So, if we solve the optimization problem (2), (3) on a perfect network then we find
the optimal strategy s∗.

In the following for an arbitrary vertex y ∈ X we will denote by X−

C (y) the set
of vertices from XC which contain directed leaving edges e = (x, y) ∈ E that end
in y, i. e., X−

C (y) = {x ∈ XC | (x, y) ∈ E}; in an analogues way we define the set
X−(y) = {x ∈ X | (x, y) ∈ E}.

Based on the lemma above we can prove the following result.
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Theorem 1. Let α∗

x,y (x ∈ XC , y ∈ X), q∗x (x ∈ X) be a basic optimal solution of

the following linear programming problem:

Minimize

ψ(α, q) =
∑

x∈XC

∑

y∈X(x)

cx,yαx,y +
∑

z∈XN

µzqz (5)

subject to















































∑

x∈X−

C
(y)

αx,y +
∑

z∈XN

pz,yqz = qy, ∀y ∈ X;

∑

x∈XC

qx +
∑

z∈XN

qz = 1;

∑

y∈X(x)

αx,y = qx, ∀x ∈ XC ;

αx,y ≥ 0, ∀x ∈ XC , y ∈ X; qx ≥ 0, ∀x ∈ X.

(6)

Then the optimal stationary strategy s∗ on a perfect network can be found as follows:

s∗x,y =

{

1 if α∗

x,y > 0;

0 if α∗

x,y = 0,

where x ∈ XC , y ∈ X(x). Moreover, for every starting state x ∈ X the optimal

average cost per transition is equal to ψ(α∗, q∗), i. e.,

fx(s∗) =
∑

x∈XC

∑

y∈X(x)

cx,yα
∗

x,y +
∑

z∈XN

µzq
∗

z

for every x ∈ X.

Proof. To prove the theorem it is sufficient to apply Lemma 1 and to show that the
bilinear programming problem (2), (3) with boolean variables sx,y for x ∈ XC , y ∈ X
can be reduced to the linear programming problem (5), (6). Indeed, we observe that
the restrictions sx,y ∈ {0, 1} in the problem (2), (3) can be replaced by sx,y ≥ 0
because the optimal solutions after such a transformation of the problem are not
changed. In addition, the restrictions

∑

y∈X(x)

sx,y = 1, ∀x ∈ XC

can be changed by the restrictions

∑

y∈X(x)

sx,yqx = qx, ∀x ∈ XC ,

because for the perfect network it holds qx > 0, ∀x ∈ XC .
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Based on the properties mentioned above in the problem (2), (3) we may replace
the system (3) by the following system















































∑

x∈X−

C
(y)

sx,yqx +
∑

z∈XN

pz,yqz = qy, ∀y ∈ X;

∑

x∈XC

qx +
∑

z∈XN

qz = 1;

∑

y∈X(x)

sx,yqx = qx, ∀x ∈ XC ;

sx,y ≥ 0, ∀x ∈ XC , y ∈ X; qx ≥ 0, ∀x ∈ X.

(7)

Thus, we may conclude that problem (2), (3) and problem (2), (7) have the same
optimal solutions. Taking into account that for the perfect network qx > 0, ∀x ∈ X
we can introduce in problem (2), (7) the notations αx,y = sx,yqx for x ∈ XC , y ∈
X(x). This leads to the problem (5), (6). It is evident that αx,y 6= 0 if and only if
sx,y = 1. Therefore, the optimal stationary strategy s∗ can be found according to
the rule given in the theorem.

So, if the network (G,XC ,XN , c, p, x0) is perfect then we can find the optimal
stationary strategy s∗ by using the following algorithm.

Algorithm 1. Determining the Optimal Stationary Strategy on Perfect

Networks

1) Formulate the linear programming problem (5), (6) and find a basic optimal
solution α∗

x,y (x ∈ XC , y ∈ X), q∗x (x ∈ X).

2) Fix a stationary strategy s∗ where s∗x,y = 1 for x ∈ XC , y ∈ X(x) if α∗

x,y > 0;
otherwise put s∗x,y = 0.

3 Extension of the Algorithm 1 for Solving the Unichain Control

Problem

We show that the algorithm 1 can be extended for the problem in which an
arbitrary strategy s generates a Markov unichain. For a unichain control problem
the graph Gs induced by a stationary strategy may not be strongly connected, but
it contains a unique deadlock strongly connected component that is reachable from
every x ∈ X. A basic optimal solution α∗, q∗ of the linear programming problem
(5), (6) determines the strategy

s∗x,y =

{

1 if α∗

x,y > 0;

0 if α∗

x,y = 0,

and a subset X∗ = {x ∈ X | q∗x > 0}, where s∗ provides the optimal average cost
per transition for the dynamical system L when it starts transitions in the states
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x0 ∈ X∗. This means that for an arbitrary network algorithm 1 determines the
optimal stationary strategy of the problem only in the case if the system starts
transitions in the states x ∈ X∗.

For a unichain control problem algorithm 1 determines the strategy s∗ and the
recurrent class X∗. The remaining states x ∈ X \X∗ in X correspond to transient
states and the optimal stationary strategies in these states can be chosen in order
to reach X∗.

We show how to use the linear programming model (5), (6) for determining the
optimal stationary strategies of the control problem on the nonperfect network in
which for an arbitrary stationary strategy s the matrix P s corresponds to a recurrent
Markov chain.

An arbitrary strategy s in G generates a graph Gs = (X,Es ∪ EN ) with unique
deadlock strongly connected components G′

s = (X ′

s, E
′

s) that can be reached from
any vertex x ∈ X. The optimal stationary strategy s∗ in G can be found from a
basic optimal solution by fixing s∗x,y = 1 for the basic variables. This means that in
G we can find the optimal stationary strategy as follows:

We solve the linear programming problem (5), (6) and find a basic optimal
solution α∗, q∗. Then we find the subset of vertices X∗ = {x ∈ X | q∗x > 0} which in
G corresponds to a strongly connected subgraph G∗ = (X∗, E∗). On this subgraph
we determine the optimal solution of the problem using the algorithm 1. It is evident
that if x0 ∈ X∗ then we obtain the solution of the problem with fixed starting state
x0. To determine the solution of the problem for an arbitrary starting state we may
select successively vertices x ∈ X \X∗ which contain outgoing directed edges that
end in X∗ and will add them at each time to X∗ using the following rule:

– if x ∈ XC ∩ (X \X∗) then we fix an directed edge e = (x, y), put s∗x,y = 1 and
change X∗ by X∗ ∪ {x};

– if x ∈ XN ∩ (X \X∗) then change X∗ by X∗ ∪ {x}.

4 An Approach for Solving the Multichain Control Problem Using

a Reduction Procedure to a Unichain Problem

We consider the multichain control problem on the network (G,XC ,XN , c, p, x0),
i. e., the case that for different starting states the average cost per transition may
be different. We describe an approach for determining the optimal solution which
is based on a reduction procedure of the multichain problem to the unichain case.

The graph G satisfies the condition that for an arbitrary vertex x ∈ XC each
outgoing directed edge e = (x, y) ends in XN , i. e., we assume that

EC = {e = (x, y) ∈ E |x ∈ XC , y ∈ XN}.

If the graphG does not satisfy this condition then the considered control problem can
be reduced to a similar control problem on an auxiliary network (G′,X ′

C ,X
′

N , c
′, p′, x0),

where the graph G′ satisfies the condition mentioned above. Graph G′ = (X ′, E′) is



ALGORITHMS FOR SOLVING STOCHASTIC CONTROL PROBLEMS . . . 87

obtained from G = (X,E), where each directed edge e = (x, y) ∈ EC is changed by
the following two directed edges e1 = (x, xe) and e2 = (xe, y).

We include each vertex xe in X ′

N and with each edge e′ = (xe, y) we associate the
cost c′xe,y = 0 and the transition probability p′xe,y = 1. With the edges e′ = (x, xe)
we associate the cost c′x,xe

= c(x,y), where e = (x, y). For the edges e ∈ EN in
the new network we preserve the same costs and transition probabilities as in the
initial network, i. e., the cost function c′ on EN and on the set of edges (x, xe) for
x ∈ XC , e ∈ EC is induced by the cost function c. Thus, in the auxiliary network
the graph G′ is determined by the set of vertices X ′ = X ′

C ∪X ′

N and the set of edges
E′ = E′

C∪E′

N , where X ′

C = XC ; X ′

N = XN ∪{xe, e ∈ EC}; E
′

C = {e′ = (x, xe) | x ∈
XC , e = (x, y) ∈ EC}; E

′

N = EN ∪ {e′ = (xe, y) | e = (x, y) ∈ EC , y ∈ X}. There
exists a bijective mapping between the set of strategies in the states x ∈ XC of the
network (G,XC ,XN , c, p, x0) and the set of strategies in the states x ∈ XC of the
network (G′,X ′

C ,X
′

N , c
′, p′, x0) that preserves the average costs of the problems on

the corresponding networks.

Thus, without loss of generality we may consider that G possesses the property
that for an arbitrary vertex x ∈ XC , each outgoing directed edge e = (x, y) ends in
XN . Additionally, let us assume that the vertex x0 in G is reachable from every
vertex x ∈ XN . Then an arbitrary strategy s in the considered problem induces
a transition probability matrix P s = (ps

x,y) that corresponds to a Markov unichain
with a positive recurrent class X+ that contains the vertex x0.

Therefore, if we solve the control problem on the network then we obtain the
solution of the problem with fixed starting state x0. So, we obtain such a solution
if the network satisfies the condition that for an arbitrary strategy s the vertex x0

in Gs is attainable for every x ∈ XN . Now let us assume that this property does
not take place. In this case we can reduce our problem to a similar problem on
a new auxiliary network (G′′,X ′′

C ,X
′′

N , p
′′, c′′, x0) for which the property mentioned

above holds. This network is obtained from the initial one by the following way: we
construct the graph G′′ = (X,E′′) which is obtained from G = (X,E) by adding
new directed edges e′′x0

= (x, x0) from x ∈ XN \ {x0} to x0, if for some vertices
x ∈ XN \ {x0} in G there are no directed edges e = (x, x0) from x to x0. We define
the costs of directed edges (x, y) ∈ E′′ in G′′ as follows: if e′′ = (x, y) ∈ E then
the cost c′′e′′ of this edge in G′′ is the same as in G, i. e., c′′e′′ = ce′′ for e′′ ∈ E; if
e′′ = (x, x0) ∈ E′′ \ E then we put c′′e′′ = 0. The probabilities p′′x,y for (x, y) ∈ E′′

where x ∈ XN we define by using the following rule: we fix a small positive value
ε and put p′′x,y = px,y − εpx,y if (x, y) ∈ E′′ \ E, y 6= x0 and in G there is no
directed edge e = (x, x0) from x to x0; if in G for a vertex x ∈ X \ {x0} there
exists a leaving directed edge e = (x, x0) then for an arbitrary outgoing directed
edge e = (x, y), y ∈ X(x) we put p′′x,y = px,y; for the directed edges (x, x0) ∈ E′ \E
we put p′′x,x0

= ε.

Let us assume that the probabilities px,y for (x, y) ∈ E are given in the form of
irreducible decimal fractions px,y = ax,y/bx,y.
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Additionally, assume that the values ε satisfy the condition

ε ≤ 2−2L−2,

where

L =
∑

(x,y)∈E

log(ax,y + 1) +
∑

(x,y)∈E

log(bx,y + 1) +
∑

e∈E

(|ce| + 1) + 2 log(n) + 1.

Then, based on the results from [4] for our auxiliary optimization problem (with ap-
proximated data) we can conclude that the solution of this problem will correspond
to the solution of our initial problem.

So, to find the optimal solution of the problem on the network (G,XC ,XN , c, p, x0)
it is necessary to construct the auxiliary network (G′,X ′

C ,X
′

N , c
′, p′, x0), where for

each vertex x ∈ X ′

N an arbitrary directed edge e′ = (x, y) ends in XN . Then
we construct the network (G′′,X ′′

C ,X
′′

N , c
′′, p′′, x0) and the auxiliary stochastic opti-

mal control problem on this network. If the optimal stationary strategy s′∗ in the
auxiliary problem is found, then we fix s∗ = s′∗ on XC .
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