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Closure operators in the categories of modules.

Part IV (Relations between the operators
and preradicals)

A. I.Kashu

Abstract. In this work (which is a continuation of [1–3]) the relations between
the class CO of the closure operators of a module category R-Mod and the class PR

of preradicals of this category are investigated. The transition from CO to PR and
backwards is defined by three mappings Φ : CO → PR and Ψ1, Ψ2 : CO → PR. The
properties of these mappings are studied.

Some monotone bijections are obtained between the preradicals of different types
(idempotent, radical, hereditary, cohereditary, etc.) of PR and the closure operators
of CO with special properties (weakly hereditary, idempotent, hereditary, maximal,
minimal, cohereditary, etc.).

Mathematics subject classification: 16D90, 16S90, 06B23.
Keywords and phrases: ring, module, closure operator, preradical, torsion, radical
filter, idempotent ideal.

1 Introduction. Preliminary notions and results

The purpose of this work is the investigation of the relations between the pre-
radicals of the module category R-Mod and the closure operators of this category.
For that three known mappings are used, which provide the connection between the
closure operators and preradicals of R-Mod. We will study the properties of these
mappings for different classes of preradicals and of closure operators of R-Mod.

This article is a continuation of [1–3], where the necessary notions are indicated.
Nevertheless, for completeness and independence of this part, we would remind
shortly the main notions and results which are used in continuation.

Let R be a ring with unity and R-Mod be the category of unitary left R-modules.
For every module M ∈ R-Mod we denote by L(M) the lattice of submodules of M .

A preradical of R-Mod is a subfunctor r of the identity functor of R-Mod, i.e.
r(M) ⊆ M for every M ∈ R-Mod and f

(

r(M)
)

⊆ r(M ′) for every R-morphism
f : M → M ′. We denote by PR the class of all preradicals of the category R-Mod.
We remind the principal types of preradicals [4–6]. The preradical r ∈ PR is called:

– idempotent if r
(

r(M)
)

= r(M) for every M ∈ R-Mod;

– radical if r
(

M/r(M)
)

= O for every M ∈ R-Mod;

– hereditary (pretorsion) if r(N) = r(M) ∩ N for every N ⊆ M ;

– cohereditary if r(M/N) =
(

r(M) + N
)

/N for every N ⊆ M ;
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– torsion if it is a hereditary radical;
– cotorsion if it is idempotent and cohereditary.
It is well known that some types of preradicals of R-Mod can be characterized by

special ring constructions, such as preradical filters (i.e. linear topologies), radical
filters, ideals, idempotent ideals, etc. (see [4–6]). Some results of such type are
included in the following statement.

Proposition 1.1. There exist the bijections between:

1) the pretorsions of R-Mod and preradical filters of R;

2) the torsions of R-Mod and radical filters of R;

3) the cohereditary preradicals of R-Mod and ideals of R;

4) the cotorsions of R-Mod and idempotent ideals of R;

5) the hereditary and cohereditary preradicals of R-Mod and still ideals of R,

i.e. the ideals with the condition (a) : a ∈ Ia for every a ∈ I (see [4], p. 12;
[5], p. 467). �

A closure operator of R-Mod is a mapping C which associates to every pair
N ⊆ M , where N ∈ L(M), a submodule of M denoted by CM (N) which satisfies
the conditions:

(c1) N ⊆ CM (N);

(c2) if N1 ⊆ N2 for N1, N2 ∈ L(M), then CM (N1) ⊆ CM (N2) (the monotony);

(c3) for every R-morphism f : M → M ′ and N ∈ L(M) we have

f
(

CM (N)
)

⊆ CM ′(N)
(

f(M)
)

(the continuity) [6–9].

We denote by CO the class of all closure operators of R-Mod.
A closure operator C ∈ CO is called:

– weakly hereditary if CCM (N)(N) = CM (N) for every N ⊆ M ;

– idempotent if CM

(

CM (N)
)

= CM (N) for every N ⊆ M ;

– hereditary if CN (L) = CM (L) ∩ N for every L ⊆ N ⊆ M ;

– cohereditary if
(

CM (N) + K
)

/K = CM/K

(

(N + K)/K
)

for every
K,N ∈ L(M);

– maximal if CM (N)/N = CM/N (0̄) for every N ⊆ M (or: CM (N)/K =
= CM/K(N/K) for every K ⊆ N ⊆ M);

– minimal if CM (N) = CM (O)+N for every N ⊆ M (or: CM (N) = CM (L)+N
for every L ⊆ N ⊆ M).

The investigations of the present work are based on the following mappings
between the classes CO and PR [7–9]:

1) Φ : CO → PR, where we denote Φ(C) = r
C
, for every C ∈ CO, and define:

r
C
(M) = CM (O) (1.1)

for every M ∈ R-Mod;
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2) Ψ1 : PR → CO, where Ψ1(r) = C r for every r ∈ PR and

[(C r)M (N)]/N = r(M/N) (1.2)

for every N ⊆ M ;

3) Ψ2 : PR → CO, where Ψ2(r) = Cr for every r ∈ PR and

(Cr)M (N) = N + r(M) (1.3)

for every N ⊆ M .

Proposition 1.2. (See [7, 8]). Let r ∈ PR. Then:

a) Φ(C r) = r and C r is the largest closure operator C ∈ CO with the property

Φ(C) = r;

b) Φ(Cr) = r and Cr is the least closure operator C ∈ CO with the property

Φ(C) = r. �

Let r ∈ PR. Then for the closure operator C ∈ CO we have:

Φ(C) = r ⇔ Cr ≤ C ≤ C r (i.e. Φ−1(r) = [Cr, C
r]).

The closure operators of the from C r, where r ∈ PR, are exactly the maximal

closure operators and, similarly, the closure operators of the form Cr coincide with
the minimal closure operators of R-Mod. We denote by Max(CO) the class of all
maximal closure operators of R-Mod, and by Min(CO) the class of all minimal
closure operators of R-Mod.

For every closure operator C ∈ CO we have the maximal closure operator C r
C

associated to C, as well as the associated minimal closure operator Cr
C
. The previ-

ous facts in other form can be expressed as follows. In the class CO we define the
binary relation by the rule:

C ∼ D ⇔ Φ(C) = Φ(D) (i.e. r
C

= r
D
).

Then we obtain an equivalence in CO such that every closure operator C ∈ CO

defines the equivalence class [Cr, C
r]. If we denote by CO / ∼ the family of equiv-

alence classes of CO, then it is clear that PR ∼= CO / ∼ .

The following statements in continuation will serve as starting point of our in-
vestigation [7–9].

Proposition 1.3. The mappings (Φ,Ψ1) define a monotone bijection between the

maximal closure operators of CO and preradicals of R-Mod: Max(CO) ∼= PR. �

Proposition 1.4. The mappings (Φ,Ψ2) define a monotone bijection between the

minimal closure operators of CO and preradicals of R-Mod: Min(CO) ∼= PR. �
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2 The mappings (Φ, Ψ1) and their effects

The restriction of the bijection of Proposition 1.3, defined by the mappings
(Φ,Ψ1), leads to some new monotone bijections which connect the closure oper-
ators of special types of Max(CO) with the preradicals of PR which possess the
respective properties.

We begin with a preliminary statement which shows the relations between some
properties of the closure operators of R-Mod ([2], Lemmas 5.2 and 6.2).

Lemma 2.1. Every minimal closure operator is idempotent. The closure operator

C ∈ CO is cohereditary if and only if it is maximal and minimal. �

Remark. If the closure operator C ∈ CO is cohereditary, then for the respective
preradical r = r

C
we have C r = Cr, therefore the corresponding equivalence class

of CO consists of only one element. Obviously, the condition C r = Cr means that
this closure operator is cohereditary.

In continuation we consider the monotone bijection of Proposition 1.3, defined
by Φ and Ψ1, analyzing its effect on some important classes of closure operators and
of preradicals.

Proposition 2.2. If the closure operator C ∈ CO is weakly hereditary, then

the preradical Φ(C) = r
C

is idempotent. If the preradical r ∈ PR is idempotent,

then the associated maximal closure operator C r is weakly hereditary. Therefore the

mappings (Φ,Ψ1) define a monotone bijection between the maximal weakly hereditary

closure operators of CO and idempotent preradicals of R-Mod.

Proof. Let C ∈ CO be a weakly hereditary closure operator. Then CCM (O)(O) =
CM (O) for every module M ∈ R-Mod, therefore

r
C

(

r
C
(M)

)

= r
C

(

CM (O)
)

= CC
M

(O)(O) = CM (O) = r
C
(M),

i.e. r
C

is an idempotent preradical.

Conversely, let r ∈ PR be an idempotent preradical. Then the associated max-
imal closure operator Ψ1(r) = C r, defined by the rule [(C r)M (N)]/N = r(M/N)
for every N ⊆ M , possesses the property:

[(C r)(C r)
M

(N)(N)] /N = r
[(

(C r)M (N)
)

/ N
]

=

= r
(

r(M/N)
)

= r(M/N) = [(C r)M (N)] /N.

Therefore (C r)(C r)
M

(N)(N) = (C r)M (N) for every N ⊆ M , which means
that the operator C r is weakly hereditary. The last statement now follows from
Proposition 1.3.

Corollary 2.3. If the closure operator C ∈ CO is weakly hereditary, then the

associated maximal closure operator C r
C also is weakly hereditary.
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With the intention to study the closure operators of CO which correspond to
radicals of R-Mod, we introduce the following notion.

Definition 2.1. The closure operator C ∈ CO will be called zero-idempotent if
CM

(

CM (O)
)

= CM (O) for every M ∈ R-Mod.

Proposition 2.4. If r is a radical of PR, then the associated maximal closure

operator C r is zero-idempotent. If the operator C ∈ CO is maximal and zero-

idempotent, then the corresponding preradical Φ(C) = r
C

is a radical. Therefore the

mappings (Φ,Ψ1) define a monotone bijection between the radicals of R-Mod and

the maximal zero-idempotent closure operators of CO.

Proof. Let r be a radical of PR and C r be the corresponding maximal closure
operator, i.e. [(C r)M (N)]/N = r(M/N) for every N ⊆ M . If N = r(M),
then

[

(C r)M
(

r(M)
)]

/ r(M) = r
(

M/r(M)
)

= 0̄, since r is a radical. But
r(M) = (C r)M (O), and so

[

(C r)M
(

(C r)M (O)
)]

/ [(C r)M (O)] = 0̄,

therefore (C r)M
(

(C r)M (O)
)

= (C r)M (O), which means that C r is a zero-
idempotent closure operator.

Let now C be an arbitrary maximal zero-idempotent closure operator of CO.
Then CM

(

CM (O)
)

= CM (O) for every M ∈ R-Mod, i.e. CM

(

r
C
(M)

)

= r
C
(M) and

CM

(

r
C
(M)

)

/ r
C
(M) = 0̄.

From the other hand, since C is maximal, by definition
[

CM

(

r
C
(M)

)]

/r
C
(M) =

CM/r
C

(M)(0̄). Therefore CM/r
C

(M)(0̄) = 0̄, i.e. r
C

(

M/r
C
(M)

)

= 0̄, which means that
r
C

is a radical.

The proof is finished by the application of Proposition 1.3.

Corollary 2.5. If the operator C ∈ CO is maximal and idempotent, then Φ(C) = r
C

is a radical of R-Mod.

Combining Propositions 2.2 and 2.4 we obtain

Corollary 2.6. The mappings (Φ,Ψ1) define a monotone bijection between the

idempotent radicals of R-Mod and the maximal, weakly hereditary, zero-idempotent

closure operators of CO.

Now we will show the closure operators of CO which correspond to hereditary
preradicals (pretorsions) of R-Mod.

Proposition 2.7. If the closure operator C ∈ CO is hereditary, then the pre-

radical Φ(C) = r
C

is hereditary. If r ∈ PR is a hereditary preradical (pretorsion)
of R-Mod, then the associated maximal closure operator Ψ1(r) = C r is hereditary.

Therefore the mappings (Φ,Ψ1) define a monotone bijection between the pretorsions

of R-Mod and the maximal hereditary closure operators of CO.
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Proof. Let C ∈ CO be a hereditary closure operator. Then in the sitution
L ⊆ N ⊆ M we have CN (L) = CM (L) ∩ N . For L = O we obtain CN (O) =
CM (O)∩ N , i.e. r

C
(N) = r

C
(M) ∩N , which means that the preradical r

C
is hered-

itary.
Conversely, let r be a hereditary preradical of R-Mod, i.e. r(N) = r(M) ∩ N

for every N ⊆ M . In the situation L ⊆ N ⊆ M by heredity of r we have:
[(

(C r)M (L)
)

∩ N
]

/L =
[(

(C r)M (L)
)

/L] ∩ (N/L) =

= [r(M/L)] ∩ (N/L) = r(N/L) = [(C r)N (L)] /L.

Therefore [(C r)M (L)] ∩ N = (C r)N (L), i. e. the operator C r is hereditary.

Corollary 2.8. If the closure operator C ∈ CO is hereditary, then the associated

maximal closure operator C r
C also is hereditary.

Taking into account the description of hereditary preradicals by the preradical
filters of R

(

Proposition 1.1, 1)
)

, from Proposition 2.7 follows

Corollary 2.9. There exists a bijection between the preradical filters of the ring R
and the maximal hereditary closure operators of CO.

More concretely, if E is a preradical filter of R (see [6]), then it defines a pretorsion
r
E

in R-Mod by the rule:

r
E
(M) = {m ∈ M | (0 : m) ∈ E},

for every M ∈ R-Mod. The corresponding maximal closure operator C
r
E is

defined as
(C

r
E)M (N) = {m ∈ M | (N : m) ∈ E}

for every N ⊆ M , where (N : m) = {a ∈ R | am ∈ N}.
From the other hand, if C is a maximal hereditary closure operator of CO, then

the associated preradical filter is F1(RR) = {I ∈ L(RR) | CR(I) = R}, i. e. the set
of C-dense left ideals of R.

A very important type of preradicals of R-Mod are the torsions of this category
and now we will indicate the closure operators of CO which correspond to the
torsions of R-Mod. Since the torsions are hereditary radicals, the result follows by
combining Propositions 2.4 and 2.7.

Corollary 2.10. The mappings (Φ,Ψ1) define a monotone bijection between the

torsions of R-Mod and maximal, zero-idempotent, hereditary closure operators

of CO.

The torsions of R-Mod are described by the radical filters of the ring R
(

Proposition 1.1, 2)
)

, therefore is true

Corollary 2.11. There exists a bijection between the radical filters of the ring R
and the maximal, zero-idempotent, hereditary closure operators of CO.

The cases related to the cohereditary preradicals are considered in the following
section, since for such preradicals the mappings Ψ1 and Ψ2 coincide.
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3 The mappings (Φ, Ψ2) and their effects

Now we will study the relations between the classes CO and PR , defined
by the mappings Φ : CO → PR and Ψ2 : PR → CO, where Ψ2(r) = Cr and
(Cr)M (N) = N+r(M). Every minimal closure operator is idempotent (Lemma 2.1).
By Proposition 1.4 we have the monotone bijection Min(CO) ∼= PR defined by
(Φ,Ψ2). We will restrict this bijection, considering various types of preradicals and
showing properties of the corresponding closure operators.

We begin with the idempotent preradicals of R-Mod. Firstly we remind that by
Proposition 2.2 if C ∈ CO is weakly hereditary, then the preradical Φ(C) = r

C
is

idempotent. Now we verify the inverse transition: from r ∈ PR to Ψ2(r) = Cr.

Proposition 3.1. Let r ∈ PR be an idempotent preradical of R-Mod. Then the

associated minimal closure operator Ψ2(r) = Cr is weakly hereditary. Therefore the

mappings (Φ,Ψ2) define a monotone bijection between the idempotent preradicals of

R-Mod and the minimal weakly hereditary closure operators of CO.

Proof. If a preradical r ∈ PR is idempotent and N ⊆ M , then r
(

r(M)
)

= r(M) and
by definitions we have:

(Cr)(Cr)
M

(N)(N) = N + r[(Cr)M (N)] =

= N + r
(

N + r(M)
)

⊇ N + r
(

r(M)
)

= N + r(M) = (Cr)M (N).

Therefore (Cr)(Cr)
M

(N)(N) ⊇ (Cr)M (N), and the inverse inclusion follows from the

monotony of Cr, since (Cr)M (N) ⊆ M . So we have (Cr)(Cr)
M

(N)(N) = (Cr)M (N),
i.e. the minimal closure operator Cr is weakly hereditary.

Taking into account the first statement of Proposition 2.2, from Proposition 1.4
now we obtain the indicated monotone bijection.

Corollary 3.2. If the closure operator C ∈ CO is weakly hereditary, then the asso-

ciated minimal closure operator Cr
C

also is weakly hereditary.

We consider in continuation the radicals of R-Mod and look for the effect of the
mapping Ψ2 on the preradicals of such type. For that we need the following notion.

Definition 3.1. An operator C ∈ CO will be called zero-radical closure operator
if CM/CM (O)(0̄) = 0̄ for every M ∈ R-Mod.

Proposition 3.3. If r ∈ PR is a radical of R-Mod, then the associated minimal

closure operator Ψ2(r) = Cr is a zero-radical operator. If C ∈ CO is a zero-radical

operator, then Φ(C) = r
C

is a radical. Therefore the mappings (Φ,Ψ2) define a

monotone bijection between the radicals of R-Mod and the minimal, zero-radical

closure operators of CO.

Proof. If r ∈ PR is a radical of R-Mod, then for every M ∈ R-Mod we have:

(Cr)M/ [(Cr)
M

(O)](0̄) = (Cr)M/ r(M)(0̄) = 0̄ + r
(

M/r(M)
)

= 0̄,

so Cr is a zero-radical closure operator.
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Conversely, if C ∈ CO is a zero-radical closure operator, then by definition
r
C

(

M/r
C
(M)

)

= CM/ CM (O)(0̄) = 0̄ for every M ∈ R-Mod, i.e. r
C

is a radical.
The conclusion of our statement now follows from Proposition 1.4.

Remark. If C ∈ CO is a zero-radical closure operator, then each operator of the
interval [Cr

C
, C r

C ] also is zero-radical, since the corresponding preradical coincides
with r

C
, which is a radical.

Combining Propositions 3.1 and 3.3 now we obtain

Corollary 3.4. The mappings (Φ,Ψ2) define a monotone bijection between the

idempotent radicals of R-Mod and the minimal, weakly hereditary, zero-radical

closure operators of CO.

The following step of our investigation is the consideration of the hereditary

preradicals (pretorsions) of R-Mod. We remind that if an operator C ∈ CO is
hereditary, then the preradical Φ(C) = r

C
is hereditary (Proposition 2.7).

Proposition 3.5. If a preradical r ∈ PR is hereditary, then the associated min-

imal closure operator Ψ2(r) = Cr is hereditary. Therefore the mappings (Φ,Ψ2)
define a monotone bijection between the hereditery preradicals (pretorsions) of

R-Mod and the minimal hereditary closure operators of CO.

Proof. Let r ∈ PR be a hereditary preradical of R-Mod. Then in the situation
L ⊆ N ⊆ M by definition we have:

(Cr)N (L) = L + (Cr)N (O) = L + r(N), (Cr)M (L) = L + (Cr)M (O) = L + r(M).

By the modularity of L(M) and the inclusion L ⊆ N , we obtain:

(

L + r(M)
)

∩ N = L +
(

r(M) ∩ N
)

,

and by the heredity of r we have r(M) ∩ N = r(N). Therefore

[(Cr)M (L)] ∩ N =
(

L + r(M)
)

∩ N = L +
(

r(M) ∩ N
)

= L + r(N) = (Cr)N (L),

hence the closure operator Cr is hereditary.
The conclusion of our statement now follows from Propositions 2.7 and 1.4.

Corollary 3.6. If the closure operator C ∈ CO is hereditary, then the associated

minimal closure operator Cr
C

also is hereditary.

Using Proposition 1.1, 1), now from Proposition 3.5 follows

Corollary 3.7. There exist a bijection between the preradical filters of the ring

R and the minimal hereditary closure operators of CO.

Similarly, from Proposition 1.1, 2), using Propositions 3.3 and 3.5, we obtain
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Corollary 3.8. There exists a bijection between the radical filters of the ring

R (i.e. the torsions of R-Mod) and the minimal, zero-radical, hereditary closure

operators of CO.

In continuation we consider the similar questions for the cohereditary preradicals

of R-Mod. As was mentioned above, for such preradicals the mappings Ψ1 and Ψ2

coincide.

Proposition 3.9. If r is a cohereditary preradical of R-Mod, then Ψ1(r) = Ψ2(r)
(i.e. C r = Cr) and this closure operator is cohereditary. If C ∈ CO is a cohereditary

closure operator (i.e. is maximal and minimal), then the preradical Φ(C) = r
C

is cohereditary. Therefore the mappings (Φ,Ψ1)
(

or (Φ,Ψ2)
)

define a monotone

bijection between the cohereditary preradicals of R-Mod and the cohereditary closure

operators of CO.

Proof. If a preradical r ∈ PR is cohereditary, then by the definition of C r we have:

[(C r)M (N)] /N = r(M/N) =
(

r(M) + N
)

/N,

hence (C r)M (N) = r(M) + N = (Cr)M (N) for every N ⊆ M , and so C r = Cr.
Since this closure operator is maximal and minimal, it is cohereditary (Lemma 2.1).

Conversely, if C ∈ CO is a cohereditary closure operator, then by the maximality
of C we have r

C
(M/N) = CM/N (0̄) = CM (N)/N . Further, from the minimality of

C it follows that CM (O) + N = CM (N), therefore

(

r
C
(M) + N

)

/N =
(

CM (O) + N
)

/N = CM (N)/N

for every N ⊆ M . From the foregoing now follows that r
C
(M/N) =

(

r
C
(M)+N

)

/N ,
i.e. the preradical r

C
is cohereditary.

Applying Proposition 1.3 (or 1.4) now we obtain the announced bijection.

Using Proposition 1.1, 3), we have

Corollary 3.10. There exists a bijection between the ideals of the ring R and the

cohereditary closure operators of CO.

The case of cotorsions of R-Mod is reduced to the combination of Proposition 3.9
with Proposition 2.2 (or 3.1), which give

Corollary 3.11. The mappings (Φ,Ψ1)
(

or (Φ,Ψ2)
)

define a monotone bijection

between the cotorsions of R-Mod and weakly hereditary, cohereditary closure ope-

rators of CO.

The description of cotorsions of R-Mod by idempotent ideals of R
(

Propositi-
on 1.1, 4)

)

now implies

Corollary 3.12. There exists a bijection between the idempotent ideals of the

ring R and the weakly hereditary, cohereditary closure operators of CO.
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Finally, we consider the case of hereditary and cohereditary preradicals of R-Mod
(see Propositions 2.7 or 3.5, and 3.9).

Corollary 3.13. The mappings (Φ,Ψ1)
(

or (Φ,Ψ2)
)

define a monotone bijection

between the hereditary and cohereditary preradicals of R-Mod and the hereditary,

cohereditary closure operators of CO.

From Proposition 1.1, 5) now follows

Corollary 3.14. There exists a bijection between the still ideals of the ring R and

the hereditary, cohereditary closure operators of CO.
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