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with the property that their rings of continuous endomorphisms are locally compact
in the compact-open topology.
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1 Introduction

Let X be an LCA group, and let A(X) denote the group of all topological
automorphisms of X, taken with the Birkhoff topology. As is well known, A(X)
is a Hausdorff topological group [3, Ch. IV]. M. Levin in [9], O.Mel’nikov in [10],
P. Plaumann in [12], and L. Robertson in [13] have investigated (among many other
things) various types of LCA groups X with the property that their group A(X)
is locally compact.

By analogy, one may ask for a description of LCA groups X with the property
that the ring E(X) of continuous endomorphisms of X is locally compact in the
compact-open topology. Here we answer this question for the case of discrete abelian
groups and for the case of compact abelian groups.

2 Notation

Throughout the following, N is the set of natural numbers (including zero),
N0 = N \ {0}, and P is the set of prime numbers.

The groups of which we shall make constant use are the reals modulo one T,
the p-adic integers Zp (all with their usual topologies), the rationals Q, the quasi-
cyclic groups Z(p∞) and the cyclic groups Z(n) of order n (all with the discrete
topology), where p ∈ P and n ∈ N0.

We denote by L the class of all locally compact abelian groups. For X ∈ L, we
let c(X), d(X), k(X), m(X), t(X), and X∗ denote, respectively, the connected
component of zero in X, the maximal divisible subgroup of X, the subgroup of
compact elements of X, the smallest closed subgroup K of X such that the quotient
group X/K is torsion-free, the torsion subgroup of X, and the character group
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of X. Further, we denote by E(X) the ring of continuous endomorphisms of X and
by H(X,Y ), where Y ∈ L, the group of continuous homomorphisms from X to Y,
both endowed with the compact-open topology. It is well known that H(X,Y ) is
a topological group and E(X) is a topological ring. Recall that the compact-open
topology on H(X,Y ) is generated by the sets

Ω
X,Y

(K,U) = {h ∈ H(X,Y ) | h(K) ⊂ U},

where K is a compact subset of X and U is an open subset of Y. We write Ω
X

(K,U)
for Ω

X,X
(K,U).

For p ∈ P, n ∈ N and X ∈ L, Xp is the topological p-primary component
of X, tp(X) is the p-primary component of t(X), X[n] = {x ∈ X | nx = 0},
nX = {nx | x ∈ X}, and S(X) = {q ∈ P |

(
k(X)/c(X)

)
q
6= 0}.

For a ∈ X and S ⊂ X, o(a) is the order of a, 〈S〉 is the subgroup of X generated
by S, S is the closure of S in X, and A(X∗, S) = {γ ∈ X∗ | γ(x) = 0 for all x ∈ S}.
If (Ai)i∈I is an indexed collection of subgroups of X,

∑
i∈I Ai stands for 〈

⋃
i∈I Ai〉.

Further, if A is a closed subgroup of X, then A∗ denotes the smallest pure
subgroup of X containing A, and X/A the quotient of X modulo A, taken with the
quotient topology. Also, we write X = A⊕B in case X is a topological direct sum
of its subgroups A and B.

Let (Xi)i∈I be an indexed collection of groups in L. We write
∏

i∈I Xi for the
direct product of the groups Xi with the product topology. In case each Xi is
discrete,

⊕
i∈I Xi denotes the external direct sum of the groups Xi, taken with the

discrete topology. If each Xi = X for some fixed X, we write XI for
∏

i∈I Xi and

X(I) for
⊕

i∈I Xi.

The symbol ∼= denotes topological group (ring) isomorphism.

We close this section by mentioning a few facts, which will be used frequently in
the sequel. The first one is the famous theorem of Ascoli, whose proof can be found
in [2, Ch. X, §2, Theorem 2, Corollary 3].

Theorem 1 (Ascoli). Let X be a locally compact topological space, let Y be a uni-

form space, and let C(X,Y ) be the space of continuous mappings from X into Y,
endowed with the compact-open topology. A subset Ω of C(X,Y ) is relatively com-

pact in C(X,Y ) if ant only if the following conditions hold:

(i) Ω is equicontinuous.

(ii) For each a ∈ X, the orbit Ωa = {f(a) | f ∈ Ω} is relatively compact in Y.

Lemma 1. For any X ∈ L, the mapping f → f∗, where the endomorphism

f∗ ∈ E(X∗) is defined by f∗(γ) = γ ◦ f for all γ ∈ X∗, is a topological ring anti-

isomorphism from E(X) onto E(X∗).

Proof. The assertion follows from [11, Ch. IV, Theorem 4.2, Corollary 2].
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Lemma 2. Let X be a group in L admitting the decomposition X = A⊕B for some

closed subgroups A and B of X. Then E(X) ∼=

(
E(A) H(B,A)

H(A,B) E(B)

)
, where the ma-

trix ring

(
E(A) H(B,A)

H(A,B) E(B)

)
is taken with the usual addition and multiplication,

and carries the product topology.

Proof. Since the canonical projections πA : X → A, πB : X → B and the canonical
injections ηA : A→ X, ηB : B → X are continuous, the mapping

ξ : E(X) →

(
E(A) H(B,A)

H(A,B) E(B)

)
, f →

(
πAfηA πAfηB

πBfηA πBfηB

)
,

is an isomorphism of rings with the inverse ξ−1 given by

ξ−1
(( fA fB,A

fA,B fB

))
= ηAfAπA + ηAfB,AπB + ηBfA,BπA + ηBfBπB

[6, Proposition 106.1]. Now, if KA (resp., KB) is a compact subset of A (resp., B)
and UA (resp., UB) is an open neighborhood of zero in A (resp., B), then KA +KB

is a a compact subset of X, UA + UB is an open neighborhood of zero in X, and

ξ
(
ΩX(KA +KB , UA + UB)

)
⊂

(
ΩA(KA, UA) ΩB,A(KB , UA)

ΩA,B(KA, UB) ΩB(KB , UB)

)
.

Since the sets

(
ΩA(KA, UA) ΩB,A(KB , UA)

ΩA,B(KA, UB) ΩB(KB , UB)

)
form a fundamental system of

neighborhoods of zero in

(
E(A) H(B,A)

H(A,B) E(B)

)
, it follows that ξ is continuous. To

see that ξ is also open, pick any compact subset K of X and any open neighborhood
U of zero in X. Further, choose an open neighborhood V of zero in X such that
V + V ⊂ U. Since X = A⊕B, we can consider that V = πA(V ) + πB(V ). Then

ξ
(
ΩX(K,U)

)
⊃

(
ΩA(πA(K), πA(V )) ΩB,A(πB(K), πA(V ))

ΩA,B(πA(K), πB(V )) ΩB(πB(K), πB(V ))

)
,

proving that ξ is open.

3 Discrete torsion groups

We begin our study on local compactness of the topological ring E(X) with the
case of discrete torsion groups X ∈ L. The description of these groups, will permit
also to answer our question for compact, totally disconnected groups in L.

First we establish a preparatory fact.

Lemma 3. Let p ∈ P, and let X be a discrete p-group in L. If E(X) is locally

compact, then X is isomorphic to a group of the form Z(p∞)n0 ×
∏m

i=1 Z(pni), where

m,n0, . . . , nm ∈ N.
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Proof. Let E(X) be locally compact. We can write X = A ⊕ B, where A = d(X)
and B is a reduced subgroup of X. Since

E(X) ∼=

(
E(A) H(B,A)

0 E(B)

)
,

it follows that E(A) and E(B) are locally compact. To determine the structure of A,
let ΩA be a compact neighborhood of zero in E(A). SinceA is discrete, there is a finite
subsetKA of A such that ΩA(KA, {0}) ⊂ ΩA. Consequently, ΩA(KA, {0}) is compact
in E(A). Let FA = 〈KA〉. Then FA is finite because A is torsion [5, Theorem 15.5],
and A/FA is divisible because A is divisible [5, (D), p. 98]. It follows that if
A 6= {0}, then A/FA 6= {0} too, and hence we can write A/FA = D ⊕ D′, where
D ∼= Z(p∞) [5, Theorem 23.1]. Let α be the canonical projection of A onto A/FA

and ϕ the canonical projection of A/FA onto D with kernel D′. Fix a non-zero
a ∈ D[p] and any a′ ∈ A such that (ϕ ◦ α)(a′) = a. Further, choose an arbitrary
y ∈ A[p], and denote by ξy the extension to D of the group homomorphism from 〈a〉
into A, which transports a to y [5, Theorem 21.1]. Then (ξy ◦ϕ ◦ α) ∈ ΩA(KA, {0})
and (ξy ◦ ϕ ◦ α)(a′) = y. Since y ∈ A[p] was chosen arbitrarily, it follows that

A[p] ⊂ ΩA(KA, {0})a
′.

But ΩA(KA, {0})a
′ is finite since ΩA(KA, {0}) is compact and A is discrete. It follows

that A[p] is finite, and hence A ∼= Z(p∞)n0 for some n0 ∈ N [5, Theorem 25.1].
Next we determine the structure of B. As in the case of A, there is a finite subset

KB of B such that ΩB(KB , {0}) is compact in E(B). Let FB = 〈KB〉. Then FB is
finite, and hence if B = FB , there is nothing to prove. AssumeB 6= FB . First observe
thatB/FB cannot be divisible. For, if it were, then it would follow that B = pB+FB .
Choosing n ∈ N such that pnFB = {0}, we would obtain pnB = pn+1B, which would
imply that pnB is divisible. Since B is reduced, it would follow that pnB = {0},
and hence B/FB would be of bounded order as well. This is in contradiction with
the fact that B/FB is non-zero and divisible. Consequently, B/FB is not divisible,
and hence its socle contains elements of finite height [5, (C), p. 98]. It follows that
B/FB admits a non-zero cyclic direct summand [5, Corollary 27.2]. Write

B/FB = 〈b〉 ⊕ C

for some non-zero b ∈ B/FB , and let β be the canonical projection of B onto B/FB ,
and ψ the canonical projection of B/FB onto 〈b〉 with kernel C. Further, let b′ ∈ B
be such that (ψ ◦ β)(b′) = b. Given any z ∈ B[p], define ηz ∈ H(〈b〉, B) by setting
ηz(b) = z. Then ηz ◦ ψ ◦ β ∈ ΩB(KB , {0}) and (ηz ◦ ψ ◦ β)(b′) = z. Since z ∈ B[p]
was chosen arbitrarily, it follows that

B[p] ⊂ ΩB(KB , {0})b
′,

so B[p] is finite, and hence B ∼=
∏m

i=1 Z(pni) for some m,n1, . . . , nm ∈ N

[5, Theorem 25.1].
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Now we can prove

Theorem 2. For a discrete torsion group X ∈ L, the following statements are

equivalent:

(i) E(X) is compact.

(ii) E(X) is locally compact.

(iii) For each p ∈ S(X), tp(X) is isomorphic with Z(p∞)n0(p) ×
∏m(p)

i=1 Z(pni(p)),
where m(p), n0(p), . . . , nm(p)(p) ∈ N.

Proof. The fact that (i) and (iii) are equivalent is proved in [6, Proposition 107.4].
It is also clear that (i) implies (ii). Assume (ii), and pick an arbitrary p ∈ S(X). We
can write

X = tp(X) ⊕ tp(X)#,

where tp(X)# =
∑

q∈S(X)\{p} tq(X). It follows from Lemma 2 that E
(
tp(X)

)
is

locally compact, so (ii) implies (iii) by Lemma 3.

By utilizing duality, we obtain the solution to the considered problem in the case
of compact, totally disconnected groups in L.

Corollary 1. For a compact, totally disconnected group X ∈ L, the following state-

ments are equivalent:

(i) E(X) is compact.

(ii) E(X) is locally compact.

(iii) For each p ∈ S(X), Xp is topologically isomorphic with Z
n0(p)
p ×

∏m(p)
i=1 Z(pni(p)),

where m(p), n0(p), . . . , nm(p)(p) ∈ N.

4 Discrete torsion-free groups

In this section, we consider the case of discrete torsion-free groups in L and the
case of their duals, the compact connected groups in L. We have

Theorem 3. For a discrete torsion-free group X ∈ L, the following statements are

equivalent:

(i) E(X) is discrete.

(ii) E(X) is locally compact.

(iii) There is a finitely generated subgroup F of X such that X contains no subgroup

isomorphic to a group of the form X/L, where L is a proper, pure subgroup of

X containing F.
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Proof. Clearly, (i) implies (ii). Assume (ii), and let Ω be a compact neighborhood
of zero in E(X). Since X is discrete, there exists a finite subset K of X such that
ΩX(K, {0}) ⊂ Ω, so ΩX(K, {0}) is compact in E(X). We claim that ΩX(K, {0}) =
{0}. For, if there existed a nonzero endomorphism f ∈ ΩX(K, {0}), we would have
f(x) 6= 0 for some x ∈ X\F. It would then follow that the orbit ΩX(K, {0})x contains
the infinite group 〈f(x)〉. This is a contradiction because ΩX(K, {0})x must be finite
by Ascoli’s theorem. Thus ΩX(K, {0}) = {0}, and hence (ii) implies (i).

Next we show that (i) and (iii) are equivalent. Assume (i), and let K be a finite
subset of X such that ΩX(K, {0}) = {0}. Set F = 〈K〉. Given any proper, pure
subgroup L ofX such that F ⊂ L, let λ be the canonical projection ofX onto X/L. If
there existed an isomorphism η from X/L into X, we would have η◦λ ∈ ΩX(K, {0}).
This is a contradiction, because X/L 6= {0}, and hence η ◦ λ 6= 0. Consequently, (i)
implies (iii). Now assume (iii), and let F be a finitely generated subgroup of X
with the property that X contains no subgroup isomorphic to a group of the form
X/L, where L is a proper, pure subgroup of X containing F. Fix a finite set K of
generators of F. We claim that ΩX(K, {0}) = {0}. Indeed, if there existed a non-zero
f ∈ ΩX(K, {0}), we would have ker(f) 6= X, F ⊂ ker(f), and X/ ker(f) ∼= im(f).
Moreover, since im(f) is torsion-free, ker(f) would also be pure in X [5, (d), p. 114].
This contradiction shows that ΩX(K, {0}) = {0}, so (iii) implies (i).

We mention for later use the following

Corollary 2. Let X ∈ L be discrete, divisible, and torsion-free. The ring E(X)
is locally compact if and only if X ∼= Qr for some r ∈ N.

Proof. Let E(X) be locally compact. It follows from Theorem 3 that there is
a finitely generated subgroup F of X such that X contains no subgroup isomorphic
to a group of the form X/L, where L is a proper, pure subgroup of X containing F.
Since any pure subgroup of a divisible group is divisible, we can write X = F∗ ⊕G
for some subgroup G of X [5, Theorem 21.2]. As F ⊂ F∗ and G ∼= X/F∗, we must
have X = F∗, so X ∼= Qr for some r ∈ N.

The converse is clear.

Dualizing Theorem 3 gives the following characterization of compact connected
groups X ∈ L whose ring E(X) is locally compact.

Corollary 3. Let X ∈ L be compact and connected. The following statements are

equivalent:

(i) E(X) is discrete.

(ii) E(X) is locally compact.

(iii) There is a closed subgroup G of X satisfying the conditions:

(1) X/G has no small subgroups;
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(2) No non-zero quotient of X by a closed subgroup is topologically isomorphic

to a pure, closed subgroup of X contained in G.

Proof. As is well known, X is compact and connected iff X∗ is discrete and torsion-
free [7, (23.17) and (24.25)]. Now, since E(X) and E(X∗) are topologically iso-
morphic, it is clear that E(X) is discrete iff E(X∗) is discrete, and E(X) is locally
compact iff E(X∗) is locally compact. In particular, it follows from Theorem 3 that
(i) and (ii) are equivalent. To finish, it remains to observe that a subgroup F of X∗ is
finitely generated iff the quotient X/A(X,F ) has no small subgroups [1, Proposition
7.9]. Further, a subgroup L of X∗ is pure in X∗ iff A(X,L) is pure in X [1, Cor-
rolary 7.6] and F ⊂ L iff A(X,L) ⊂ A(X,F ). Finally, the existence of a monomor-
phism f : X∗/L → X∗ is equivalent to the existence of a continuous epimorphism
f∗ : X → A(X,L) [7, (24.40)].

Corollary 4. Let X ∈ L be compact, connected, and torsion-free. The ring E(X)
is locally compact if and only if X ∼= (Q∗)r for some r ∈ N.

Proof. Follows from Corollary 2 by duality.

5 Discrete mixed and reduced groups

For discrete mixed groups in L the situation is more complicated. In this section
we examine the case of reduced groups. We also examine the case of duals of such
groups.

We begin by recalling the following

Definition 1. Let X be an abelian group. For p ∈ P and a ∈ X, the p-height of a
in X is defined by:

hX
p (a) =

{
n, if a ∈ pnX but a /∈ pn+1X;

∞, if a ∈
⋂

i∈N p
iX.

Theorem 4. Let X ∈ L be discrete, mixed, and reduced. The ring E(X) is locally

compact if and only if X has a finitely generated subgroup F satisfying the following

conditions:

(i) For each proper subgroup L of X such that F ⊂ L and X/L 6= t(X/L),
X contains no subgroup isomorphic to X/L.

(ii) For each p ∈ S(X), either X/F is p-divisible or tp(X) is finite.

(iii) For each non-zero a ∈ X, the set

Sa =
{
p ∈ S(X) | hX/F

p (a+ F ) <∞ and tp(X) 6= X[ph
X/F
p (a+F )]

}

is finite.
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Proof. Let E(X) be locally compact. Since X is discrete, there is a finite subset K
of X such that ΩX(K, {0}) is compact in E(X). Given x ∈ X, we deduce from the
Ascoli’s theorem that ΩX(K, {0})x is finite. Consequently, for any f ∈ ΩX(K, {0}),
f(x) is a torsion element of X, and hence im(f) ⊂ t(X). Set F = 〈K〉.

To see that (i) holds, let L be a proper subgroup of X such that F ⊂ L
and t(X/L) 6= X/L, and let λ : X → X/L be the canonical projection. If there
existed an isomorphism η from X/L into X, we would have η ◦ λ ∈ ΩX(K, {0}),
a contradiction because im(η ◦ λ) 6⊂ t(X). This proves (i).

To see that (ii) holds, pick any p ∈ S(X) such that X/F is not p-divisible. Then
F + pX 6= X, so we can write

X/(F + pX) = A⊕B,

where A ∼= Z(p). Let π be the canonical projection of X onto X/(F + pX) and ϕ
the canonical projection of X/(F + pX) onto A with kernel B. Fix a generator g
of A, and let g′ ∈ X be such that (ϕ ◦ π)(g′) = g. Further, pick any y ∈ X[p], and
define ξy ∈ H(A,X) by setting ξy(g) = y. It is clear that ξy ◦ϕ ◦π ∈ ΩX(K, {0}), so

y = (ξy ◦ ϕ ◦ π)(g′) ∈ ΩX(K, {0})g′ .

Since y ∈ X[p] was chosen arbitrarily, it follows that

X[p] ⊂ ΩX(K, {0})g′ ,

so X[p] is finite. Since X is reduced, this proves (ii) [5, Theorem 25.1].

To see that (iii) holds, pick any non-zero a ∈ X and any p ∈ Sa, and set

n = h
X/F
p (a+F ). Then a ∈ F+pnX and a 6∈ F+pn+1X, so X/(F+pn+1X) is a non-

zero p-group of bounded order and a+ (F + pn+1X) has order p in X/(F + pn+1X).
Let g′ ∈ X be such that a− png′ ∈ F. Then

a+ (F + pn+1X) = png′ + (F + pn+1X).

By [6, Corollary 27.1], we can write

X/(F + pn+1X) = A′ ⊕B′,

where A′ = 〈g′ + (F + pn+1X)〉 and B′ is a subgroup of X/(F + pn+1X). Clearly,
g′+(F+pn+1X) has order pn+1 in X/(F+pn+1X). Let π′ be the canonical projection
of X onto X/(F + pn+1X) and ϕ′ the canonical projection of X/(F + pn+1X) onto
A′ with kernel B′. Given any y ∈ X[pn+1], define ξ′y ∈ H(A,X) by setting

ξ′y
(
g′ + (F + pn+1X)

)
= y.

Then ξ′y ◦ ϕ
′ ◦ π′ ∈ ΩX(K, {0}), so

pny = (ξ′y ◦ ϕ
′ ◦ π′)(a) ∈ ΩX(K, {0})a.
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Since, by the definition of Sa, tp(X) contains elements y of order pn+1, it follows that
ΩX(K, {0})a contains at least one non-zero p-element. Thus, if Sa were infinite, it
would follow that ΩX(K, {0})a is infinite as well, a contradiction. This proves (iii).

To show the converse, let F be a finitely generated subgroup of X satisfying the
conditions (i), (ii) and (iii), and let K be a finite set of generators of F. We claim
that ΩX(K, {0}) is compact in E(X). Indeed, since X is discrete, ΩX(K, {0}) acts
equicontinuously on X. Hence, by the Ascoli’s theorem, we need only to show that
ΩX(K, {0}) acts with finite orbits. Fix an arbitrary a ∈ X. We first show that

ΩX(K, {0})a ⊂
∑

p∈Sa

tp(X).

Pick an arbitrary f ∈ ΩX(K, {0}). If f(a) = 0, there is nothing to prove. Assume
f(a) 6= 0. Since F ⊂ ker(f) and X/ ker(f) ∼= im(f), it follows from (i) that X/ ker(f)
is torsion, and hence im(f) ⊂ t(X). Consequently, we can write

f(a) = b1 + · · · + bm (1)

with nonzero b1 ∈ tp1(X), . . . , bm ∈ tpm(X) for some m ∈ N0 and some distinct
p1, . . . , pm ∈ S(X). We must show that p1, . . . , pm ∈ Sa. By way of contradiction,
suppose there is j = 1, . . . ,m such that pj /∈ Sa. First observe that X/F cannot
be pj-divisible. For, if it were, it would follow from [5, (D), p. 98] that im(f) is
pj-divisible, so the projection im(f)pj of im(f) into tpj(X) would be pj-divisible.
As im(f)pj is a pj-group, it would follow that im(f)pj is divisible [5, p. 98], which
would imply im(f)pj = {0} because X is reduced. Hence we would have bj = 0,
a contradiction. This proves that X/F cannot be pj-divisible, and hence tpj(X)
must be finite by (ii). Now, since by assumption pj /∈ Sa, we must have either

h
X/F
pj (a+F ) = ∞, or else n = h

X/F
pj (a+F ) <∞ and tpj(X) = X[pn

j ]. In the former

case, we clearly have hX
pj

(
f(a)

)
= ∞ [5, (g), p. 98]. Hence, given any i ∈ N, we can

write f(a) = pi
jyi with yi ∈ X. Further, since the numbers p1, . . . , pm are distinct,

we can write bk = pi
jci,k for all k 6= j [5, p. 98]. It follows from (1) that

bj = pi
j(yi − ci,1 − · · · − ci,j−1 − ci,j+1 − . . .− ci,m).

Since tpj(X) is pj-pure in X, we conclude that bj = pi
jci,j for some ci,j ∈ tpj(X)

[5, p. 98]. Thus h
tpj

(X)
pj (bj) = ∞, whence bj = 0 because tpj(X) is finite. This

contradicts the assumption that bj 6= 0. In the second case, one can show in a similar

way that h
tpj (X)
pj (bj) ≥ n, which again gives bj = 0 because, in this case, tpj(X)

cannot have non-zero elements b with h
tpj (X)
pj (b) ≥ n. This proves that p1, . . . , pm ∈

Sa. Since f ∈ ΩX(K, {0}) was chosen arbitrarily, we conclude that ΩX(K, {0})a ⊂∑
p∈Sa

tp(X). Finally, in order to show that ΩX(K, {0}) acts with finite orbits, it is
enough to show by the finiteness of Sa that for each p ∈ Sa, tp(X) is finite. But, if

p ∈ Sa, then n = h
X/F
p (a+ F ) <∞, so a ∈ F + pnX and a /∈ F + pn+1X. It follows
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that X 6= F + pn+1X, so X/(F + pn+1X), being a non-zero p-group of bounded
order, cannot be p-divisible [5, p. 98]. As

X/(F + pn+1X) ∼=
(
X/F

)
/
(
(F + pn+1X)/F

)
,

X/F cannot be p-divisible too, so tp(X) is finite by (ii). The proof is complete.

To state the dual analog of Theorem 4, several additional concepts must be
introduced.

Definition 2. A group X ∈ L is said to be

(i) comixed if either
⋂

n∈N nX is a non-trivial subgroup of X, i.e. {0} (⋂
n∈N nX ( X, or

⋂
n∈N nX = {0} and none of the subgroups nX with n ∈ N0

is compact.

(ii) coreduced if m(X) = X.

Definition 3. Let X ∈ L. A closed subgroup C of X is said to be submaximal in
X if X/C is topologically isomorphic to a closed subgroup of T.

Definition 4. Let X ∈ L, and let C and G be closed subgroups of X. For p ∈ P,
the p-coheight of C in G is defined by:

chG
p (C) =

{
n, if G[pn] ⊂ C but G[pn+1] 6⊂ C;

∞, if tp(G) ⊂ C.

We have

Corollary 5. Let X ∈ L be compact, comixed, and coreduced. The ring E(X)
is locally compact if and only if X has a closed subgroup G satisfying the following

conditions:

(i) X/G has no small subgroups.

(ii) No quotient of X by a closed subgroup is topologically isomorphic to a closed

subgroup M of G with c(M) 6= {0}.

(iii) For each p ∈ S(X), either G[p] = {0} or
⋂

n∈N p
nX is open in X.

(iv) For each submaximal subgroup C of X, the set

SC =
{
p ∈ S(X) | chG

p (C) <∞ and
⋂

n∈N

pnX 6= pchG
p (C)X

}

is finite.
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Proof. Clearly, X is compact, comixed, and coreduced iff X∗ is discrete, mixed, and
reduced. It follows from Lemma 1 that E(X) is locally compact iff X∗ satisfies the
conditions of Theorem 4. It remains to translate these conditions in terms of X. We
already mentioned in the proof of Corollary 3 that a subgroup F of X∗ is finitely
generated iff the quotient X/A(X,F ) has no small subgroups. Now, a subgroup L of
X∗ has the property that X∗/L 6= t(X∗/L) iff its annihilator A(X,L) has non-zero
connected component. For,

c
(
A(X,L)

)
∼= c

(
(X∗/L)∗

)
∼= A

(
(X∗/L)∗, t(X∗/L)

)

by [7, (23.25) and (24.20)]. It follows that X∗ satisfies condition (i) of Theorem 4
iff X satisfies condition (ii) of this corollary. Further, given any p ∈ S(X) and any
subgroup F of X∗, we deduce from [7, (23.25) and (24.22)(i)] that

A(X,F )[p] ∼= (X∗/F )∗[p] = A
(
(X∗/L)∗, p(X∗/F )

)
.

It follows that X∗/F is p-divisible iff A(X,F )[p] = {0}. It is also clear from
[1, (e), p. 10] that tp(X

∗) is finite in X∗ iff ∩n∈Np
nX is open in X. Consequently,

X∗ satisfies condition (ii) of Theorem 4 iff X satisfies condition (iii) of this corol-
lary. Finally, we deduce from [7, (23.25)] that a closed subgroup C of X is sub-
maximal in X iff A(X∗, C) is cyclic in X∗. Letting a ∈ X∗ be a generator of

A(X∗, C), it is easy to see by use of duality that ch
A(X,F )
p (C) = h

X∗/F
p (a + F ),

and pch
A(X,F )
p (C)X 6= ∩n∈Np

nX iff X∗[ph
X∗/F
p (a+F )] 6= tp(X

∗). It follows that X∗ sat-
isfies condition (iii) of Theorem 4 iff X satisfies condition (iv) of our corollary.

6 Discrete mixed and non-reduced groups

In this final section, we handle the remaining case of discrete, mixed, and non-
reduced groups in L. By duality, we obtain also the solution to our problem in the
case of compact, comixid groups X ∈ L with m(X) 6= X.

Theorem 5. Let X be a discrete, mixed, non-reduced group in L, written in the

form X = d(X) ⊕ Y for some reduced subgroup Y of X. The ring E(X) is locally

compact if and only if the following conditions hold:

(i) d(X) ∼= Qr×
(⊕

p∈S(d(X)) Z(p∞)np
)
, where r and the np’s are positive integers.

(ii) There is a finitely generated subgroup M of Y satisfying:

(1) Y/M = t(Y/M).

(2) For each p ∈ S(Y ), either Y/M is p-divisible or tp(Y ) is finite.

(3) For each non-zero a ∈ Y, the set

Sa =
{
p ∈ S(Y ) | hY/M

p (a+M) <∞ and tp(Y ) 6= Y [ph
Y/M
p (a+M)]

}

is finite.
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Proof. Let E(X) be locally compact. Since X = d(X) ⊕ Y, we have

E(X) ∼=

(
E(d(X)) H(Y, d(X))

0 E(Y )

)
,

so E(d(X)), E(Y ), and H(Y, d(X)) are locally compact. Further, we can write
d(X) = A⊕B, where A = t(d(X)) and t(B) = {0}. Then

E(d(X)) ∼=

(
E(A) H(B,A)

0 E(B)

)
,

so E(A), E(B), and H(B,A) are locally compact as well. Now, from the local
compactness of E(A) it follows by Theorem 2 that for each p ∈ S(d(X)), tp(A) ∼=
Z(p∞)np for some np ∈ N0. Further, from the local compactness of E(B) it follows
by Corollary 2 that B ∼= Qr for some r ∈ N. Hence (i) holds.

Next, from the local compactness of H(Y, d(X)), we deduce that there exists
a finite subset K of Y such that ΩY,d(X)(K, {0}) is compact in H(Y, d(X)). In ad-
dition, from the local compactness of E(Y ), we conclude that there is a finitely
generated subgroup F of Y satisfying the conditions (i)-(iii) of Theorem 4. Fix
a finite set K ′ of generators of F, and set M = 〈K ∪ K ′〉. Let us establish (1).
Suppose the contrary, and pick an element a ∈ Y with o(a + M) = ∞. We can
define, for each z ∈ d(X), a group homomorphism ξz : 〈a + M〉 → d(X) by set-
ting ξz(a +M) = z. Since d(X) is divisible, ξz extends to a group homomorphism
ξ̂z : Y/M → d(X). Letting π : Y → Y/M denote the canonical projection, we have
ξ̂z ◦π ∈ ΩY,d(X)(K∪K ′, {0}) and z = (ξ̂z ◦π)(a), so z ∈ ΩY,d(X)(K∪K ′, {0})a. Since
z ∈ d(X) was chosen arbitrarily, it follows that

d(X) ⊂ ΩY,d(X)(K ∪K ′, {0})a.

This is a contradiction because ΩY,d(X)(K ∪K ′, {0})a is finite by Ascoli’s theorem
and d(X) is infinite. Thus Y/M must be torsion. To see that (2) holds, pick any
p ∈ S(Y ). By the choice of F, either Y/F is p-divisible, or tp(Y ) is finite. Since
Y/M ∼=

(
Y/F

)
/
(
M/F

)
, it is clear that if Y/M is not p-divisible, then Y/F is not

p-divisible as well. Therefore (2) must hold. Finally, to see that (3) holds, pick any
non-zero a ∈ Y. By the choice of F, the set

SF
a =

{
p ∈ S(Y ) | hY/F

p (a+ F ) <∞ and tp(Y ) 6= Y [ph
Y/F
p (a+F )]

}

is finite. But since Y/M is a homomorphic image of Y/F, we have

hY/F
p (a+ F ) ≤ hY/M

p (a+M),

whence

Y [ph
Y/F
p (a+F )] ⊂ Y [ph

Y/M
p (a+M)]

for all p ∈ S(Y ). It follows that Sa ⊂ SF
a , which proves (3).
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For the converse, we first show that E(d(X)) is locally compact. Indeed, we can
write d(X) = A ⊕ B, where A ∼=

⊕
p∈S

(
t
(
d(X)

)) Z(p∞)np and B ∼= Qr. It is clear

from Theorem 2 and Corollary 2 that E(A) and E(B) are locally compact. Since

E(d(X)) ∼=

(
E(A) H(B,A)

0 E(B)

)
,

it remains to show that H(B,A) is locally compact. But H(B,A) ∼= H(Q, A)r

[7, (24.34)(c)], so it suffices to show that H(Q, A) is locally compact. We claim that
ΩQ,A({1}, {0}) is compact in H(Q, A). Clearly, ΩQ,A({1}, {0}) is equicontinuous.
Pick any a ∈ Q, and let π : Q → Q/Z denote the canonical projection. Since
Q/Z is torsion, we can write π(a) =

∑
p∈Pa

bp, where Pa is a finite subset of P and
bp ∈ tp(Q/Z) for each p ∈ Pa. It is clear that π(a) ∈

∑
p∈Pa

(Q/Z)[pnp ], where, for
each p ∈ Pa, np denotes the exponent of bp. Given any f ∈ ΩQ,A({1}, {0}), we can

write f = f̂ ◦ π for some f̂ ∈ H(Q/Z, A) [8, Theorem 5.6]. It follows that

f(a) = f̂(π(a)) ∈
∑

p∈Pa∩S(A)

f̂
(
(Q/Z)[pnp ]

)
⊂

∑

p∈Pa∩S(A)

A[pnp ],

so
ΩQ,A({1}, {0})a ⊂

∑

p∈Pa∩S(A)

A[pnp ],

and hence ΩQ,A({1}, {0})a is finite. This proves that ΩQ,A({1}, {0}) is compact,
so E(d(X)) is locally compact. Next, since Y certainly satisfies the conditions of
Theorem 4, we deduce that E(Y ) is locally compact as well. To finish, it is enough,
in view of the isomorphism

E(X) ∼=

(
E(d(X)) H(Y, d(X))

0 E(Y )

)
,

to show that H(Y, d(X)) is locally compact. Fix a finite set K of generators of
M. We claim that ΩY,d(X)(K, {0}) is compact in H(Y, d(X)). To see this, it suffices
to show that ΩY,d(X)(K, {0}) acts with finite orbits. Let π′ : Y → Y/M be the
canonical projection, and pick an arbitrary a ∈ Y. Since Y/M is torsion, we can
write π′(a) =

∑
p∈P ′

a
b′p, where P ′

a is a finite subset of P and b′p ∈ tp(Y/M) for

each p ∈ P ′
a. It is clear that π′(a) ∈

∑
p∈P ′

a
(Y/M)[pnp ], where, for each p ∈ P ′

a, np

denotes the exponent of b′p. As every f ∈ ΩY,d(X)(K, {0}) can be written in the form

f = f̂ ◦ π′ for some f̂ ∈ H(Y/M, d(X)) [8, Theorem 5.6], we conclude that

ΩY,d(X)(K, {0})a ⊂
∑

p∈P ′

a∩S(A)

A[pnp ],

proving that ΩY,d(X)(K, {0})a is finite. Hence H(Y, d(X)) is locally compact. The
proof is complete.

We end by stating the dual analog of Theorem 5.



78 VALERIU POPA

Corollary 6. Let X be a compact, comixed group in L with m(X) 6= X. The ring

E(X) is locally compact if and only if the following conditions hold:

(i) X/m(X) ∼= (Q∗)r ×
∏

p∈S(Y ) Z
np
p , where r and the np’s are positive integers.

(ii) There exists a closed totally disconnected subgroup L of m(X) satisfying:

(1) m(X)/L has no small subgroups.

(2) For each p ∈ S(m(X)), either L[p] = {0} or
⋂

n∈N p
n
(
m(X)

)
is open

in m(X).

(3) For each submaximal subgroup C of m(X), the set

SC =
{
p ∈ S(m(X)) | chL

p (C) <∞ and
⋂

n∈N

pn
(
m(X)

)
6= pchL

p (C)
(
m(X)

)}

is finite.

Proof. Clearly, a group X ∈ L is compact, comixed, and satisfies m(X) 6= X iff
X∗ is discrete, mixed, and non-reduced. In particular, X∗ = d(X∗) ⊕ Y for some
reduced subgroup Y of X∗, whence

X = m(X) ⊕A(X,Y ).

Now, in view of Lemma 1, E(X) is locally compact iff X∗ satisfies the conditions of
Theorem 5. It remains to translate these conditions in terms of X. Since

d(X∗) ∼=
(
X/m(X)

)∗
,

it is clear that X∗ satisfies condition (i) of Theorem 5 iff X satisfies condition
(i) of this corollary. We next show that X∗ satisfies condition (ii) of Theorem 5
iff X satisfies condition (ii) of our corollary. Given a subgroup M of Y, we have
A(X,M) ⊃ A(X,Y ), so

A(X,M) =
(
m(X) ∩A(X,M)

)
⊕A(X,Y ).

Since
M∗ ∼= X/A(X,M) ∼= m(X)/

(
m(X) ∩A(X,M)

)
,

we conclude that M is finitely generated iff m(X)/
(
m(X)∩A(X,M)

)
has no small

subgroups [1, Proposition 7.9]. Further, by [4, Exercise 3.8.7(b)], we have

(
Y/M

)∗ ∼= A(X,M)/A(X,Y ) ∼= m(X) ∩A(X,M),

so Y/M is torsion iff m(X)∩A(X,M) is totally disconnected [7, (24.26)]. It follows
that Y has a finitely generated subgroup M satisfying condition (1) of Theorem 5 iff
m(X) has a closed totally disconnected subgroup L satisfying condition (1) of our
corollary. Next, since

Y ∼= X∗/d(X∗) ∼= m(X)∗,
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it is clear that S(m(X)) = S(Y ). Given any p ∈ S(Y ), we have

A
(
(Y/M)∗, p(Y/M)

)
∼= (Y/M)∗[p]
∼=

(
A(X,M)/A(X,Y )

)
[p]

∼=
(
m(X) ∩A(X,M)

)
[p],

so Y/M is p-divisible iff
(
m(X)∩A(X,M)

)
[p] = {0}. Taking account of the isomor-

phism Y ∗ ∼= m(X), we also see that tp(Y ) is finite iff
⋂

n∈N p
n
(
m(X)

)
is open in

m(X). Consequently, X∗ satisfies condition (2) of Theorem 5 iff X satisfies condition
(2) of this corollary. Finally, it follows from [7, (23.25)] that a closed subgroup C of
m(X) is submaximal in m(X) iff A(m(X)∗, C) is cyclic in m(X)∗. Since m(X)∗ ∼= Y,
it is easy to see by use of duality that X∗ satisfies condition (3) of Theorem 4 iff X
satisfies condition (3) of this corollary.
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