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Estimates for the number of vertices with an interval

spectrum in proper edge colorings of some graphs

R.R.Kamalian

Abstract. For an undirected, simple, finite, connected graph G, we denote by V (G)
and E(G) the sets of its vertices and edges, respectively. A function ϕ : E(G) →
{1, 2, . . . , t} is called a proper edge t-coloring of a graph G if all colors are used
and no two adjacent edges receive the same color. An arbitrary nonempty subset of
consecutive integers is called an interval. The set of all proper edge t-colorings of G

is denoted by α(G, t). The minimum value of t for which there exists a proper edge
t-coloring of a graph G is denoted by χ′(G). Let

α(G) ≡

|E(G)|
⋃

t=χ′(G)

α(G, t).

If G is a graph, ϕ ∈ α(G), x ∈ V (G), then the set of colors of edges of G incident
with x is called a spectrum of the vertex x in the coloring ϕ of the graph G and
is denoted by SG(x, ϕ). If ϕ ∈ α(G) and x ∈ V (G), then we say that ϕ is interval
(persistent-interval) for x if SG(x,ϕ) is an interval (an interval with 1 as its minimum
element). For an arbitrary graph G and any ϕ ∈ α(G), we denote by fG,i(ϕ)(fG,pi(ϕ))
the number of vertices of the graph G for which ϕ is interval (persistent-interval). For
any graph G, let us set

ηi(G) ≡ max
ϕ∈α(G)

fG,i(ϕ), ηpi(G) ≡ max
ϕ∈α(G)

fG,pi(ϕ).

For graphs G from some classes of graphs, we obtain lower bounds for the parameters
ηi(G) and ηpi(G).

Mathematics subject classification: 05C15.
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1 Introduction

We consider undirected, simple, finite, connected graphs. For a graph G, we
denote by V (G) and E(G) the sets of its vertices and edges, respectively. For any
x ∈ V (G), dG(x) denotes the degree of the vertex x in G. For a graph G, we denote
by ∆(G) the maximum degree of a vertex of G. A function ϕ : E(G) → {1, 2, . . . , t}
is called a proper edge t-coloring of a graph G if all colors are used and no two
adjacent edges receive the same color. The set of all proper edge t-colorings of G
is denoted by α(G, t). The minimum value of t for which there exists a proper edge
t-coloring of a graph G is called a chromatic index [22] of G and is denoted by χ′(G).
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Let us also define the set α(G) of all proper edge colorings of the graph G

α(G) ≡

|E(G)|
⋃

t=χ′(G)

α(G, t).

If G is a graph, ϕ ∈ α(G), x ∈ V (G), then the set of colors of edges of G incident
with x is called a spectrum of the vertex x in the coloring ϕ of the graph G and is
denoted by SG(x, ϕ).

An arbitrary nonempty subset of consecutive integers is called an interval. An
interval with the minimum element p and the maximum element q is denoted by
[p, q]. An interval D is called an h-interval if |D| = h.

For any real number ξ, we denote by ⌊ξ⌋ (⌈ξ⌉) the maximum (minimum) integer
which is less (greater) than or equal to ξ.

If G is a graph, ϕ ∈ α(G), and x ∈ V (G), then we say that ϕ is interval
(persistent-interval) for x if SG(x, ϕ) is a dG(x)-interval (a dG(x)-interval with 1 as
its minimum element). For an arbitrary graph G and any ϕ ∈ α(G), we denote
by fG,i(ϕ)(fG,pi(ϕ)) the number of vertices of the graph G for which ϕ is interval
(persistent-interval). For any graph G, let us [17] set

ηi(G) ≡ max
ϕ∈α(G)

fG,i(ϕ), ηpi(G) ≡ max
ϕ∈α(G)

fG,pi(ϕ).

The terms and concepts that we do not define can be found in [23].
It is clear that if for any graph G ηpi(G) = |V (G)|, then χ′(G) = ∆(G). For a

regular graph G, these two conditions are equivalent: ηpi(G) = |V (G)| ⇔ χ′(G) =
∆(G). It is known [15, 19] that for a regular graph G, the problem of deciding
whether or not the equation χ′(G) = ∆(G) is true is NP -complete. It means
that for a regular graph G, the problem of deciding whether or not the equation
ηpi(G) = |V (G)| is true is also NP -complete. For any tree G, some necessary and
sufficient condition for fulfilment of the equation ηpi(G) = |V (G)| was obtained
in [8]. In this paper, for an arbitrary regular graph G, we obtain a lower bound for
the parameter ηpi(G).

If G is a graph, R0 ⊆ V (G), and the coloring ϕ ∈ α(G) is interval (persistent-
interval) for any x ∈ R0, then we say that ϕ is interval (persistent-interval)
on R0.

ϕ ∈ α(G) is called an interval coloring of a graph G if ϕ is interval on V (G).
We define the set N as the set of all graphs for which there is an interval coloring.

Clearly, for any graph G, G ∈ N if and only if ηi(G) = |V (G)|.
The notion of an interval coloring was introduced in [6]. In [6, 7, 16] it is shown

that if G ∈ N, then χ′(G) = ∆(G). For a regular graph G, these two conditions
are equivalent: G ∈ N ⇔ χ′(G) = ∆(G) [6, 7, 16]. Consequently, for a regular
graph G, four conditions are equivalent: G ∈ N, χ′(G) = ∆(G), ηi(G) = |V (G)|,
ηpi(G) = |V (G)|. It means that for any regular graph G,

1) the problem of deciding whether G has or not an interval coloring is
NP -complete,
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2) the problem of deciding whether the equation ηi(G) = |V (G)| is true or not
is NP -complete.

In this paper, for an arbitrary regular graph G, we obtain a lower bound for the
parameter ηi(G).

We also obtain some results for bipartite graphs. The complexity of the problem
of existence of an interval coloring for bipartite graphs is investigated in [3, 9, 21].
In [16] it is shown that for a bipartite graph G with bipartition (X,Y ) and ∆(G) = 3
the problem of existence of a proper edge 3-coloring which is persistent-interval on
X ∪ Y (or even only on Y [6, 16]) is NP -complete.

Suppose that G is an arbitrary bipartite graph with bipartition (X,Y ) [3]. Then
ηi(G) ≥ max{|X|, |Y |}.

Suppose that G is a bipartite graph with bipartition (X,Y ) for which there exists
a coloring ϕ ∈ α(G) persistent-interval on Y . Then ηpi(G) ≥ 1 + |Y |.

Some attention is paid to (α, β)-biregular bipartite graphs [4, 13, 14, 18] in the
case when |α− β| = 1.

We show that if G is a (k − 1, k)-biregular bipartite graph, k ≥ 4, then

ηi(G) ≥
k − 1

2k − 1
· |V (G)| +

⌈

k
⌈

k
2

⌉

· (2k − 1)
· |V (G)|

⌉

.

We show that if G is a (k − 1, k)-biregular bipartite graph, k ≥ 3, then

ηpi(G) ≥
k

2k − 1
· |V (G)|.

2 Results

Theorem 1 (see [17]). If G is a regular graph with χ′(G) = 1 + ∆(G), then

ηpi(G) ≥

⌈

|V (G)|

1 + ∆(G)

⌉

.

Proof. Suppose that β ∈ α(G, 1 + ∆(G)). For any j ∈ [1, 1 + ∆(G)], define

VG,β,j ≡ {x ∈ V (G)/j 6∈ SG(x, β)}.

For arbitrary integers j′, j′′, where 1 ≤ j′ < j′′ ≤ 1 + ∆(G), we have

VG,β,j′ ∩ VG,β,j′′ = ∅ and

1+∆(G)
⋃

j=1

VG,β,j = V (G).

Hence, there exists j0 ∈ [1, 1 + ∆(G)] for which

|VG,β,j0| ≥

⌈

|V (G)|

1 + ∆(G)

⌉

.
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Set R0 ≡ VG,β,j0.
Case 1 . j0 = 1 + ∆(G).
Clearly, β is persistent-interval on R0.
Case 2 . j0 ∈ [1,∆(G)].
Define a function ϕ : E(G) → [1, 1 + ∆(G)]. For any e ∈ E(G), set:

ϕ(e) ≡







β(e) if β(e) 6∈ {j0, 1 + ∆(G)},
j0 if β(e) = 1 + ∆(G),
1 + ∆(G) if β(e) = j0.

It is not difficult to see that ϕ ∈ α(G, 1 + ∆(G)) and ϕ is persistent-interval
on R0.

Corollary 1 (see [17]). If G is a cubic graph, then there exists a coloring from

α(G,χ′(G)) which is persistent-interval for at least
⌈

|V (G)|
4

⌉

vertices of G.

Theorem 2 (see [17]). If G is a regular graph with χ′(G) = 1 + ∆(G), then

ηi(G) ≥

⌈

|V (G)|
⌈1+∆(G)

2

⌉

⌉

.

Proof. Suppose that β ∈ α(G, 1 + ∆(G)). For any j ∈ [1, 1 + ∆(G)], define

VG,β,j ≡ {x ∈ V (G)/j 6∈ SG(x, β)}.

For arbitrary integers j′, j′′, where 1 ≤ j′ < j′′ ≤ 1 + ∆(G), we have

VG,β,j′ ∩ VG,β,j′′ = ∅ and

1+∆(G)
⋃

j=1

VG,β,j = V (G).

For any i ∈ [1,
⌈ 1+∆(G)

2

⌉

], let us define the subset V (G,β, i) of the set V (G) as
follows:

V (G,β, i) ≡











VG,β,2i−1 ∪ VG,β,2i if ∆(G) is odd and i ∈ [1, 1+∆(G)
2 ]

or ∆(G) is even and i ∈ [1, ∆(G)
2 ],

VG,β,1+∆(G) if ∆(G) is even and i = 1 + ∆(G)
2 .

For arbitrary integers i′, i′′, where 1 ≤ i′ < i′′ ≤
⌈1+∆(G)

2

⌉

, we have

V (G,β, i′) ∩ V (G,β, i′′) = ∅ and

⌈

1+∆(G)
2

⌉

⋃

i=1

V (G,β, i) = V (G).

Hence, there exists i0 ∈
[

1,
⌈1+∆(G)

2

⌉]

for which

|V (G,β, i0)| ≥

⌈

|V (G)|
⌈1+∆(G)

2

⌉

⌉

.
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Set R0 ≡ V (G,β, i0).

Case 1 . i0 =
⌈1+∆(G)

2

⌉

.

Case 1 .a. ∆(G) is even.

Clearly, β is interval on R0.

Case 1 .b. ∆(G) is odd.

Define a function ϕ : E(G) → [1, 1 + ∆(G)]. For any e ∈ E(G), set:

ϕ(e) ≡

{

(β(e) + 1)(mod(1 + ∆(G))) if β(e) 6= ∆(G),
1 + ∆(G) if β(e) = ∆(G).

It is not difficult to see that ϕ ∈ α(G, 1 + ∆(G)) and ϕ is interval on R0.

Case 2 . 1 ≤ i0 ≤
⌈∆(G)−1

2

⌉

.

Define a function ϕ : E(G) → [1, 1 + ∆(G)]. For any e ∈ E(G), set:

ϕ(e) ≡

{

(β(e) + 2 + ∆(G) − 2i0)(mod(1 + ∆(G))) if β(e) 6= 2i0 − 1,
1 + ∆(G) if β(e) = 2i0 − 1.

It is not difficult to see that ϕ ∈ α(G, 1 + ∆(G)) and ϕ is interval on R0.

Corollary 2 (see [17]). If G is a cubic graph, then there exists a coloring from

α(G,χ′(G)) which is interval for at least
|V (G)|

2 vertices of G.

Theorem 3 (see [6,7,16]). Let G be a bipartite graph with bipartition (X,Y ). Then

there exists a coloring ϕ ∈ α(G, |E(G)|) which is interval on X.

Corollary 3. Let G be a bipartite graph with bipartition (X,Y ). Then ηi(G) ≥
max{|X|, |Y |}.

Theorem 4 (see [1, 6, 7]). Let G be a bipartite graph with bipartition (X,Y ) where

dG(x) ≤ dG(y) for each edge (x, y) ∈ E(G) with x ∈ X and y ∈ Y . Then there

exists a coloring ϕ0 ∈ α(G,∆(G)) which is persistent-interval on Y .

Theorem 5. Suppose G is a bipartite graph with bipartition (X,Y ), and there exists

a coloring ϕ0 ∈ α(G,∆(G)) which is persistent-interval on Y . Then, for an arbitrary

vertex x0 ∈ X, there exists ψ ∈ α(G,∆(G)) which is persistent-interval on {x0}∪Y .

Proof. Case 1 . SG(x0, ϕ0) = [1, dG(x0)]. In this case ψ is ϕ0.

Case 2 . SG(x0, ϕ0) 6= [1, dG(x0)].

Clearly, [1, dG(x0)]\SG(x0, ϕ0) 6= ∅, SG(x0, ϕ0)\[1, dG(x0)] 6= ∅. Since |SG(x0, ϕ0)|
= |[1, dG(x0)]| = dG(x0), there exists ν0 ∈ [1, dG(x0)] satisfying the condition
|[1, dG(x0)]\SG(x0, ϕ0)| = |SG(x0, ϕ0)\[1, dG(x0)]| = ν0.

Now let us construct the sequence Θ0,Θ1, . . . ,Θν0 of proper edge ∆(G)-colorings
of the graph G, where for any i ∈ [0, ν0], Θi is persistent-interval on Y .

Set Θ0 ≡ ϕ0.

Suppose that for some k ∈ [0, ν0 − 1], the subsequence Θ0,Θ1, . . . ,Θk is already
constructed.
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Let

tk ≡ max(SG(x0,Θk)\[1, dG(x0)]),

sk ≡ min([1, dG(x0)]\SG(x0,Θk)).

Clearly, tk > sk. Consider the path P (k) in the graph G of maximum length
with the initial vertex x0 whose edges are alternatively colored by the colors tk and
sk. Let Θk+1 be obtained from Θk by interchanging the two colors tk and sk along
P (k).

It is not difficult to see that Θν0 is persistent-interval on {x0} ∪ Y . Set
ψ ≡ Θν0 .

Corollary 4. Let G be a bipartite graph with bipartition (X,Y ) where dG(x) ≤ dG(y)
for each edge (x, y) ∈ E(G) with x ∈ X and y ∈ Y . Let x0 be an arbitrary vertex

of X. Then there exists a coloring ϕ0 ∈ α(G,∆(G)) which is persistent-interval on

{x0} ∪ Y .

Corollary 5 (see [17]). Let G be a bipartite graph with bipartition (X,Y ) where

dG(x) ≤ dG(y) for each edge (x, y) ∈ E(G) with x ∈ X and y ∈ Y . Then ηpi(G) ≥
1 + |Y |.

Remark 1. Notice that the complete bipartite graph Kn+1,n for an arbitrary posi-
tive integer n satisfies the conditions of Corollary 5. Is is not difficult to see that
ηpi(Kn+1,n) = 1 +n. It means that the bound obtained in Corollary 5 is sharp since
in this case |Y | = n.

Remark 2. Let G be a bipartite (k − 1, k)-biregular graph with bipartition (X,Y ),
where k ≥ 3. Assume that all vertices in X have the degree k− 1 and all vertices in
Y have the degree k. Then the numbers |X|

k
, |Y |

k−1 , and |V (G)|
2k−1 are integer. It follows

from the equalities gcd(k − 1, k) = 1 and |E(G)| = |X| · (k − 1) = |Y | · k.

Theorem 6 (see [17]). Let G be a bipartite (k − 1, k)-biregular graph, where k ≥ 4.
Then

ηi(G) ≥
k − 1

2k − 1
· |V (G)| +

⌈

k
⌈

k
2

⌉

· (2k − 1)
· |V (G)|

⌉

.

Proof. Suppose that (X,Y ) is a bipartition of G. Without loss of generality we
assume that all vertices in X have the degree k − 1 and all vertices in Y have the
degree k. Clearly, χ′(G) = ∆(G) = k. Suppose that β ∈ α(G, k). For any j ∈ [1, k],
define:

VG,β,j ≡ {x ∈ X/j 6∈ SG(x, β)}.

For arbitrary integers j′, j′′, where 1 ≤ j′ < j′′ ≤ k, we have

VG,β,j′ ∩ VG,β,j′′ = ∅ and

k
⋃

j=1

VG,β,j = X.
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For any i ∈ [1, ⌈k
2 ⌉], let us define the subset V (G,β, i) of the set X as follows:

V (G,β, i) ≡







VG,β,2i−1 ∪ VG,β,2i if k is odd and i ∈ [1, k−1
2 ]

or k is even and i ∈ [1, k
2 ],

VG,β,k if k is odd and i = 1+k
2 .

For arbitrary integers i′, i′′, where 1 ≤ i′ < i′′ ≤
⌈

k
2

⌉

, we have

V (G,β, i′) ∩ V (G,β, i′′) = ∅ and

⌈

k
2

⌉

⋃

i=1

V (G,β, i) = X.

Hence, there exists i0 ∈
[

1,
⌈

k
2

⌉]

for which

|V (G,β, i0)| ≥

⌈

|X|
⌈

k
2

⌉

⌉

.

Set R0 ≡ Y ∪ V (G,β, i0).

It is not difficult to verify that

|R0| ≥
k − 1

2k − 1
· |V (G)| +

⌈

k
⌈

k
2

⌉

· (2k − 1)
· |V (G)|

⌉

.

Case 1 . i0 =
⌈

k
2

⌉

.

Case 1 .a. k is odd.

Clearly, β is interval on R0.

Case 1 .b. k is even.

Define a function ϕ : E(G) → [1, k]. For any e ∈ E(G), set:

ϕ(e) ≡

{

(β(e) + 1)(modk) if β(e) 6= k − 1,
k if β(e) = k − 1.

It is not difficult to see that ϕ ∈ α(G, k) and ϕ is interval on R0.

Case 2 . i0 ∈
[

1,
⌈

k
2

⌉

− 1
]

.

Define a function ϕ : E(G) → [1, k]. For any e ∈ E(G), set:

ϕ(e) ≡

{

(β(e) + 1 + k − 2i0)(modk) if β(e) 6= 2i0 − 1,
k if β(e) = 2i0 − 1.

It is not difficult to see that ϕ ∈ α(G, k) and ϕ is interval on R0.

Corollary 6 (see [17]). Let G be a bipartite (k − 1, k)-biregular graph, where k is

even and k ≥ 4. Then

ηi(G) ≥
k + 1

2k − 1
· |V (G)|.



10 R.R.KAMALIAN

Corollary 7 (see [17]). Let G be a bipartite (3, 4)-biregular graph. Then there exists

a coloring from α(G, 4) which is interval for at least 5
7 |V (G)| vertices of G.

Remark 3. For an arbitrary bipartite graphG with ∆(G) ≤ 3, there exists an interval
coloring of G [10–12]. Consequently, if G is a bipartite (2, 3)-biregular graph, then
ηi(G) = |V (G)|.

Remark 4. Some sufficient conditions for existence of an interval coloring of a (3, 4)-
biregular bipartite graph were obtained in [2, 5, 20].

Theorem 7 (see [17]). Let G be a bipartite (k − 1, k)-biregular graph, where k ≥ 3.
Then

ηpi(G) ≥
k

2k − 1
· |V (G)|.

Proof. Suppose that (X,Y ) is a bipartition of G. Without loss of generality we
assume that all vertices in X have the degree k − 1 and all vertices in Y have the
degree k. Clearly, χ′(G) = ∆(G) = k. Suppose that β ∈ α(G, k).

For any j ∈ [1, k], define:

VG,β,j ≡ {x ∈ X/j 6∈ SG(x, β)}.

For arbitrary integers j′, j′′, where 1 ≤ j′ < j′′ ≤ k, we have

VG,β,j′ ∩ VG,β,j′′ = ∅ and

k
⋃

j=1

VG,β,j = X.

Hence, there exists j0 ∈ [1, k] for which

|VG,β,j0| ≥
|X|

k
.

Set R0 ≡ Y ∪ VG,β,j0.

It is not difficult to verify that

|R0| ≥
k

2k − 1
· |V (G)|.

Case 1 . j0 = k.

Clearly, β is persistent-interval on R0.
Case 2 . j0 ∈ [1, k − 1].

Define a function ϕ : E(G) → [1, k]. For any e ∈ E(G), set:

ϕ(e) ≡







β(e) if β(e) 6∈ {j0, k},
j0 if β(e) = k,
k if β(e) = j0.

It is not difficult to see that ϕ ∈ α(G, k) and ϕ is persistent-interval on R0.
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Corollary 8 (see [17]). Let G be a bipartite (3, 4)-biregular graph. Then there exists

a coloring from α(G, 4) which is persistent-interval for at least 4
7 |V (G)| vertices

of G.
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