Invariant Characteristics of Special Compositions in Weyl Spaces $\boldsymbol{W}_{\boldsymbol{N}}$

Georgi Zlatanov, Bistra Tsareva

Abstract

In the present paper invariant characteristics of geodesic, chebyshevian and quasi-chebyshevian compositions $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}}$ in Weyl spaces $W_{N}\left(n_{1}+\right.$ $\left.n_{2}+\cdots+n_{p}=N\right)$ are found with the help of the prolonged covariant differentiation. The characteristics of the spaces W_{N} which contain such special compositions are found.

Mathematics subject classification: 53A40, 53A55.
Keywords and phrases: Weyl space, net, composition, prolonged covariant differentiation; chebyshevian, geodesic, quasi-shebyshevian compositions.

1 Preliminary

1. A prolonged covariant differentiation in $\boldsymbol{W}_{\boldsymbol{N}}$.

Let $W_{N}\left(g_{\alpha \beta}, T_{\sigma}\right)$ be Weyl space with a fundamental tensor $g_{\alpha \beta}$ and a complementary covector T_{σ}. Let us accept that the fundamental tensor $g_{\alpha \beta}$ is normed by the law (see [1], p.152)

$$
\begin{equation*}
\breve{g}_{\alpha \beta}=\lambda^{2} g_{\alpha \beta}, \tag{1}
\end{equation*}
$$

where λ is a function of the point. It is known (see [1], p.153) that after renormalization (1): the complementary covector T_{σ} transforms by the law $\breve{T}_{\sigma}=T_{\sigma}+\partial_{\sigma} \ln \lambda$, which means T_{σ} is a normalizer; the reciprocal tensor $g^{\alpha \beta}$ to $g_{\alpha \beta}$ transforms by the law $g^{\alpha \beta}=\lambda^{-2} g^{\alpha \beta}$. The coefficients of the connectedness $\Gamma_{\alpha \beta}^{\sigma}$ of the Weyl space W_{N} have the presentation $\Gamma_{\alpha \beta}^{\sigma}=\frac{1}{2} g^{\sigma \nu}\left(\partial_{\alpha} g_{\beta \nu}+\partial_{\beta} g_{\alpha \nu}-\partial_{\nu} g_{\alpha \beta}\right)-\left(T_{\alpha} \delta_{\beta}^{\sigma}+T_{\beta} \delta_{\alpha}^{\sigma}-T_{\nu} g^{\nu \sigma} g_{\alpha \beta}\right)$ (see [1], p.154).
 Renorm the fields of directions v_{σ}^{α} by the condition [8]

$$
\begin{equation*}
g_{\alpha \beta} v_{\sigma}^{v^{\alpha}} v_{\sigma}^{\beta}=1 \tag{2}
\end{equation*}
$$

The reciprocal covectors ${ }^{\sigma}{ }_{\alpha}$ are defined by the following equalities

$$
\begin{equation*}
{\underset{\sigma}{v}}_{v^{\alpha}}^{\stackrel{\sigma}{v}_{\beta}}=\delta_{\beta}^{\alpha} \Longleftrightarrow v_{\beta}^{\sigma} \stackrel{\alpha}{v_{\sigma}}=\delta_{\beta}^{\alpha} \tag{3}
\end{equation*}
$$

The renormalization of the fundumental tensor accompanies with the following renorming $\underset{\sigma}{\breve{v}^{\alpha}}=\lambda^{-1}{\underset{\sigma}{v}}^{\alpha}, \stackrel{\breve{v}}{v} \alpha=\lambda{ }^{\sigma}{ }_{\alpha}$.
© Georgi Zlatanov, Bistra Tsareva, 2014

According to (see [1], p.152) the fundamental tensor $g_{\alpha \beta}$ and the complementary covector T_{σ} satisfy the equalities

$$
\begin{equation*}
\nabla_{\sigma} g_{\alpha \beta}=2 T_{\sigma} g_{\alpha \beta}, \nabla_{\sigma} g^{\alpha \beta}=-2 T_{\sigma} g^{\alpha \beta} \tag{4}
\end{equation*}
$$

According to [7] the pseudo-quantities $A \in W_{N}$ which after renormalization of the fundamental tensor $g_{\alpha \beta}$ by the formula (1) transform by the law $\breve{A}=\lambda^{k} A$ are called satellites of $g_{\alpha \beta}$ with a weight $\{k\}$. Hence $g^{\alpha \beta}\{-2\}, v_{\sigma}^{\alpha}\{-1\}{ }_{v}^{\sigma}{ }_{\alpha}\{1\}$.

The existence of the normalizer T_{σ} allows to introduce a prolonged covariant differentiation of the satellites $A\{k\}$ of the tensor $g_{\alpha \beta}$ by the formula $\stackrel{\circ}{\nabla}_{\sigma} A=$ $\nabla_{\sigma} A-k T_{\sigma} A[8]$. According to $[8,9]$ we have.

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{\sigma} g_{\alpha \beta}=0, \stackrel{\circ}{\nabla}_{\sigma} g^{\alpha \beta}=0, \stackrel{\circ}{\nabla}_{\sigma}{\underset{\alpha}{v^{\beta}}}^{\alpha} \nabla_{\sigma}{\underset{\alpha}{v^{\beta}}}^{\alpha} T_{\sigma} v_{\alpha}^{\beta}, \stackrel{\circ}{\nabla}_{\sigma} \stackrel{\alpha}{v}_{\beta}=\nabla_{\sigma} \stackrel{\alpha}{v}_{\beta}^{\alpha}-T_{\sigma} \stackrel{\alpha}{v}_{\beta} . \tag{5}
\end{equation*}
$$

Ozdeger obtained significant results in the understanding the geometry of Weyl and Einstein-Weyl manifolds [11], using the prolonged covariant differentiation, introduced in [8].

2. Compositions in W_{N}.

Consider in the space W_{N} the composition $X_{m} \times X_{N-m}$ of two base manifolds X_{m} and X_{N-m}, i.e. their topological product. Two positions $P\left(X_{m}\right)$ and $P\left(X_{N-m}\right)$ of these base manifolds pass through any point of the space $W_{N}\left(X_{m} \times X_{N-m}\right)$ [2]. According to [2] and [3] any composition is completely defined with the field of the affinor a_{α}^{β}, satisfying the condition

$$
\begin{equation*}
a_{\alpha}^{\sigma} a_{\sigma}^{\beta}=\delta_{\alpha}^{\beta} . \tag{6}
\end{equation*}
$$

According to [4] the projecting affinors $\stackrel{m}{a}{ }_{\alpha}^{\beta}, ~ N_{a}-m{ }_{\alpha}^{\beta}$ are defined by the equalities ${ }_{a}^{m}{ }_{\alpha}^{\beta}=\frac{1}{2}\left(\delta_{\alpha}^{\beta}+a_{\alpha}^{\beta}\right), \quad{ }^{N-m}{ }_{\alpha}^{\beta}=\frac{1}{2}\left(\delta_{\alpha}^{\beta}-a_{\alpha}^{\beta}\right)$. For an arbitrary vector v^{α} we have $v^{\alpha}={ }_{a}^{m} \underset{\sigma}{\alpha} v^{\sigma}+{ }_{a}^{N-m} \underset{\sigma}{\alpha} v^{\sigma}=V_{m}^{\alpha}+{ }_{N-m}^{V}{ }^{\alpha}$, where ${ }_{m}^{\alpha}={ }_{a}^{m}{ }_{\sigma}^{\alpha} v^{\sigma} \in P\left(X_{m}\right),{ }_{N-m}^{V}=$ ${ }^{N-m}{ }_{\sigma}^{\alpha} v^{\sigma} \in P\left(X_{N-m}\right)$. The partial projections or the full ones of an arbitrary tensor are defined analogously.

3. Derivative equations in W_{N}.

For the independent fields of directions ${\underset{\sigma}{\alpha}}_{\alpha}(\sigma, \alpha=1,2, \ldots, N)$ and their reciprocal covectors $\stackrel{\sigma}{v}_{\alpha}$, defined by (3), are fulfilled the following derivative equations [8, 9$]$

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{\sigma}{ }_{\alpha}^{v^{\beta}}=\stackrel{\nu}{\alpha}_{\nu}^{\nu} v_{\nu}^{\beta}, \quad \stackrel{\circ}{\nabla}_{\sigma} \stackrel{\alpha}{v}_{\beta}=-\stackrel{\alpha}{\nu}_{\sigma}^{\alpha}{ }_{v}^{\nu}{ }_{\beta}, \tag{7}
\end{equation*}
$$

where ${\underset{\alpha}{\beta}}_{\beta}^{\beta}\{0\}$. We obtain, using the integrability condition of (7), the next equality $\left.\left.\nabla \nabla_{[\alpha}^{\underset{\sigma}{T}}{ }_{\beta}\right]+\stackrel{\underset{\nu}{T}}{\underset{\nu}{\sim}} \underset{\sigma}{\underset{\sigma}{T}} \alpha\right]=0[8]$. Let us denote by $\underset{\beta}{v}$) the lines, defined from the field
of directions ${\underset{\beta}{\alpha}}^{\alpha}$ and by $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ the net, defined from the independent fields of directions ${\underset{\sigma}{*}}^{\alpha},(\sigma=1,2, \ldots, N)$. It is known that the field of directions ${\underset{\sigma}{\alpha}}^{\alpha}$ is parallelly translated along the lines $(\underset{\beta}{v})$ if and only if $\nabla_{\nu} \underset{\sigma}{v_{\beta}^{\alpha}}{\underset{\beta}{\nu}}^{\nu}=\mu v_{\sigma}^{\alpha}$, where μ is an arbitrary function of the point. According to (5) the last equality can be written in the form

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{\nu}{\underset{\sigma}{v_{\beta}^{\alpha}} v^{\nu}=\mu v_{\sigma}^{\alpha} .} \tag{8}
\end{equation*}
$$

2 Coordinate net in W_{N}

Let us chose the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ as a coordinate one. From (2) and $g_{\alpha \beta} v_{\sigma}^{\alpha} v_{\nu}^{\beta}=$ $\underset{\sigma \nu}{\cos \omega}$ it follows that in the parameters of the coordinate net

$$
\begin{align*}
& g_{\alpha \beta}=\underset{\alpha \beta}{f} f \cos \omega, \\
& \underset{1}{v^{\alpha}}\left(\underset{1}{\frac{1}{f}}, 0,0, \ldots, 0\right), \quad \underset{2}{v^{\alpha}}\left(0, \frac{1}{f}, 0, \ldots, 0\right), \quad \ldots, \quad \underset{N}{v^{\alpha}}\left(0,0,0, \ldots, \frac{1}{f}\right), \tag{9}\\
& \stackrel{1}{v}_{\alpha}(\underset{1}{ }, 0,0, \ldots, 0), \quad \stackrel{2}{v}_{\alpha}\left(0, f,{ }_{2}, 0, \ldots, 0\right), \quad \ldots, \quad \stackrel{N}{v}_{\alpha}(0,0,0, \ldots, \underset{N}{f}),
\end{align*}
$$

where $\underset{\alpha}{f}=\underset{\alpha}{f}(u), \underset{\alpha}{f}\{1\}, \underset{\alpha \beta}{\omega}=\underset{\alpha \beta}{\omega}(\underset{u}{\sigma}), \underset{\alpha \beta}{\omega}\{0\}, \quad \sigma=1,2, \ldots, N$.

Lemma 1. When the net $\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ is chosen as a coordinate one then there exist the following relations between the coefficients ${\underset{\alpha}{\alpha}}_{\beta}^{\beta}$ from the derivative equations (7) and the coefficients of the connection $\Gamma_{\alpha \beta}^{\sigma}$

$$
\begin{equation*}
{\underset{\alpha}{\beta}}_{\underset{\alpha}{\beta}}=\frac{f}{f}{ }_{\alpha}^{\beta} \Gamma_{\sigma \alpha}^{\beta}, \quad \alpha \neq \beta ; \quad{\underset{\alpha}{\alpha}}_{{ }_{\alpha}}^{\alpha}=\Gamma_{\sigma \alpha}^{\alpha}-\partial_{\sigma} \ln \left(\underset{12}{f f} \ldots f_{N}\right)+N T_{\sigma} . \tag{10}
\end{equation*}
$$

Proof. Using (3), (5) and (7) we obtain

$$
\begin{equation*}
{\underset{\alpha}{T}}_{\sigma}^{\beta}=\partial_{\sigma} v_{\alpha}^{\nu} v_{\nu}^{\beta}+\Gamma_{\sigma \nu}^{\tau} v_{\alpha}^{\nu}{ }^{\beta} v_{\tau}+T_{\sigma} \delta_{\alpha}^{\beta} . \tag{11}
\end{equation*}
$$

After applying (9) in (11) we establish the validity of (10).

3 Weyl spaces of compositions $\boldsymbol{X}_{n_{1}} \times \boldsymbol{X}_{n_{2}} \times \cdots \times \boldsymbol{X}_{n_{p}}$

Let us introduce the notations:

$$
\begin{align*}
& \alpha, \beta, \gamma, \delta, \sigma, \nu, \tau=1,2, \ldots, N ; i_{1}, j_{1}, k_{1}, s_{1}=1,2, \ldots, n_{1} ; \\
& \bar{i}_{1}, \bar{j}_{1}, \bar{k}_{1}, \bar{s}_{1}=n_{1}+1, n_{1}+2, \ldots, N ; \\
& i_{2}, j_{2}, k_{2}, s_{2}=n_{1}+1, n_{1}+2, \ldots, n_{1}+n_{2} ; \\
& \bar{i}_{2}, \bar{j}_{2}, \bar{k}_{2}, \bar{s}_{2}=1,2, \ldots, n_{1}, n_{1}+n_{2}+1, n_{1}+n_{2}+2, \ldots, N ; \\
& i_{3}, j_{3}, k_{3}, s_{3}=n_{1}+n_{2}+1, n_{1}+n_{2}+2, \ldots, n_{1}+n_{2}+n_{3} ; \\
& \bar{i}_{3}, \bar{j}_{3}, \bar{k}_{3}, \bar{s}_{3}=1,2, \ldots, n_{1}+n_{2}+n_{3}+1, n_{1}+n_{2}+n_{3}+2, \ldots, N ; \tag{12}\\
& \ldots \\
& i_{p}, j_{p}, k_{p}, s_{p}=n_{1}+n_{2}+\cdots+n_{p-1}+1 \\
& n_{1}+n_{1}+n_{2}+\cdots+n_{p-1}+2, \ldots, N ; \\
& \bar{i}_{p}, \bar{j}_{p}, \bar{k}_{p}, \bar{s}_{p}=1,2, \ldots, n_{1}+n_{2}+\cdots+n_{p-1} .
\end{align*}
$$

Following [10] we shall consider the affinors

$$
\begin{equation*}
n_{a}{\underset{\alpha}{\beta}}^{\beta}=v_{i_{m}}^{\beta} \stackrel{i_{m}}{v_{\alpha}}-\frac{v^{\beta}}{\bar{i}_{m}} \stackrel{\bar{i}_{m}}{v_{\alpha}} \quad \text { for any } \quad m=1,2, \ldots, p . \tag{13}
\end{equation*}
$$

The affinors (13) have weight $\{0\}$. According to (3) the affinors (13) satisfy (6), i.e. they define the following compositions $X_{n_{1}} \times X_{N-n_{1}}, X_{n_{2}} \times X_{N-n_{2}}, \ldots, X_{n_{p}} \times X_{N-n_{p}}$. Let us consider the composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}}$ and let us denote the positions of the manifolds $X_{n_{1}}, X_{n_{2}}, \ldots, X_{n_{p}}$, by $P\left(X_{n_{1}}\right), P\left(X_{n_{2}}\right), \ldots, P\left(X_{n_{p}}\right)$, respectively.

The affinors

$$
\begin{equation*}
\stackrel{m}{a}{ }_{\alpha}^{\beta}=v_{i_{m}}{\stackrel{i}{i_{m}}}_{v}, \quad m=1,2, \ldots, p, \tag{14}
\end{equation*}
$$

with weight $\{0\}$ will be called the projective affinors of the composition $X_{n_{1}} \times$ $X_{n_{2}} \times \cdots \times X_{n_{p}}$.

From (3) and (14) follow ${ }_{a}^{1}{ }_{\alpha}^{\beta}+{ }_{a}^{2}{ }_{\alpha}^{\beta}+\cdots+{ }_{a}^{p}{ }_{\alpha}^{\beta}=\delta{ }_{\alpha}^{\beta},{ }_{a}^{m}{ }_{\alpha}^{\beta}{ }_{a}^{m}{ }_{\sigma}^{\alpha}={ }_{a}^{m}{ }_{\sigma}^{\beta}$, ${ }_{a}^{m}{ }_{\alpha}^{\beta} \stackrel{l}{l} \underset{\sigma}{\alpha}=0$, where $m, l=1,2, \ldots, p, \quad m \neq l$. If v^{β} is an arbitrary vector, then $v^{\beta}={ }_{a}^{1}{ }_{\alpha}^{\beta} v^{\alpha}+{ }_{a}^{2}{ }_{\alpha}^{\beta} v^{\alpha}+\cdots+{ }_{a}^{p}{ }_{\alpha}^{\beta} v^{\alpha}=V_{1}^{\beta}+V_{2}^{\beta}+\cdots+V_{p}^{\beta}$, where $V_{1}^{\beta}={ }_{a}^{1}{ }_{\alpha}^{\beta} v^{\alpha} \in P\left(X_{n_{1}}\right)$, $V_{2}^{\beta}={ }_{a}^{2}{ }_{\alpha}^{\beta} v^{\alpha} \in P\left(X_{n_{2}}\right), \ldots,{ }_{p} V^{\beta}={ }_{a}^{p}{ }_{\alpha}^{\beta} v^{\alpha} \in P\left(X_{n_{p}}\right)$.

With the help of the projective affinors (14) the fundamental tensor $g_{\alpha \beta}$ can be presented in the form $g_{\alpha \beta}=\stackrel{1}{G}_{\alpha \beta}+\stackrel{2}{G}_{\alpha \beta}+\cdots+\stackrel{p}{G}_{\alpha \beta}+2 \stackrel{12}{G}_{\alpha \beta}+2 \stackrel{13}{G}_{\alpha \beta}+\cdots+2 \stackrel{p-1 p}{G}_{\alpha \beta}$, where $\left.\stackrel{m}{G}_{\alpha \beta}=\stackrel{m}{a}{ }_{\alpha}^{\sigma} \stackrel{m}{a}{ }_{\beta}^{\nu} g_{\sigma \nu}, \quad \stackrel{m l}{G}_{\alpha \beta}=\stackrel{m}{a}{ }_{(\alpha}^{\sigma} \stackrel{l}{a}{ }_{\beta}^{\nu}\right) g_{\sigma \nu} \quad$ and $m, l=1,2, \ldots, p, m \neq l$.

The tensors $\stackrel{m}{G}_{\alpha \beta}$ are full projections of the fundamental tensor $g_{\alpha \beta}$ on the positions $P\left(X_{n_{m}}\right)$ and they define metrics on these positions. Following [5] the tensors $\stackrel{m}{G}_{\alpha \beta}$ will be called positional fundamental tensors. They satisfy the equalities $\stackrel{m}{a}_{\alpha}^{\sigma}{ }_{G}^{m}{ }_{\sigma \beta}=$ ${ }_{a}^{m}{ }_{\beta}^{\sigma} \stackrel{m}{G}_{\alpha \sigma}=\stackrel{m}{G}{ }_{\alpha \beta}, \quad \stackrel{m}{a}{ }_{\alpha}^{\sigma} \stackrel{l}{G}_{\sigma \beta}={ }_{a}^{m}{ }_{\beta}^{\sigma}{ }_{G}^{l}{ }_{\alpha \sigma}=0$, when $m \neq l$. Following [5] the tensors ${ }_{G}^{m l}{ }_{\alpha \beta}$ will be called hybridian tensors. They satisfy the equalities $\stackrel{m}{a}_{\alpha}^{\sigma} \underset{\alpha}{l}{ }_{\beta}^{\nu}{ }_{G}^{m l}{ }_{\sigma \nu}=$ $\frac{1}{2}{ }_{a}^{m}{ }_{\alpha}^{\sigma} \stackrel{l}{a}{ }_{\beta}^{\nu} g_{\sigma \nu}, \quad{ }_{a}^{m} \underset{\alpha}{\sigma} \underset{a}{m}{\underset{\beta}{\nu}}_{\nu_{\sigma \nu}}^{m l}=0$.

4 Special compositions $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}}$ in W_{N}

Definition 1. The composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ will be called geodesic if for any $m=1,2, \ldots, p$ the position $P\left(X_{n_{m}}\right)$ is parallelly translated along any line of the manifold $X_{n_{m}}$.

Theorem 1. The composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ is geodesic if and only if the coefficients from the derivative equations (7) satisfy the equalities

$$
\begin{equation*}
{\stackrel{k_{m}}{T_{m}} \sigma}_{i_{s_{m}}}^{v^{\sigma}}=0, \text { for any } m=1,2, \ldots, p \tag{15}
\end{equation*}
$$

Proof. According to (8) the composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}}$ is geodesic if and only if $\stackrel{\circ}{\nabla}_{\sigma} v_{i_{m}} v^{\alpha} v_{m} v^{\sigma}=\mu v_{i_{m}}^{\alpha}$ for any $m=1,2, \ldots, p$. From (7) and the last equality we
 from where (15) follows.

From (9), (10) and Theorem 1 follows the validity of the following statement:
Corollary 1. If the composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ is geodesic then:
i) In the parameters of the coordinate net the coefficients of the derivative equations (7) satisfy the equalities $\stackrel{\bar{k}_{m}}{i_{m}} s_{m}=0$ for any $m=1,2, \ldots, p$;
ii) In the parameters of the coordinate net the coefficients of the connection satisfy the equalities $\Gamma_{s_{m} i_{m}}^{\bar{k}_{m}}=0$ for any $m=1,2, \ldots, p$.

If the composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ is geodesic and the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ is chosen as a coordinate one, then using Corollary 1, for the components of the tensor of the curvature $R_{\alpha \beta \gamma}{ }^{\delta}$. we obtain $R_{i_{m} j_{m} k_{m}}{ }^{\bar{s}_{m}}=0$ for any $m=1,2, \ldots, p$.

Definition 2. The composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ will be called chebyshevian if for any $m, l=1,2, \ldots, p$ and $m \neq l$, the position $P\left(X_{n_{m}}\right)$ is parallelly translated along any line of the manifold $X_{n_{l}}$.

Theorem 2. The composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ is chebyshevian if and only if the coefficients from the derivative equations (7) satisfy the equalities

$$
\begin{equation*}
{\stackrel{\bar{k}_{m}}{T_{m}} \sigma_{s_{l}} v^{\sigma}}_{i_{0}, \text { for } \text { any } m, l=1,2, \ldots, p, m \neq l . . .} \tag{16}
\end{equation*}
$$

Proof. According to (8) the composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}}$ is chebyshevian if and only if $\stackrel{\circ}{\nabla}_{\sigma} v_{i_{m}} v_{s} v_{l}^{\sigma}=\mu v_{i_{m}}^{\alpha}$ for any $m=1,2, \ldots, p$. From (7) and the last equality we obtain (16).

From (9), (10) and Theorem 2 follows the validity of the following statement:
Corollary 2. If the composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ is chebyshevian then:
i) In the parameters of the coordinate net the coefficients of the derivative equations (7) satisfy the equalities $\stackrel{\bar{k}}{m}_{{\underset{i}{m}}^{s_{l}}}=0$ for any $m, l=1,2, \ldots, p, \quad m \neq l$;
ii) In the parameters of the coordinate net the coefficients of the connection satisfy the equalities $\Gamma_{s_{l} i_{m}}^{\bar{k}_{m}}=0$ for any $m, l=1,2, \ldots, p, \quad m \neq l$.

Theorem 3. If the composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ is chebyshevian then the space W_{N} is Riemannian and the metric tensor has in the chosen coordinate system the presentation

$$
\begin{equation*}
\left.g_{i_{l} i_{m}}={\underset{i}{l}}_{i_{l}}^{i_{l}} \underset{u}{u}\right) \underset{i_{m}}{f}\left(\stackrel{i_{m}}{u}\right) \cos \underset{i_{l} i_{m}}{\omega}\left(\stackrel{i_{1}}{u} u, i_{m}\right) . \tag{17}
\end{equation*}
$$

Proof. Let the composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ be chebyshevian. We chose the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ as a coordinate one. Then from (4) and Corollary 2 we obtain

$$
\begin{equation*}
\partial_{i_{m}} g_{i_{l} i_{r}}=2 T_{i_{m}} g_{i_{l} i_{r}}, \text { for any } m, l, r=1,2, \ldots, p, m \neq l, m \neq r . \tag{18}
\end{equation*}
$$

From (18) it follows $T_{\sigma}=g r a d$, i.e. W_{n} is Riemannian. Let us renormalize the fundumental tensor $g_{\alpha \beta}$ such that $T_{\sigma}=0$, (see [1], p.157). Then the equalities (18) accept the form $\partial_{i_{m}} g_{i_{l} i_{r}}=0$, from where (17) follows.

Let now the composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ be chebyshevian and $X_{n_{m}}$ are one-dimensional manifolds. Then the composition defines a chebyshevian net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$. According to Theorem $3 W_{N}$ is Riemannian. Using (17) and changing the variables, we obtain for the metric tensor of the Riemannian space $g_{\alpha \beta}=\cos \underset{\alpha \beta}{\omega}(\stackrel{\alpha}{u}, \stackrel{\beta}{u})$.

Let us consider an orthogonal composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$, which means that at any point of the space any two directions $V_{m}^{\alpha} \in P\left(X_{n_{m}}\right)$ and $V_{l}^{\alpha} \in$ $P\left(X_{n_{l}}\right)$, when $m, l=1,2, \ldots, p, m \neq l$, are orthogonal. In this case $g_{\alpha \beta} V_{m}^{\alpha} V_{l}^{\beta}=0$. Since $\underset{m}{V^{\alpha}}=\stackrel{m}{a} \underset{\sigma}{\alpha} v^{\sigma},{ }_{l} V^{\alpha}=\stackrel{l}{a} \underset{\sigma}{\alpha} v^{\sigma}$, then $g_{\alpha \beta} V_{m}^{\alpha} V_{l}^{\beta}=0 \Longleftrightarrow g_{\alpha \beta}{ }_{a}{ }_{\sigma}^{\alpha} \underset{\sigma}{\alpha} \underset{\nu}{l}{ }_{\nu}^{\beta} v^{\sigma} u^{\nu}=$
$g_{\alpha \beta} \stackrel{l}{a}{ }_{\sigma}^{\alpha}{ }_{a}^{m}{ }_{a}^{\beta}{ }_{\nu} v^{\sigma} u^{\nu}=0$. Because v^{α} and u^{α} are arbitrary vector fields, then $g_{\alpha \beta} \stackrel{m}{a}{ }_{\sigma}^{\alpha}{ }_{a}^{l}{ }_{\nu}^{\beta}=$ $g_{\alpha \beta} \stackrel{l}{a}{ }_{\sigma}^{\alpha} \stackrel{m}{a}{ }_{\nu}^{\beta}=0$, from where it follows $\stackrel{m l}{G}{ }_{\alpha \beta}=0$. Hence $g_{\alpha \beta}=\stackrel{1}{G}_{\alpha \beta}+\stackrel{2}{G}_{\alpha \beta}+\cdots+\stackrel{p}{G}_{\alpha \beta}$.

Theorem 4. The orthogonal composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ is chebyshevian if and only if it is geodesic one.

Proof. Let the composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ be orthogonal. Then from ${\underset{i m}{ }}_{v^{\alpha}} \in P\left(X_{n_{m}}\right), v_{i_{k}}^{\alpha} \in P\left(X_{n_{k}}\right)$ it follows $g_{\alpha \beta}{\underset{i}{m}}^{v^{\alpha}} v_{i} v^{\beta}=0$ for any $m, k=1,2, \ldots, p, m \neq$ k. After prolonged covariant differentiation of the last equality and taking into account (5) and (7) we find $g_{\alpha \beta} \stackrel{j_{k}}{T_{i_{m}}} \sigma_{j_{k}}^{\alpha} v_{i} v^{\beta}+g_{\alpha \beta} \stackrel{j_{m}}{i_{i}} \sigma_{i_{m}}^{v^{\alpha}}{ }_{j} v_{m}^{\beta}=0$. Now after contraction by $v_{s_{k}}{ }^{\sigma}$ we obtain

$$
\begin{equation*}
g_{\alpha \beta}{ }_{i_{m}}^{T_{k}} \sigma_{s_{k}} v^{\sigma} v^{\alpha} v_{i_{k}}^{\alpha}+g_{\alpha \beta}{ }_{i_{k}}^{T_{m}} \sigma_{s_{k}} v^{\sigma} v_{m}^{\alpha} v^{\beta}=0 . \tag{19}
\end{equation*}
$$

From (19), Theorem 1 and Theorem 2 the validity of the Theorem 4 follows.
The compositions $X_{m} \times X_{N-m}$ for which the positions $P\left(X_{m}\right)$ and $P\left(X_{N-m}\right)$ are quasi-parallelly translated along any line of the manifold X_{N-m} and X_{m}, respectively are studied in $[2,5,6]$.

Let us consider the composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$. According to [2,5,6] and (7) the positions $P\left(X_{n_{m}}\right)$ will be quasi-parallelly translated along any line of the manifold $X_{n_{k}}$ if and only if

The vector $\lambda_{i_{m}}$ has the weight $\{-1\}$.
Definition 3. The composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ will be called quasichebyshevian if for any $m, k=1,2, \ldots, p, m \neq k$, the positions $P\left(X_{n_{m}}\right)$ are quasiparallelly translated along any line of the manifold $X_{n_{k}}$.

Theorem 5. The composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ is quasi-chebyshevian if and only if the coefficients from the derivative equations (7) satisfy the equalities

$$
\begin{equation*}
{\stackrel{\bar{S}_{m}}{T_{m}} \sigma}_{\sigma}^{j_{k}} v^{\sigma}=\lambda_{i_{m}}{ }_{j_{k}}^{\bar{s}_{m}}, \text { for any } m, k=1,2, \ldots, p, m \neq k \tag{21}
\end{equation*}
$$

Proof. According to (7) and (20) the composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ will be quasi-chebyshevian if and only if ${\stackrel{S}{i_{m}}}_{\bar{S}_{m}}{ }_{\overline{s_{m}}} v^{\alpha} v_{j}{ }^{\sigma}=\lambda_{i_{m}} v_{j_{k}}^{\alpha}$. The last equalities are equivalent to (21).

From (9), (10) and Theorem 5 follows the validity of the following statement:

Corollary 3. If the composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ is quasi-chebyshevian then:
i) In the parameters of the coordinate net the coefficients of the derivative equations (7) satisfy the equalities $\frac{1}{\bar{j}_{k}} \stackrel{\bar{s}_{m}}{i_{m}} j_{k}=\lambda_{i_{m}} \delta_{j_{k}}^{\bar{s}_{m}}$, for any $m, k=1,2, \ldots, p, m \neq k$.
ii) In the parameters of the coordinate net the coefficients of the connection satisfy the equalities $\Gamma_{j_{k}}^{\bar{s}_{m}} i_{m}=\psi_{i_{m}} \delta_{j_{k}}^{\bar{s}_{m}}$ for any $m, k=1,2, \ldots, p, \quad m \neq k$, where the vector $\psi_{i_{m}}=\frac{\lambda_{i_{m}}}{f_{i_{m}}}$ has the weight $\{0\}$.

Following [2] the vector $\psi_{i_{m}}$ will be called a vector of the quasi-parallel translation. If for any $m, k=1,2, \ldots, p \psi_{i_{m}}=0$, then according to Theorem 2 the composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ will be chebyshevian.

Theorem 6. The composition $X_{n_{1}} \times X_{n_{2}} \times \cdots \times X_{n_{p}} \in W_{N}$ is geodesic or chebyshevian, or quasi-chebyshevian if and only if the projecting affinors (14) satisfy for any $m, k=1,2, \ldots, p, \quad m \neq k$ the equalities

$$
\begin{align*}
& \stackrel{m}{a}{ }_{\alpha}^{\sigma} \stackrel{m}{a}{ }_{\delta}^{\nu} \stackrel{\circ}{\nabla}_{\sigma} \stackrel{m}{a}{ }_{\nu}^{\beta}=0, \\
& \stackrel{k}{a}{ }_{\alpha}^{\sigma}{ }_{a}^{m}{ }_{\delta}^{\nu} \stackrel{\circ}{\nabla}_{\sigma} \stackrel{m}{a}{ }_{\nu}^{\beta}=0, \tag{22}\\
& { }_{a}^{k}{ }_{\alpha}^{\sigma}{ }_{a}^{m}{ }_{\delta}^{\nu} \stackrel{\circ}{\nabla}_{\sigma} \stackrel{m}{a}{ }_{\nu}^{\beta}-\psi_{\sigma}{ }_{a}^{m}{ }_{\delta}^{\sigma}{ }_{a}^{k}{ }_{\alpha}^{\beta}=0,
\end{align*}
$$

respectively.
Proof. Let the net $(\underset{1}{v}, \underset{2}{v}, \ldots, \underset{N}{v})$ be chosen as a coordinate one. In the parameters of this coordinate net we have $\stackrel{m}{a}{ }_{\alpha}^{\beta}=\delta_{s_{m}}^{i_{m}}, \stackrel{k}{a}{ }_{\alpha}^{\beta}=\delta_{s_{k}}^{i_{k}}$. For the components of the tensors
 from zero, we find

$$
\begin{align*}
& \stackrel{m}{a}_{a}^{\sigma}{ }_{i_{m}} \stackrel{m}{a}{ }_{j_{m}}^{\nu} \stackrel{\circ}{\nabla}{ }_{\sigma} \stackrel{m}{a}{ }_{\nu}^{\bar{s}_{m}}=\Gamma_{i_{m} j_{m}}^{\bar{S}_{m}}, \\
& \stackrel{k}{a}{ }_{i_{m}} \stackrel{m}{a}^{m}{ }_{j_{k}}^{\nu} \stackrel{\circ}{\nabla}{ }_{\sigma} \stackrel{m}{a}{ }_{\nu}^{\bar{s}_{m}}=\Gamma_{i_{m} j_{k}}^{\bar{s}_{m}}, \tag{23}\\
& \stackrel{k}{a}{ }_{i_{k}} \stackrel{m}{a}{ }_{j_{m}}^{\nu} \stackrel{\circ}{\nabla}{ }_{\sigma} \stackrel{m}{a}{ }_{\nu}^{\bar{s}_{m}}-\psi_{\sigma} \stackrel{m}{a}{ }_{j_{m}}^{\sigma} \stackrel{k}{a}{ }_{l_{k}}^{\bar{s}_{m}}=\psi_{j_{m}} \delta_{i_{k}}^{\bar{s}_{m}} .
\end{align*}
$$

From Corollaries 1, 2, 3 and (23) follows (22).

References

[1] Norden A. P. Affinely Connected Space. Monographs, Moscow, 1976 (in Russian).
[2] Norden A., Timofeev G. Invariant Tests of the Special Compositions in Multivariate Spaces Izv. Vyssh. Uchebn. Zaved., Mat., 1972, 8, 81-89 (in Russian).
[3] Yano K. Affine Connexions in an Almost Product Space Kodai Math. Sem. Rep., 1959, 11(1), 1-24.
[4] Walker A. Connexions for Parallel Distributions in the Large, II. Q. J. Math., 1958, 9(35), 221-231.
[5] Timofeev G. N. Invariant Tests of the Special Compositions in Weyl Spaces. Izv. Vyssh. Uchebn. Zaved., Mat., 1976, 1, 87-99 (in Russian).
[6] Leontiev E. K. Classification of the Special Bundles and Compositions in Many-dimensional Spaces. Izv. Vyssh. Uchebn. Zaved. Mat., 1967, 5(60), 40-51 (in Russian).
[7] Zlatanov G., Norden A. P. Orthogonal Trajectories of Geodesic Fields. Izv. Vyssh. Uchebn. Zaved. Mat., 1975, 7(158), 42-46 (in Russian).
[8] Zlatanov G. Nets in an n-demensional Space of Weyl. C. R. Acad. Bulgare Sci., 1988, 41(10), 29-32 (in Russian).
[9] Zlatanov G. Special Networks in the n-dimensional Space of Weyl W_{n}. Tensor (N. S.), 1989, 48, 234-240.
[10] Zlatanov G. Compositions, Generated by Special Nets in Affinely Connected Spaces. Serdica Math. J., 2002, 28, 189-200.
[11] Ozdeger A. Conformal and Generalized Concircular Mappings of Einstein-Weyl Manifolds. Acta Math. Sci. Ser. B, Engl. Ed., 2010, 30(5), 1739-1745.

Georgi Zlatanov, Bistra Tsareva
Received February 22, 2012
Plovdiv University "Paisii Hilendarski"
Faculty of Mathematics and Informatics
24 "Tzar Assen" str., Plovdiv 4000
Bulgaria
E-mail: zlatanovg@gmail.com; btsareva@gmail.com

