Closure operators in the categories of modules. Part IV (Relations between the operators and preradicals)

A.I.Kashu

Abstract. In this work (which is a continuation of [1–3]) the relations between the class \mathbb{CO} of the closure operators of a module category *R*-Mod and the class \mathbb{PR} of preradicals of this category are investigated. The transition from \mathbb{CO} to \mathbb{PR} and backwards is defined by three mappings $\Phi : \mathbb{CO} \to \mathbb{PR}$ and $\Psi_1, \Psi_2 : \mathbb{CO} \to \mathbb{PR}$. The properties of these mappings are studied.

Some monotone bijections are obtained between the preradicals of different types (idempotent, radical, hereditary, cohereditary, etc.) of \mathbb{PR} and the closure operators of \mathbb{CO} with special properties (weakly hereditary, idempotent, hereditary, maximal, minimal, cohereditary, etc.).

Mathematics subject classification: 16D90, 16S90, 06B23.

Keywords and phrases: ring, module, closure operator, preradical, torsion, radical filter, idempotent ideal.

1 Introduction. Preliminary notions and results

The purpose of this work is the investigation of the relations between the preradicals of the module category R-Mod and the closure operators of this category. For that three known mappings are used, which provide the connection between the closure operators and preradicals of R-Mod. We will study the properties of these mappings for different classes of preradicals and of closure operators of R-Mod.

This article is a continuation of [1-3], where the necessary notions are indicated. Nevertheless, for completeness and independence of this part, we would remind shortly the main notions and results which are used in continuation.

Let R be a ring with unity and R-Mod be the category of unitary left R-modules. For every module $M \in R$ -Mod we denote by $\mathbb{L}(M)$ the lattice of submodules of M.

A preradical of R-Mod is a subfunctor r of the identity functor of R-Mod, i.e. $r(M) \subseteq M$ for every $M \in R$ -Mod and $f(r(M)) \subseteq r(M')$ for every R-morphism $f: M \to M'$. We denote by \mathbb{PR} the class of all preradicals of the category R-Mod. We remind the principal types of preradicals [4–6]. The preradical $r \in \mathbb{PR}$ is called:

- *idempotent* if r(r(M)) = r(M) for every $M \in R$ -Mod;

- radical if r(M/r(M)) = O for every $M \in R$ -Mod;

- hereditary (pretorsion) if
$$r(N) = r(M) \cap N$$
 for every $N \subseteq M$;

- cohereditary if r(M/N) = (r(M) + N)/N for every $N \subseteq M$;

[©] A.I.Kashu, 2014

- *torsion* if it is a hereditary radical;
- cotorsion if it is idempotent and cohereditary.

It is well known that some types of preradicals of R-Mod can be characterized by special ring constructions, such as preradical filters (i.e. linear topologies), radical filters, ideals, idempotent ideals, etc. (see [4–6]). Some results of such type are included in the following statement.

Proposition 1.1. There exist the bijections between:

- 1) the **pretorsions** of *R*-Mod and preradical filters of *R*;
- 2) the torsions of *R*-Mod and radical filters of *R*;
- 3) the cohereditary preradicals of R-Mod and ideals of R;
- 4) the cotorsions of R-Mod and idempotent ideals of R;
- 5) the hereditary and cohereditary prevadicals of R-Mod and still ideals of R, i.e. the ideals with the condition (a): a ∈ Ia for every a ∈ I (see [4], p. 12; [5], p. 467).

A closure operator of R-Mod is a mapping C which associates to every pair $N \subseteq M$, where $N \in \mathbb{L}(M)$, a submodule of M denoted by $C_M(N)$ which satisfies the conditions:

- $(c_1) \quad N \subseteq C_M(N);$
- (c₂) if $N_1 \subseteq N_2$ for $N_1, N_2 \in \mathbb{L}(M)$, then $C_M(N_1) \subseteq C_M(N_2)$ (the monotony);
- (c_3) for every *R*-morphism $f: M \to M'$ and $N \in \mathbb{L}(M)$ we have

 $f(C_M(N)) \subseteq C_{M'}(N)(f(M))$ (the continuity) [6–9].

We denote by \mathbb{CO} the class of all closure operators of R-Mod.

A closure operator $C \in \mathbb{CO}$ is called:

- weakly hereditary if $C_{C_M(N)}(N) = C_M(N)$ for every $N \subseteq M$;
- *idempotent* if $C_M(C_M(N)) = C_M(N)$ for every $N \subseteq M$;
- hereditary if $C_N(L) = C_M(L) \cap N$ for every $L \subseteq N \subseteq M$;
- cohereditary if $(C_M(N) + K)/K = C_{M/K}((N + K)/K)$ for every $K, N \in \mathbb{L}(M);$
- maximal if $C_M(N)/N = C_{M/N}(\bar{0})$ for every $N \subseteq M$ (or: $C_M(N)/K = C_{M/K}(N/K)$ for every $K \subseteq N \subseteq M$);
- minimal if $C_M(N) = C_M(O) + N$ for every $N \subseteq M$ (or: $C_M(N) = C_M(L) + N$ for every $L \subseteq N \subseteq M$).

The investigations of the present work are based on the following mappings between the classes \mathbb{CO} and \mathbb{PR} [7–9]:

1) $\Phi: \mathbb{CO} \to \mathbb{PR}$, where we denote $\Phi(C) = r_c$, for every $C \in \mathbb{CO}$, and define:

$$r_C(M) = C_M(O) \tag{1.1}$$

for every $M \in R$ -Mod;

2) $\Psi_1 : \mathbb{PR} \to \mathbb{CO}$, where $\Psi_1(r) = C^r$ for every $r \in \mathbb{PR}$ and

$$[(C^{r})_{M}(N)]/N = r(M/N)$$
(1.2)

for every $N \subseteq M$;

3) $\Psi_2 : \mathbb{PR} \to \mathbb{CO}$, where $\Psi_2(r) = C_r$ for every $r \in \mathbb{PR}$ and

$$(C_r)_M(N) = N + r(M)$$
 (1.3)

for every $N \subseteq M$.

Proposition 1.2. (See [7,8]). Let $r \in \mathbb{PR}$. Then:

- a) $\Phi(C^r) = r$ and C^r is the **largest** closure operator $C \in \mathbb{CO}$ with the property $\Phi(C) = r$;
- b) $\Phi(C_r) = r$ and C_r is the **least** closure operator $C \in \mathbb{CO}$ with the property $\Phi(C) = r$.

Let $r \in \mathbb{PR}$. Then for the closure operator $C \in \mathbb{CO}$ we have:

$$\Phi(C) = r \Leftrightarrow C_r \le C \le C^r \quad \text{(i.e. } \Phi^{-1}(r) = [C_r, C^r]\text{)}.$$

The closure operators of the from C^r , where $r \in \mathbb{PR}$, are exactly the maximal closure operators and, similarly, the closure operators of the form C_r coincide with the minimal closure operators of R-Mod. We denote by $Max(\mathbb{CO})$ the class of all maximal closure operators of R-Mod, and by $Min(\mathbb{CO})$ the class of all minimal closure operators of R-Mod.

For every closure operator $C \in \mathbb{CO}$ we have the maximal closure operator C^{r_C} associated to C, as well as the associated minimal closure operator C_{r_C} . The previous facts in other form can be expressed as follows. In the class \mathbb{CO} we define the binary relation by the rule:

$$C \sim D \Leftrightarrow \Phi(C) = \Phi(D)$$
 (i.e. $r_C = r_D$).

Then we obtain an equivalence in \mathbb{CO} such that every closure operator $C \in \mathbb{CO}$ defines the equivalence class $[C_r, C^r]$. If we denote by \mathbb{CO} / \sim the family of equivalence classes of \mathbb{CO} , then it is clear that $\mathbb{PR} \cong \mathbb{CO} / \sim$.

The following statements in continuation will serve as starting point of our investigation [7–9].

Proposition 1.3. The mappings (Φ, Ψ_1) define a monotone bijection between the maximal closure operators of \mathbb{CO} and preradicals of R-Mod: $Max(\mathbb{CO}) \cong \mathbb{PR}$. \Box

Proposition 1.4. The mappings (Φ, Ψ_2) define a monotone bijection between the minimal closure operators of \mathbb{CO} and preradicals of R-Mod: $Min(\mathbb{CO}) \cong \mathbb{PR}$. \Box

2 The mappings (Φ, Ψ_1) and their effects

The restriction of the bijection of Proposition 1.3, defined by the mappings (Φ, Ψ_1) , leads to some new monotone bijections which connect the closure operators of special types of $\mathbb{M}ax(\mathbb{CO})$ with the preradicals of \mathbb{PR} which possess the respective properties.

We begin with a preliminary statement which shows the relations between some properties of the closure operators of R-Mod ([2], Lemmas 5.2 and 6.2).

Lemma 2.1. Every minimal closure operator is idempotent. The closure operator $C \in \mathbb{CO}$ is cohereditary if and only if it is maximal and minimal.

Remark. If the closure operator $C \in \mathbb{CO}$ is cohereditary, then for the respective preradical $r = r_c$ we have $C^r = C_r$, therefore the corresponding equivalence class of \mathbb{CO} consists of only one element. Obviously, the condition $C^r = C_r$ means that this closure operator is cohereditary.

In continuation we consider the monotone bijection of Proposition 1.3, defined by Φ and Ψ_1 , analyzing its effect on some important classes of closure operators and of preradicals.

Proposition 2.2. If the closure operator $C \in \mathbb{CO}$ is weakly hereditary, then the preradical $\Phi(C) = r_C$ is idempotent. If the preradical $r \in \mathbb{PR}$ is idempotent, then the associated maximal closure operator C^r is weakly hereditary. Therefore the mappings (Φ, Ψ_1) define a monotone bijection between the maximal weakly hereditary closure operators of \mathbb{CO} and idempotent preradicals of R-Mod.

Proof. Let $C \in \mathbb{CO}$ be a weakly hereditary closure operator. Then $C_{C_M(O)}(O) = C_M(O)$ for every module $M \in R$ -Mod, therefore

$$r_{C}(r_{C}(M)) = r_{C}(C_{M}(O)) = C_{C_{M}(O)}(O) = C_{M}(O) = r_{C}(M),$$

i.e. r_c is an idempotent preradical.

Conversely, let $r \in \mathbb{PR}$ be an idempotent preradical. Then the associated maximal closure operator $\Psi_1(r) = C^r$, defined by the rule $[(C^r)_M(N)]/N = r(M/N)$ for every $N \subseteq M$, possesses the property:

$$[(C^{r})_{(C^{r})_{M}(N)}(N)] / N = r[((C^{r})_{M}(N)) / N] =$$
$$= r(r(M/N)) = r(M/N) = [(C^{r})_{M}(N)] / N.$$

Therefore $(C^r)_{(C^r)_M(N)}(N) = (C^r)_M(N)$ for every $N \subseteq M$, which means that the operator C^r is weakly hereditary. The last statement now follows from Proposition 1.3.

Corollary 2.3. If the closure operator $C \in \mathbb{CO}$ is weakly hereditary, then the associated maximal closure operator $C^{r_{C}}$ also is weakly hereditary.

With the intention to study the closure operators of \mathbb{CO} which correspond to *radicals* of *R*-Mod, we introduce the following notion.

Definition 2.1. The closure operator $C \in \mathbb{CO}$ will be called **zero-idempotent** if $C_M(C_M(O)) = C_M(O)$ for every $M \in R$ -Mod.

Proposition 2.4. If r is a radical of \mathbb{PR} , then the associated maximal closure operator C^r is zero-idempotent. If the operator $C \in \mathbb{CO}$ is maximal and zeroidempotent, then the corresponding preradical $\Phi(C) = r_C$ is a radical. Therefore the mappings (Φ, Ψ_1) define a monotone bijection between the radicals of R-Mod and the maximal zero-idempotent closure operators of \mathbb{CO} .

Proof. Let r be a radical of \mathbb{PR} and C^r be the corresponding maximal closure operator, i.e. $[(C^r)_M(N)]/N = r(M/N)$ for every $N \subseteq M$. If N = r(M), then $[(C^r)_M(r(M))]/r(M) = r(M/r(M)) = \overline{0}$, since r is a radical. But $r(M) = (C^r)_M(O)$, and so

$$\left[(C^{r})_{M} ((C^{r})_{M}(O)) \right] / \left[(C^{r})_{M}(O) \right] = \bar{0},$$

therefore $(C^r)_M((C^r)_M(O)) = (C^r)_M(O)$, which means that C^r is a zero-idempotent closure operator.

Let now C be an arbitrary maximal zero-idempotent closure operator of \mathbb{CO} . Then $C_M(C_M(O)) = C_M(O)$ for every $M \in R$ -Mod, i.e. $C_M(r_C(M)) = r_C(M)$ and $C_M(r_C(M)) / r_C(M) = \bar{0}$.

From the other hand, since C is maximal, by definition $[C_M(r_C(M))]/r_C(M) = C_{M/r_C(M)}(\bar{0})$. Therefore $C_{M/r_C(M)}(\bar{0}) = \bar{0}$, i.e. $r_C(M/r_C(M)) = \bar{0}$, which means that r_C is a radical.

The proof is finished by the application of Proposition 1.3.

Corollary 2.5. If the operator $C \in \mathbb{CO}$ is maximal and idempotent, then $\Phi(C) = r_C$ is a radical of *R*-Mod.

Combining Propositions 2.2 and 2.4 we obtain

Corollary 2.6. The mappings (Φ, Ψ_1) define a monotone bijection between the *idempotent radicals* of *R*-Mod and the maximal, weakly hereditary, zero-idempotent closure operators of \mathbb{CO} .

Now we will show the closure operators of \mathbb{CO} which correspond to hereditary preradicals (pretorsions) of *R*-Mod.

Proposition 2.7. If the closure operator $C \in \mathbb{CO}$ is hereditary, then the preradical $\Phi(C) = r_C$ is hereditary. If $r \in \mathbb{PR}$ is a hereditary preradical (pretorsion) of R-Mod, then the associated maximal closure operator $\Psi_1(r) = C^r$ is hereditary. Therefore the mappings (Φ, Ψ_1) define a monotone bijection between the pretorsions of R-Mod and the maximal hereditary closure operators of \mathbb{CO} . Proof. Let $C \in \mathbb{CO}$ be a hereditary closure operator. Then in the sitution $L \subseteq N \subseteq M$ we have $C_N(L) = C_M(L) \cap N$. For L = O we obtain $C_N(O) = C_M(O) \cap N$, i.e. $r_C(N) = r_C(M) \cap N$, which means that the preradical r_C is hereditary.

Conversely, let r be a hereditary preradical of R-Mod, i.e. $r(N) = r(M) \cap N$ for every $N \subseteq M$. In the situation $L \subseteq N \subseteq M$ by heredity of r we have:

$$\left[\left((C^r)_M(L) \right) \cap N \right] / L = \left[\left((C^r)_M(L) \right) / L \right] \cap (N/L) = \\ = \left[r(M/L) \right] \cap (N/L) = r(N/L) = \left[(C^r)_N(L) \right] / L.$$

Therefore $[(C^r)_M(L)] \cap N = (C^r)_N(L)$, i.e. the operator C^r is hereditary.

Corollary 2.8. If the closure operator $C \in \mathbb{CO}$ is hereditary, then the associated maximal closure operator $C^{r_{C}}$ also is hereditary.

Taking into account the description of hereditary preradicals by the preradical filters of R (Proposition 1.1, 1)), from Proposition 2.7 follows

Corollary 2.9. There exists a bijection between the preradical filters of the ring R and the maximal hereditary closure operators of \mathbb{CO} .

More concretely, if \mathcal{E} is a preradical filter of R (see [6]), then it defines a pretorsion $r_{\mathcal{E}}$ in R-Mod by the rule:

$$r_{\varepsilon}(M) = \{ m \in M \mid (0:m) \in \mathcal{E} \},\$$

for every $M \in R$ -Mod. The corresponding maximal closure operator $C^{r_{\mathcal{E}}}$ is defined as

$$(C^{r_{\mathcal{E}}})_M(N) = \{m \in M \mid (N:m) \in \mathcal{E}\}\$$

for every $N \subseteq M$, where $(N : m) = \{a \in R \mid am \in N\}$.

From the other hand, if C is a maximal hereditary closure operator of \mathbb{CO} , then the associated preradical filter is $\mathcal{F}_1(RR) = \{I \in \mathbb{L}(RR) \mid C_R(I) = R\}$, i.e. the set of C-dense left ideals of R.

A very important type of preradicals of R-Mod are the *torsions* of this category and now we will indicate the closure operators of \mathbb{CO} which correspond to the torsions of R-Mod. Since the torsions are hereditary radicals, the result follows by combining Propositions 2.4 and 2.7.

Corollary 2.10. The mappings (Φ, Ψ_1) define a monotone bijection between the **torsions** of *R*-Mod and maximal, zero-idempotent, hereditary closure operators of \mathbb{CO} .

The torsions of R-Mod are described by the radical filters of the ring R (Proposition 1.1, 2)), therefore is true

Corollary 2.11. There exists a bijection between the radical filters of the ring R and the maximal, zero-idempotent, hereditary closure operators of \mathbb{CO} .

The cases related to the cohereditary preradicals are considered in the following section, since for such preradicals the mappings Ψ_1 and Ψ_2 coincide.

3 The mappings (Φ, Ψ_2) and their effects

Now we will study the relations between the classes \mathbb{CO} and \mathbb{PR} , defined by the mappings $\Phi : \mathbb{CO} \to \mathbb{PR}$ and $\Psi_2 : \mathbb{PR} \to \mathbb{CO}$, where $\Psi_2(r) = C_r$ and $(C_r)_M(N) = N + r(M)$. Every minimal closure operator is idempotent (Lemma 2.1). By Proposition 1.4 we have the monotone bijection $Min(\mathbb{CO}) \cong \mathbb{PR}$ defined by (Φ, Ψ_2) . We will restrict this bijection, considering various types of preradicals and showing properties of the corresponding closure operators.

We begin with the idempotent preradicals of *R*-Mod. Firstly we remind that by Proposition 2.2 if $C \in \mathbb{CO}$ is weakly hereditary, then the preradical $\Phi(C) = r_C$ is idempotent. Now we verify the inverse transition: from $r \in \mathbb{PR}$ to $\Psi_2(r) = C_r$.

Proposition 3.1. Let $r \in \mathbb{PR}$ be an *idempotent preradical* of *R*-Mod. Then the associated minimal closure operator $\Psi_2(r) = C_r$ is weakly hereditary. Therefore the mappings (Φ, Ψ_2) define a monotone bijection between the idempotent preradicals of *R*-Mod and the minimal weakly hereditary closure operators of \mathbb{CO} .

Proof. If a preradical $r \in \mathbb{PR}$ is idempotent and $N \subseteq M$, then r(r(M)) = r(M) and by definitions we have:

$$(C_r)_{(C_r)_M(N)}(N) = N + r[(C_r)_M(N)] =$$

= $N + r(N + r(M)) \supseteq N + r(r(M)) = N + r(M) = (C_r)_M(N)$

Therefore $(C_r)_{(C_r)_M(N)}(N) \supseteq (C_r)_M(N)$, and the inverse inclusion follows from the monotony of C_r , since $(C_r)_M(N) \subseteq M$. So we have $(C_r)_{(C_r)_M(N)}(N) = (C_r)_M(N)$, i.e. the minimal closure operator C_r is weakly hereditary.

Taking into account the first statement of Proposition 2.2, from Proposition 1.4 now we obtain the indicated monotone bijection. $\hfill \Box$

Corollary 3.2. If the closure operator $C \in \mathbb{CO}$ is weakly hereditary, then the associated minimal closure operator C_{r_C} also is weakly hereditary.

We consider in continuation the *radicals* of *R*-Mod and look for the effect of the mapping Ψ_2 on the preradicals of such type. For that we need the following notion.

Definition 3.1. An operator $C \in \mathbb{CO}$ will be called **zero-radical** closure operator if $C_{M/C_M(O)}(\bar{0}) = \bar{0}$ for every $M \in R$ -Mod.

Proposition 3.3. If $r \in \mathbb{PR}$ is a radical of *R*-Mod, then the associated minimal closure operator $\Psi_2(r) = C_r$ is a zero-radical operator. If $C \in \mathbb{CO}$ is a zero-radical operator, then $\Phi(C) = r_c$ is a radical. Therefore the mappings (Φ, Ψ_2) define a monotone bijection between the radicals of *R*-Mod and the minimal, zero-radical closure operators of \mathbb{CO} .

Proof. If $r \in \mathbb{PR}$ is a radical of *R*-Mod, then for every $M \in R$ -Mod we have:

 $(C_r)_{M/[(C_r)_M(O)]}(\bar{0}) = (C_r)_{M/r(M)}(\bar{0}) = \bar{0} + r(M/r(M)) = \bar{0},$

so C_r is a zero-radical closure operator.

Conversely, if $C \in \mathbb{CO}$ is a zero-radical closure operator, then by definition $r_{C}(M/r_{C}(M)) = C_{M/C_{M}(O)}(\bar{0}) = \bar{0}$ for every $M \in R$ -Mod, i.e. r_{C} is a radical.

The conclusion of our statement now follows from Proposition 1.4.

Remark. If $C \in \mathbb{CO}$ is a zero-radical closure operator, then each operator of the interval $[C_{r_{C}}, C^{r_{C}}]$ also is zero-radical, since the corresponding preradical coincides with r_{c} , which is a radical.

Combining Propositions 3.1 and 3.3 now we obtain

Corollary 3.4. The mappings (Φ, Ψ_2) define a monotone bijection between the *idempotent radicals* of *R*-Mod and the minimal, weakly hereditary, zero-radical closure operators of \mathbb{CO} .

The following step of our investigation is the consideration of the *hereditary* preradicals (pretorsions) of R-Mod. We remind that if an operator $C \in \mathbb{CO}$ is hereditary, then the preradical $\Phi(C) = r_c$ is hereditary (Proposition 2.7).

Proposition 3.5. If a preradical $r \in \mathbb{PR}$ is **hereditary**, then the associated minimal closure operator $\Psi_2(r) = C_r$ is hereditary. Therefore the mappings (Φ, Ψ_2) define a monotone bijection between the hereditery preradicals (pretorsions) of *R*-Mod and the minimal hereditary closure operators of \mathbb{CO} .

Proof. Let $r \in \mathbb{PR}$ be a hereditary preradical of *R*-Mod. Then in the situation $L \subseteq N \subseteq M$ by definition we have:

$$(C_r)_N(L) = L + (C_r)_N(O) = L + r(N), \quad (C_r)_M(L) = L + (C_r)_M(O) = L + r(M).$$

By the modularity of $\mathbb{L}(M)$ and the inclusion $L \subseteq N$, we obtain:

$$(L+r(M)) \cap N = L + (r(M) \cap N),$$

and by the heredity of r we have $r(M) \cap N = r(N)$. Therefore

$$[(C_r)_M(L)] \cap N = (L + r(M)) \cap N = L + (r(M) \cap N) = L + r(N) = (C_r)_N(L),$$

hence the closure operator C_r is hereditary.

The conclusion of our statement now follows from Propositions 2.7 and 1.4. $\hfill \Box$

Corollary 3.6. If the closure operator $C \in \mathbb{CO}$ is hereditary, then the associated minimal closure operator C_{r_c} also is hereditary.

Using Proposition 1.1, 1), now from Proposition 3.5 follows

Corollary 3.7. There exist a bijection between the **preradical filters** of the ring R and the minimal hereditary closure operators of \mathbb{CO} .

Similarly, from Proposition 1.1, 2), using Propositions 3.3 and 3.5, we obtain

Corollary 3.8. There exists a bijection between the **radical filters** of the ring R (i.e. the **torsions** of R-Mod) and the minimal, zero-radical, hereditary closure operators of \mathbb{CO} .

In continuation we consider the similar questions for the *cohereditary preradicals* of *R*-Mod. As was mentioned above, for such preradicals the mappings Ψ_1 and Ψ_2 coincide.

Proposition 3.9. If r is a cohereditary preradical of R-Mod, then $\Psi_1(r) = \Psi_2(r)$ (i.e. $C^r = C_r$) and this closure operator is cohereditary. If $C \in \mathbb{CO}$ is a cohereditary closure operator (i.e. is maximal and minimal), then the preradical $\Phi(C) = r_c$ is cohereditary. Therefore the mappings (Φ, Ψ_1) (or (Φ, Ψ_2)) define a monotone bijection between the cohereditary preradicals of R-Mod and the cohereditary closure operators of \mathbb{CO} .

Proof. If a preradical $r \in \mathbb{PR}$ is cohereditary, then by the definition of C^r we have:

$$[(C^{r})_{M}(N)] / N = r(M/N) = (r(M) + N) / N,$$

hence $(C^r)_M(N) = r(M) + N = (C_r)_M(N)$ for every $N \subseteq M$, and so $C^r = C_r$. Since this closure operator is maximal and minimal, it is cohereditary (Lemma 2.1).

Conversely, if $C \in \mathbb{CO}$ is a cohereditary closure operator, then by the maximality of C we have $r_C(M/N) = C_{M/N}(\bar{0}) = C_M(N)/N$. Further, from the minimality of C it follows that $C_M(O) + N = C_M(N)$, therefore

$$(r_{C}(M) + N)/N = (C_{M}(O) + N)/N = C_{M}(N)/N$$

for every $N \subseteq M$. From the foregoing now follows that $r_C(M/N) = (r_C(M)+N)/N$, i.e. the preradical r_C is cohereditary.

Applying Proposition 1.3 (or 1.4) now we obtain the announced bijection. \Box

Using Proposition 1.1, 3), we have

Corollary 3.10. There exists a bijection between the *ideals* of the ring R and the cohereditary closure operators of \mathbb{CO} .

The case of *cotorsions* of R-Mod is reduced to the combination of Proposition 3.9 with Proposition 2.2 (or 3.1), which give

Corollary 3.11. The mappings (Φ, Ψ_1) (or (Φ, Ψ_2)) define a monotone bijection between the **cotorsions** of *R*-Mod and weakly hereditary, cohereditary closure operators of \mathbb{CO} .

The description of cotorsions of R-Mod by idempotent ideals of R (Proposition 1.1, 4)) now implies

Corollary 3.12. There exists a bijection between the *idempotent ideals* of the ring R and the weakly hereditary, cohereditary closure operators of \mathbb{CO} .

Finally, we consider the case of *hereditary and cohereditary preradicals* of R-Mod (see Propositions 2.7 or 3.5, and 3.9).

Corollary 3.13. The mappings (Φ, Ψ_1) (or (Φ, Ψ_2)) define a monotone bijection between the hereditary and cohereditary preradicals of *R*-Mod and the hereditary, cohereditary closure operators of \mathbb{CO} .

From Proposition 1.1, 5) now follows

Corollary 3.14. There exists a bijection between the still ideals of the ring R and the hereditary, cohereditary closure operators of \mathbb{CO} .

References

- KASHU A. I. Closure operators in the categories of modules. Part I (Weakly hereditary and idempotent operators). Algebra and Discrete Mathematics, 2013, 15, No. 2, 213–228.
- [2] KASHU A. I. Closure operators in the categories of modules. Part II (Hereditary and cohereditary operators). Algebra and Discrete Mathematics, 2013, 16, No. 1, 81–95.
- [3] KASHU A. I. Closure operators in the categories of modules. Part III (Operations in CO and their properties). Bul. Acad. Ştiinţe. Repub. Moldova, Mat., 2014, No. 1(74), 90–100.
- [4] BICAN L., KEPKA T., NEMEC P. Rings, modules and preradicals. Marcel Dekker, New York, 1982.
- [5] GOLAN J. S. Torsion theories. Longman Scientific and Technical, New York, 1976.
- [6] KASHU A. I. Radicals and torsions in modules. Kishinev, Ştiinţa, 1983 (in Russian).
- [7] DIKRANJAN D., GIULI E. Factorizations, injectivity and compactness in categories of modules. Commun. in Algebra, 1991, 19, No. 1, 45–83.
- [8] DIKRANJAN D., GIULI E. Closure operators I. Topology and its Applications, 1987, 27, 129–143.
- [9] DIKRANJAN D., THOLEN W. Categorical structure of closure operators. Kluwer Academic Publishers, 1995.

A. I. KASHU Institute of Mathematics and Computer Science Academy of Sciences of Moldova 5 Academiei str. Chişinău, MD-2028 Moldova E-mail: kashuai@math.md Received March 3, 2014