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Equivalence of pairs of matrices with relatively prime
determinants over quadratic rings of principal ideals

Natalija Ladzoryshyn, Vasyl’ Petrychkovych

Abstract. A special equivalence of matrices and their pairs over quadratic rings
is investigated. It is established that for the pair of n X n matrices A, B over the
quadratic rings of principal ideals Z[\/EL where (detA,detB) = 1, there exist inver-
tible matrices U € GL(n,Z) and V4 VP € GL(n,Z[Vk]) such that UAV* = T4
and UBV?® = T® are the lower triangular matrices with invariant factors on the main
diagonals.
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1 Introduction

Many problems in the representation theory of finite-dimensional algebras, in
matrix factorizations over polynomial and other rings, etc. require to study some
types of equivalences of matrices and their finite collections over various domains and
to construct their canonical forms with respect to these equivalences [1-7]. These
equivalences of matrices are such that their appropriate transformation matrices
belong to certain subgroups of the general linear group.

In the analytical number theory concerning the study of arithmetic functions,
in particular, the Kloosterman sum and its generalizations in matrix rings [8, 9], in
the group theory [10], in the graph theory [11-13], etc. in [14, 15] it is necessary
to investigate the structure of matrices over quadratic rings, in particular, over the
ring of Gaussian integers.

In this paper we investigate the equivalence of matrices and their pairs:
A—UAVA, (A, B) —» (UAVA, UBVB) over quadratic rings Z[vk], where U €
GL(n,Z), VA, VB € GL(n,Z[Vk]). Tt is established that a pair of matrices A, B
with relatively prime determinants over the quadratic principal ideal ring can be
reduced by means of such equivalent transformations to the pair T4, T of trian-
gular forms with invariant factors on the main diagonals. Note that in [16] such a
form was established with respect to this equivalence for matrices over the Euclidean
quadratic rings.
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2 Preliminaries

Let Z be a ring of integers. Then K = Z[\/E] is a quadratic ring, where
k # 0,1 is a square-free element of Z. Elements a € Z[vk] and their algebraic
norm N(a) € Z are determined in the following way [17]:

—if £ =2,3 (mod 4), then

ZIVE] = {z+yVk| x,y€Z}, N(x+yvk) =2 —ky*
—if k=1 (mod 4), then

1
ZIVE] = {; +2VE ‘ %,y € 2,z — y divided by 2}, N (g + %x/E) — @ ky?).
If K is a Euclidean quadratic ring, then the Euclidean norm FE(a) € N of an element
a € K can be expressed as:

N(a) if K isimaginary,
E(a) = (1)
|IN(a)| if K is a real Euclidean quadratic ring.

The quadratic ring K = Z[Vk] is called real if & > 0. If k& < 0, then it is called

an imaginary quadratic ring. Note that the algebraic and Euclidean norms of ele-
ments of the quadratic ring are completely multiplicative, i.e. N(ab) = N(a)N(b),
E(ab) = E(a)E(b) for any a,b € K.

It is known that among quadratic rings there is a finite number of FKuclidean
quadratic rings [18, 19], among them there are quadratic principal ideal rings which
are non-Euclidean, for example, the rings Z[Vk|, for k = —19, —43, —67, —163.
There are some quadratic rings that are not principal ideal rings, for example, the
ring Z[v/—5|.

In what follows K will denote a quadratic principal ideal ring, U(K) a group of
units of K and K, will denote a complete set of residues modulo a € K.

Lemma 1. Let aj,az,a3 € K and let d = (a1,a2,a3) be their greatest common
divisor. Then there exist elements x1,xo € Z, (x1,x2) = 1, such that

(xlal + x2a2, ag) =d. (2)

Proof. Obviously, it is sufficient to prove the lemma for the case where d equals 1.
Write ag as a product of primes of K, namely, as = ubc, where u € U(K),

l
b= 11p" pi # pj, @ # J, 4,7 =1,...,1, i.e. among p; there are no pairwise
i=1
! Si =t;
conjugate elements, ¢ = [] ¢;'q;", i.e. all the divisors of ¢ are pairwise conjugate
i=1
elements.

Putting d =1 in (2) yields

(r1a1 + x2a2, b) =1 and (x1a1 + x2a2, ¢) = 1.
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Since (a1, a2,b) =1, then both a; and as are not divisible by p;, i =1,...,l. Let

I l2 l
Py = Hpi, Py = H pi, P3= H Di,
i=1

i=l1+1 i=lo+1

where p; | a1, (p; divides a1),i=1,...,0l1, pi|as,i=0U+1,...,la, p; [ araq,
(pi does not divide ajas),i=12+1,...,1.
If (z1,22) =1 and

29 20 (mod N(p;)), i=1,...,1, (3)
the equality (z1a1 + x2ag, P1) =1 holds.

Let us assume that some elements pj,41,...,D01,,, lo1 < l2 divide a; and
Dlgy+1, - - - » P, do not divide ay, where p;, ¢ =1; +1,...,ls, are conjugate elements
to the corresponding primes p; of the product Ps.

If

1 Z0 (mod N(p;)), i=10+1,...,1ls, (4)

29 Z0 (mod N(p;)) if i=10+1,...,1l2,

()
29 =0 (mod N(p;)) if i =1lo1+1,...,1o,

then (z1a; + x2a9, P2) = 1.

Suppose that some prime elements pr,41,...,D15,, l31 < [, divide a; and
Digy+15 - - - P do not divide ay, where p;, i =la +1,...,[, are conjugate elements to
the corresponding prime divisors p; of the product Pg.

If

xo Z 0 (mod N(pl)), 1 =0 (HlOd N(pl)) if i=1Il+1,...,13,

(6)
2o =0 (mod N(p;)) if i=1I31+1,....1,

then (a:lal + x9a9, Pg) =1.

Note that in the conditions (3)—(5) we considered that all prime divisors p;,
1=1,...,lo, of the products P1,Ps are not integers, i.e. p;, € K, but p; & Z. If
some prime divisors p;, 1 <17 < l9, of the products P1,Po are integers, i.e. p; € Z,
then in these conditions we consider the congruence (or incongruence) modulo p; of
these prime integer divisors.

Consequently, for the indicated z1, 29 € Z, we have (z1a1 + z2ag, b) = 1.

From (a1,a9,c) =1 it follows that both a; and ay are not divisible by ¢; and
G, 1=1,...,f. Write ¢ as a product of primes of K, i.e.

fi i
Qi: H q; and QZ: H 6]7 i=1,...,6, f6:f7

j=fi—1+1 Jj=fi—1+1
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where we set fo = 0 and (Q1Q1Q2Qs,a1) = Q1Q1Q2Q3, (Q2QuQ5Qs,a2) =
Q2Q4Q5Qs5, (Q6Qe;a10a2) = 1.

Then

i) (z101 4 @202, Q1Q1Q2Q2Q3Qs) =1 if

2 Z0  (mod N(Q1Q2Q3)), (7)

z1 Z0 (mod N(Q2)),

1 =0 (mod N(Q3));

i) (z1a1 + 22a2, QuQuQ5Q5QeQ6) =1 if

22 =0 (mod N(QsQs5Qp)) 9)
Consequently, under the imposed conditions, (z1a1+x2a2, ¢) = 1 holds and comple-
tes the proof. O

3 Equivalence of matrices

Let M(m,n,K) and M (n,K) be the sets of m xn and n x n matrices over the
quadratic principal ideal ring K, respectively; d? be the greatest common divisor
of minors of order k of the matrix A and A" be an m x n matrix.

It is known that an n x n matrix A over the commutative principal ideal
domain R is equivalent to the canonical diagonal form (the Smith normal form) [20],
i.e. there exist invertible matrices U,V € GL(n, R) such that

DA =UAV = diag(pi, ..., ut,0,...,0),
,uf‘mﬁ_l, i=1,...,r—1, ,u? are called invariant factors of matrix A.

Lemma 2. Let A € M(m,n,K), m < n, rangA = m. Then there exists a row
X = Hxl :EmH, T1,...,Tm € Z, such that

xA=|lay; ... dy],
where (ayy,...,al,) = di.

Proof. We proceed by induction on m. Without loss of generality, we may assume
that df! = 1.

Let m =2, 1i.e.
al] ... Qin

A@n) —
asy ... Qao2pn

It is known [20] that there exists a matrix V € GL(n,K) such that

ACMY = ‘

al 0 0O ... 0
as as 0O ... 0 ’
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Since H T1 T2 H ARy = H ria1 +x9a9 w9a3 0 ... 0 H , then we prove
that there exist 1,22 € Z such that (z1a1 + zeag, xeas) = 1.
By Lemma 1 there exist x1, 29 € Z, (x1,22) = 1, such that (z1a1 + x2a9, ag) = 1.
If (z9,a1) = 1 and z1, zo satisfy the conditions (3)—(9), then (z1a1 + z2a2, x2a3) = 1.
Note that if the only prime divisors of a3 and their conjugates p;,pi, qj,Q;,

i1=1,...,01,7=1,..., f, are the divisors of a; then, under the imposed conditions,
the equality (z2,a1) =1 holds.

Let us assumeﬁthat g1,--.,9s, AMONG g, 1=1,...,s, there are non—conjugz}te
elements and hi,hy,...,h, hy are the prime divisors of ai, moreover g;,g;, hj, hj,
i1=1,...,8,j=1,...,t do not divide as.

If

zg #0 (mod N(hj)), j=1,....t, (10)
xo Z0 (mod N(g;)) if ¢, €K, ¢;¢7Z, i=1,...,s, (11)
then (z2,a;) = 1.
If some primes g¢i,...,9, € Z, v < s and if
22 #Z0 (modg), i=1,...,v, (12)

then the equality (z2,a1) = 1 holds. Consequently, under the imposed integers
x1,x9 € Z the equality (x1a; + x2a2, z2a3) = 1 holds. It is obvious that d‘f(z'") =
(a1,as2,a3), and hence lemma is true for m = 2.

Let us assume that the lemma is true for m — 1, i.e. for the matrix

a1 s Q9n
A(m_lvn) —
aml .- Amn
there exists a row Haz’z x§n| , 2, €Z, i=2,...,m, such that
/ / (m=1,n) _ ||/ /
Hm2 a;mHA —Ha21 a2n| ,
A(m—1,n) m
/ / _ 5 !/ / .
where (aby,...,a5,) =dj and ay; = gxiaij, j=1,...,n.
1=

Let us prove the lemma for any arbitrary m. Consider the matrix

a] ... Qin

(2 _
1 / /
6121 N a2n

By the induction hypothesis the lemma is true for m = 2, i.e. there exists the row
Hm yH , *,y € Z, such that

Hm yHAgzn):Ha’H ce.oal,

)
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A(z’”) m i i
where (ajy,...,ay,) = di' ,aj; = zan +y)y way, j = 1,...,n. Since
i=2

A2 A .

dy' =d{, then there exists the row x = Hxl :L‘mH, where z1 = =z,
z; = yx,, i =2,...,m, such that

I / /
xA = Hall alnH

and (d}y,...,d},) = di*. Hence, the lemma is proved for any m, and the induction
is completed. O

Theorem 1. Let A € M(n,K), detA # 0. Then there exist invertible matrices
UeGL(n,Z) and V € GL(n,K) such that

it 0 ... 0
thui  py ... 0
A. A A. A ‘ A
Lk tpafy  --o Hp
4 . .
where t{} GK%, 5;-;‘»: %, L,j=1,...,n, 1> j.
Proof. Let A = Hain?, a;; € K, i,7 = 1,...,n. By Lemma 2 there exists a row
X = Hazl mnH, T1,...,Tn € Z, such that
xA = Hail a{nH,
, , A . . . . 1T ... Inp
where (aii,...,ain) = di'. There exists an invertible matrix U = .
such that
UA — ai] ... Qip :Al,
where (aiy,...,ain) = d‘f and * are some elements. Then for some matrix
V1 € GL(n,K) we obtain:
p |0
~—— 7
a21
AV =04V, = Am—1,n-1) ’
dnl:u'iA

where pf' = d{h = df* and pf' divides all the elements of matrix A®~Lr=1),
Hence, uf' is the first invariant factor of A.

Applying the similar reasoning to matrix A , after a finite number of
steps we reduce matrix A by these transformations to the following triangular form
with invariant factors on the main diagonal:

(n—1,n—1)

~ A = A
Anl1fy  Gpa2fly ... gy
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A
Let K5é41 be a prescribed complete set of residues modulo 55‘1 = Z—?q. Since

1
pd = pitogh, then o = t5) (mod &5)), where t5) € Ksa - Then ag = t4h + qos,
(1)‘ ®I"=2)  where

I"=2) s an identity matrix of order n — 2. Thus, we get matrix AW, whose (2,1)
element is equal to t?l,u‘f‘. Now we carry out a similar reasoning for non-diagonal
elements of the third and the last rows of matrix A, and reduce this matrix to
matrix T4 of the form (13). Therefore, the proof of the theorem is completed. [

. . . 1
where g € K. Let us construct the invertible matrix W; = H_q

4 Equivalence of pairs of matrices

Lemma 3. Let A,B € M(m,n,K), m <n and (d},dB) = 1. Then there exists a

m? 'm

row sz:ztl a:m|, T1,...,Tm € Z, such that
xA = Ha’ll a’lnH, xB = Hb’ll llTLH7
where (aly,...,a},) =d, V..., b,)=dP.

PT’OOf. Let A = HainT,n’ B = waHrln,n, a,-j,bij eK, i=1,....m, j=1,...,n.
Without loss of generality, we may assume that dff = dP = 1. Let us prove the
lemma for m = 2. Consider the matrices

By Theorem 1 for the matrix B(3™ there exist matrices U € GL(2,7) and
Vi1 € GL(n,K) such that

al] ... Qin

A@n) —
as;r ... Qa2pn

by ... b
7 B(2,n) — H 11 1n
‘ ba1 ... bop

1 0 0 ... 0

@)y —
vB=W ‘bl by 0 ... 0

o

Then for the matrix UA®™) there exists a matrix V5 € GL(n,K) such that

a100...0

2n)y, —
va V2 as as 0 ... 0

-

)

We need to prove that for the pair of matrices A1, By there exists a row Hxl T9
1,9 € Z, such that

H r1 I HA1:H Tia1 +T2a0 xoa3 0 ... O H,

H Tr1 I H31:H 21+ a9b1 by 0 ... O H,

where

(x1a1 + w202, T203) =1, (14)
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(l‘1 + ZEgbl, l‘ng) =1. (15)

By Lemma 1 and by Lemma 2, the equality (14) holds if x1, zo satisfy the conditions
(3)-(12).

Now we choose such x1,x9 € Z, (x1,22) = 1, that both (14) and (15) hold.

It is sufficient to prove (14), (15) for the case of pi,...,p1,, 1 <l <l;
Dlor+15+ -+ Plags l21+1§l22§12; Digy+1; - -+ 3 Plggs l31+1§l32§l7 g1, Gsys
1 < sy < s, are prime divisors of by, where p; and g; are conjugate primes to the
corresponding prime divisors p;, g; of the elements a3 and a; of matrix A;.

If
r1 =0 (mod N(p;)) if p;i [ b1,

x1 §é0 (mOd N(pl)) if Di ’ b17 i = 17"'71117

then (x1 + x2b1, P1 .. .ﬁlll) =1.
The equalities (21 + x2b1, Pryy41---Diyy) = 1 and (21 + 22b1, Prgy41---Digy) = 1
hold, in case x1,xy satisfy the conditions (4)—(6).
Now if
x1 =0 (mod N(g;)) if gi [ b,

x1 Z0 (mod N(g;)) if gi| by, i=1,...,s1,

then (1 + x2b1, G1...7s,) = 1.

Hence, there exists a row x = H:El ZEQH, where x1,x2 € Z, such that for
the rows xA; and xBj; the equalities (14), (15) are true. Then in Lemma 3 the
mentioned row for matrices A(27"),B(2’") is the row x = H:El x2H U. The lemma
is true for m = 2. Furthermore, we prove the lemma by induction, similarly as in
the proof of Lemma 2. This completes the proof. O

Theorem 2. Let A,B € M(n,K) and (detA,detB) = 1. Then there exist invertible
matrices U € GL(n,Z) and VA, VB € GL(n,K) such that

e
toq b o ... 0
gAvVA = || P TR T A (16)
tond thond i
My G
t5) 1 o ... 0
uBvE = | T2 B, (17)
thut thud .. wf
h A K 5A _ “24 B K 5B _ “F. Pos ; ;
where ti; € 54> T e ti; € 58> i = b ,7=1,...,n, © > j.



46 NATALIJA LADZORYSHYN, VASYL’ PETRYCHKOVYCH

Proof. Let A = Hain?, B = Hbin?, a;j, bjj € K, 4,7 = 1,...,n. By Lemma 3

there exists a row x = Hxl azn‘ , T1,...,%y € Z, such that

xA = Ha’ll a’lnH, xB = Hb’n /ITLH7
where (d}y,...,a,,) = df and (b),...,b),) = dP. There is an invertible matrix
U € GL(n,Z) with the first row ||y ... ay||. Thus,

a/ a/ / /
va=|" o Mmoo and  UB=|| = By
Then there exist matrices V1, V2 € GL(n, K) such that
p |0 W |0
C~L21,u1 b21ﬂ1
A = : Am—1n-1) ’ BiV2 = B(r—1n-1) ’
dnlﬂi4 Bnl,ulB

where uft = dft, uP =dp.

We carry out a similar reasoning for matrices A=17=1) and B(—1n=1) after a
finite number of steps we reduce matrices A and B by the indicated transformations
to the triangular forms

it 0 ... 0 I 0 ... 0
~ A 7. B B
- Qo1 t I ... 0 - ba1 1t W .o 0
A=|00 L B=| .
dnl/ﬁ4 a/n2,u§1 s :uﬁ Bnl,ulB l;n2:u2B s /Lg

Thus, we will reduce the pair of matrices A, B to the pair T4, T5 of the form
(16), (17) by means of the indicated transformations in the same way as we reduced

matrix A to matrix 7% at the end of Theorem 1. This completes the proof of the
theorem. O

Remark. Note that the pair of matrices A, B € M(n,K) such that (detA,detB) =
d # 1 cannot be reduced by means of the indicated transformations to the pair of
matrices T4, TP of the form (16), (17).

Example. Let

R

be 2 x 2 matrices over the Euclidean quadratic ring Z[v/—2]. It is easy to verify that
the pair of matrices A, B, (detA,detB) = 1 cannot be reduced by these transfor-
mations to pairs T4, T8 of the form (16), (17).
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Corollary. Let K be a Euclidean quadratic ring, A, B € M (n,K), (detA,detB) =1,
E(a) be the Euclidean norm of element a € K, determined by (1). Then there exist
invertible matrices U € GL(n,Z) and VA, VB € GL(n,K) such that

it 0 ... 0 u 0 ... 0

A Byl w0
pavA = || e . uBvE= | R e

tand topd o thuf thuf o ouf
where

th=0 if pi=p,

A . .. . .
E(t‘{‘j)<E<%> if ,u‘{‘;éuf and tfj#o, ih,j=1,...,n, 1 > j;

th=0 i pf=pnf,

B . .o . .
E(tf;)<E<%> if ,uf;éuf? and tf;;éo, ,j=1,...,m, i>j.
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