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Invariant Characteristics of Special Compositions in

Weyl Spaces WN

Georgi Zlatanov, Bistra Tsareva

Abstract. In the present paper invariant characteristics of geodesic, chebyshevian
and quasi-chebyshevian compositions Xn1

×Xn2
×· · ·×Xnp

in Weyl spaces WN(n1 +
n2 + · · ·+ np = N) are found with the help of the prolonged covariant differentiation.
The characteristics of the spaces WN which contain such special compositions are
found.
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1 Preliminary

1. A prolonged covariant differentiation in WN.

Let WN (gαβ , Tσ) be Weyl space with a fundamental tensor gαβ and a comple-
mentary covector Tσ. Let us accept that the fundamental tensor gαβ is normed by
the law (see [1], p.152)

ğαβ = λ2gαβ , (1)

where λ is a function of the point. It is known (see [1], p.153) that after renormal-
ization (1): the complementary covector Tσ transforms by the law T̆σ = Tσ +∂σlnλ,

which means Tσ is a normalizer; the reciprocal tensor gαβ to gαβ transforms by the
law gαβ = λ−2gαβ . The coefficients of the connectedness Γσ

αβ of the Weyl space WN

have the presentation Γσ
αβ = 1

2g
σν(∂αgβν +∂βgαν−∂νgαβ)−(Tαδ

σ
β +Tβδ

σ
α−Tνg

νσgαβ)
(see [1], p.154).

Let N independent fields of directions v
σ

α (σ, α = 1, 2, . . . , N) be given in WN .

Renorm the fields of directions v
σ

α by the condition [8]

gαβv
σ

αv
σ

β = 1. (2)

The reciprocal covectors
σ
vα are defined by the following equalities

v
σ

α σ
vβ = δα

β ⇐⇒ v
β

σ α
vσ = δα

β . (3)

The renormalization of the fundumental tensor accompanies with the following

renorming v̆
σ

α = λ−1v
σ

α,
σ̆
vα = λ

σ
vα.
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According to (see [1], p.152) the fundamental tensor gαβ and the complementary
covector Tσ satisfy the equalities

∇σ gαβ = 2Tσ gαβ , ∇σ g
αβ = −2Tσ g

αβ (4)

According to [7] the pseudo-quantities A ∈ WN which after renormalization of
the fundamental tensor gαβ by the formula (1) transform by the law Ă = λkA are

called satellites of gαβ with a weight {k}. Hence gαβ{−2}, v
σ

α{−1}
σ
vα{1}.

The existence of the normalizer Tσ allows to introduce a prolonged covariant

differentiation of the satellites A {k} of the tensor gαβ by the formula
◦

∇σ A =
∇σA− kTσA [8]. According to [8, 9] we have.

◦

∇σ gαβ = 0 ,
◦

∇σ g
αβ = 0 ,

◦

∇σ v
α

β = ∇σ v
α

β + Tσv
α

β,
◦

∇σ
α
vβ = ∇σ

α
vβ − Tσ

α
vβ . (5)

Ozdeger obtained significant results in the understanding the geometry of Weyl and
Einstein-Weyl manifolds [11], using the prolonged covariant differentiation, intro-
duced in [8].

2. Compositions in WN.

Consider in the space WN the composition Xm ×XN−m of two base manifolds
Xm and XN−m, i.e. their topological product. Two positions P (Xm) and P (XN−m)
of these base manifolds pass through any point of the space WN (Xm ×XN−m) [2].
According to [2] and [3] any composition is completely defined with the field of the

affinor aβ
α, satisfying the condition

aσ
αa

β
σ = δβ

α. (6)

According to [4] the projecting affinors
m
a

β
α ,

N−m
a

β
α are defined by the equalities

m
a

β
α = 1

2(δβ
α + a

β
α),

N−m
a

β
α = 1

2(δβ
α − a

β
α) . For an arbitrary vector vα we have

vα =
m
a α

σ vσ +
N−m
a α

σ vσ = V
m

α + V
N−m

α, where V
m

α =
m
a α

σ vσ ∈ P (Xm), V
N−m

α =

N−m
a α

σ vσ ∈ P (XN−m). The partial projections or the full ones of an arbitrary
tensor are defined analogously.

3. Derivative equations in WN.

For the independent fields of directions v
σ

α (σ, α = 1, 2, . . . , N) and their recipro-

cal covectors
σ
vα, defined by (3), are fulfilled the following derivative equations [8,9]

◦

∇σ v
α

β =
ν

T
α

σv
ν

β ,
◦

∇σ
α
vβ = −

α

T
ν

σ
ν
vβ , (7)

where
β

T
α

β {0}. We obtain, using the integrability condition of (7), the next equality

∇[α

σ

T
σ

β ] +
σ

T
ν

[β

ν

T
σ

α] =0 [8]. Let us denote by (v
β
) the lines, defined from the field
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of directions v
β

α and by (v
1
, v
2
, . . . , v

N
) the net, defined from the independent fields

of directions v
σ

α, (σ = 1, 2, . . . , N). It is known that the field of directions v
σ

α is

parallelly translated along the lines (v
β
) if and only if ∇ν v

σ

αv
β

ν = µv
σ

α, where µ is an

arbitrary function of the point. According to (5) the last equality can be written in
the form

◦

∇ν v
σ

αv
β

ν = µv
σ

α. (8)

2 Coordinate net in WN

Let us chose the net (v
1
, v
2
, . . . , v

N
) as a coordinate one. From (2) and gαβv

σ

αv
ν

β =

cosω
σν

it follows that in the parameters of the coordinate net

gαβ = f
α
f
β

cosω
αβ
,

v
1

α( 1
f
1

, 0, 0, . . . , 0), v
2

α(0, 1
f
2

, 0, . . . , 0), . . . , v
N

α(0, 0, 0, . . . , 1
f
N

),

1
vα(f

1
, 0, 0, . . . , 0),

2
vα(0, f

2
, 0, . . . , 0), . . . ,

N
vα(0, 0, 0, . . . , f

N

),

(9)

where f
α

= f
α
(
σ
u), f

α
{1}, ω

αβ
= ω

αβ
(
σ
u) , ω

αβ
{0}, σ = 1, 2, . . . , N.

Lemma 1. When the net (v
1
, v
2
, . . . , v

N
) is chosen as a coordinate one then there exist

the following relations between the coefficients
β

T
α

σ from the derivative equations (7)

and the coefficients of the connection Γσ
αβ

β

T
α

σ =

f
β

f
α

Γβ
σα , α 6= β ;

α

T
α

σ = Γα
σα − ∂σln(f

1
f
2
. . . f

N

) +NTσ . (10)

Proof. Using (3), (5) and (7) we obtain

β

T
α

σ = ∂σv
α

ν β
vν + Γτ

σνv
α

ν β
vτ + Tσδ

β
α . (11)

After applying (9) in (11) we establish the validity of (10).



12 GEORGI ZLATANOV, BISTRA TSAREVA

3 Weyl spaces of compositions Xn1
× Xn2

× · · · × Xnp

Let us introduce the notations:

α, β, γ, δ, σ, ν, τ = 1, 2, . . . , N ; i1, j1, k1, s1 = 1, 2, . . . , n1;

i1, j1, k1, s1 = n1 + 1, n1 + 2, . . . , N ;

i2, j2, k2, s2 = n1 + 1, n1 + 2, . . . , n1 + n2;

i2, j2, k2, s2 = 1, 2, . . . , n1, n1 + n2 + 1, n1 + n2 + 2, . . . , N ;

i3, j3, k3, s3 = n1 + n2 + 1, n1 + n2 + 2, . . . , n1 + n2 + n3;

i3, j3, k3, s3 = 1, 2, . . . , n1 + n2 + n3 + 1, n1 + n2 + n3 + 2, . . . , N ;

............................................................................

ip, jp, kp, sp = n1 + n2 + · · · + np−1 + 1,

n1 + n1 + n2 + · · · + np−1 + 2, . . . , N ;

ip, jp, kp, sp = 1, 2, . . . , n1 + n2 + · · · + np−1 .

(12)

Following [10] we shall consider the affinors

nm
a β

α = v
im

β im
v α − v

im

β im
v α for any m = 1, 2, . . . , p. (13)

The affinors (13) have weight {0}. According to (3) the affinors (13) satisfy (6), i.e.
they define the following compositionsXn1×XN−n1 , Xn2×XN−n2, . . . , Xnp×XN−np .

Let us consider the composition Xn1×Xn2×· · ·×Xnp and let us denote the positions
of the manifolds Xn1 ,Xn2 , . . . ,Xnp , by P (Xn1), P (Xn2), . . . , P (Xnp), respectively.

The affinors
m
a β

α = v
im

β im
v α , m = 1, 2, . . . , p, (14)

with weight {0} will be called the projective affinors of the composition Xn1×
Xn2 × · · · ×Xnp .

From (3) and (14) follow
1
a

β
α +

2
a

β
α + · · · +

p
a

β
α = δ

β
α,

m
a

β
α

m
a α

σ =
m
a

β
σ ,

m
a

β
α

l
a α

σ = 0, where m, l = 1, 2, . . . , p, m 6= l. If vβ is an arbitrary vector, then

vβ =
1
a

β
αv

α +
2
a

β
αv

α + · · ·+
p
a

β
αv

α = V
1

β +V
2

β + · · ·+V
p

β , where V
1

β =
1
a

β
αv

α ∈ P (Xn1),

V
2

β =
2
a

β
αv

α ∈ P (Xn2), . . . , V
p

β =
p
a

β
αv

α ∈ P (Xnp).

With the help of the projective affinors (14) the fundamental tensor gαβ can be

presented in the form gαβ =
1
Gαβ +

2
Gαβ + · · ·+

p

Gαβ +2
12
Gαβ +2

13
Gαβ + · · ·+2

p−1p

G αβ ,

where
m

Gαβ =
m
a σ

α

m
a ν

β gσν ,
ml

Gαβ =
m
a σ

(α

l
a ν

β) gσν and m, l = 1, 2, . . . , p, m 6= l.
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The tensors
m

Gαβ are full projections of the fundamental tensor gαβ on the positions

P (Xnm) and they define metrics on these positions. Following [5] the tensors
m

Gαβ

will be called positional fundamental tensors. They satisfy the equalities
m
a σ

α

m

Gσβ =

m
a σ

β

m

Gασ =
m

Gαβ ,
m
a σ

α

l

Gσβ =
m
a σ

β

l

Gασ = 0, when m 6= l. Following [5] the tensors
ml

Gαβ will be called hybridian tensors. They satisfy the equalities
m
a σ

α

l
a ν

β

ml

Gσν =

1
2

m
a σ

α

l
a ν

β gσν ,
m
a σ

α

m
a ν

β

ml

Gσν = 0.

4 Special compositions Xn1
× Xn2

× · · · × Xnp
in WN

Definition 1. The composition Xn1 ×Xn2 ×· · ·×Xnp ∈WN will be called geodesic
if for any m = 1, 2, . . . , p the position P (Xnm) is parallelly translated along any line
of the manifold Xnm .

Theorem 1. The composition Xn1 ×Xn2 × · · · ×Xnp ∈WN is geodesic if and only
if the coefficients from the derivative equations (7) satisfy the equalities

km

T
im

σ v
sm

σ = 0 , for any m = 1, 2, . . . , p. (15)

Proof. According to (8) the composition Xn1 ×Xn2 × · · · ×Xnp is geodesic if and

only if
◦

∇σ v
im

α v
sm

σ = µ v
im

α for any m = 1, 2, . . . , p. From (7) and the last equality we

obtain
ν

T
im

σ v
ν

α v
sm

σ = µ v
im

α. Now after contraction by
τ
vα we find

τ

T
im

σ v
sm

σ = µ δτ
im
,

from where (15) follows.

From (9), (10) and Theorem 1 follows the validity of the following statement:

Corollary 1. If the composition Xn1 ×Xn2 × · · · ×Xnp ∈WN is geodesic then:

i) In the parameters of the coordinate net the coefficients of the derivative equa-

tions (7) satisfy the equalities
km

T
im

sm = 0 for any m = 1, 2, . . . , p;

ii) In the parameters of the coordinate net the coefficients of the connection

satisfy the equalities Γkm

smim
= 0 for any m = 1, 2, . . . , p.

If the compositionXn1×Xn2×· · ·×Xnp ∈WN is geodesic and the net (v
1
, v
2
, . . . , v

N
)

is chosen as a coordinate one, then using Corollary 1, for the components of the
tensor of the curvature Rαβγ

δ. we obtain Rimjmkm
sm. = 0 for any m = 1, 2, . . . , p.

Definition 2. The composition Xn1 ×Xn2 × · · · ×Xnp ∈WN will be called cheby-
shevian if for any m, l = 1, 2, . . . , p and m 6= l, the position P (Xnm) is parallelly
translated along any line of the manifold Xnl

.
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Theorem 2. The composition Xn1 ×Xn2 × · · · ×Xnp ∈WN is chebyshevian if and
only if the coefficients from the derivative equations (7) satisfy the equalities

km

T
im

σ v
sl

σ = 0 , for any m, l = 1, 2, . . . , p,m 6= l. (16)

Proof. According to (8) the composition Xn1 ×Xn2 × · · · ×Xnp is chebyshevian if

and only if
◦

∇σ v
im

αv
sl

σ = µ v
im

α for any m = 1, 2, . . . , p. From (7) and the last equality

we obtain (16).

From (9), (10) and Theorem 2 follows the validity of the following statement:

Corollary 2. If the composition Xn1 ×Xn2 ×· · ·×Xnp ∈WN is chebyshevian then:
i) In the parameters of the coordinate net the coefficients of the derivative equa-

tions (7) satisfy the equalities
km

T
im

sl
= 0 for any m, l = 1, 2, . . . , p, m 6= l;

ii) In the parameters of the coordinate net the coefficients of the connection

satisfy the equalities Γkm

sl im
= 0 for any m, l = 1, 2, . . . , p, m 6= l .

Theorem 3. If the composition Xn1 ×Xn2 × · · · ×Xnp ∈WN is chebyshevian then
the space WN is Riemannian and the metric tensor has in the chosen coordinate
system the presentation

gilim = f
il

(
il
u) f

im

(
im
u ) cos ω

ilim
(
il
u,

im
u ) . (17)

Proof. Let the composition Xn1 ×Xn2 ×· · ·×Xnp ∈WN be chebyshevian. We chose
the net (v

1
, v
2
, . . . , v

N
) as a coordinate one. Then from (4) and Corollary 2 we obtain

∂imgilir = 2Timgilir , for any m, l, r = 1, 2, . . . , p, m 6= l, m 6= r. (18)

From (18) it follows Tσ = grad, i. e. Wn is Riemannian. Let us renormalize the
fundumental tensor gαβ such that Tσ = 0, (see [1], p.157). Then the equalities (18)
accept the form ∂imgilir = 0, from where (17) follows.

Let now the composition Xn1 × Xn2 × · · · × Xnp ∈ WN be chebyshevian and
Xnm are one-dimensional manifolds. Then the composition defines a chebyshevian
net (v

1
, v
2
, . . . , v

N
). According to Theorem 3 WN is Riemannian. Using (17) and

changing the variables, we obtain for the metric tensor of the Riemannian space

gαβ = cos ω
αβ

(
α
u,

β
u).

Let us consider an orthogonal composition Xn1 ×Xn2 × · · · ×Xnp ∈WN , which
means that at any point of the space any two directions V

m

α ∈ P (Xnm) and V
l

α ∈

P (Xnl
), when m, l = 1, 2, . . . , p, m 6= l, are orthogonal. In this case gαβV

m

αV
l

β = 0.

Since V
m

α =
m
a α

σ vσ, V
l

α =
l
a α

σ vσ, then gαβV
m

αV
l

β = 0 ⇐⇒ gαβ
m
a α

σ

l
a

β
ν vσuν =
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gαβ
l
a α

σ

m
a

β
ν v

σuν = 0. Because vα and uα are arbitrary vector fields, then gαβ
m
a α

σ

l
a

β
ν =

gαβ
l
a α

σ

m
a

β
ν = 0, from where it follows

ml

Gαβ = 0. Hence gαβ =
1
Gαβ +

2
Gαβ + · · ·+

p

Gαβ .

Theorem 4. The orthogonal composition Xn1 ×Xn2 × · · · ×Xnp ∈ WN is cheby-
shevian if and only if it is geodesic one.

Proof. Let the composition Xn1 ×Xn2 × · · · ×Xnp ∈WN be orthogonal. Then from
v
im

α ∈ P (Xnm), v
ik

α ∈ P (Xnk
) it follows gαβ v

im

αv
ik

β = 0 for any m,k = 1, 2, . . . , p, m 6=

k. After prolonged covariant differentiation of the last equality and taking into

account (5) and (7) we find gαβ

jk

T
im

σ v
jk

αv
ik

β + gαβ

jm

T
ik

σ v
im

α v
jm

β = 0. Now after contraction

by v
sk

σ we obtain

gαβ

jk

T
im

σ v
sk

σ v
jk

αv
ik

β + gαβ

jm

T
ik

σ v
sk

σ v
im

α v
jm

β = 0. (19)

From (19), Theorem 1 and Theorem 2 the validity of the Theorem 4 follows.

The compositions Xm×XN−m for which the positions P (Xm) and P (XN−m) are
quasi-parallelly translated along any line of the manifoldXN−m andXm, respectively
are studied in [2, 5, 6].

Let us consider the composition Xn1×Xn2×· · ·×Xnp ∈WN . According to [2,5,6]
and (7) the positions P (Xnm) will be quasi-parallelly translated along any line of
the manifold Xnk

if and only if

◦

∇σ v
im

α v
jk

σ = λim v
jk

α +
sm

T
im

σ v
sm

α v
jk

σ, m 6= k. (20)

The vector λim has the weight {−1}.

Definition 3. The composition Xn1 ×Xn2 × · · · ×Xnp ∈WN will be called quasi-
chebyshevian if for any m,k = 1, 2, . . . , p, m 6= k, the positions P (Xnm) are quasi-
parallelly translated along any line of the manifold Xnk

.

Theorem 5. The composition Xn1 ×Xn2 × · · · ×Xnp ∈WN is quasi-chebyshevian
if and only if the coefficients from the derivative equations (7) satisfy the equalities

sm

T
im

σ v
jk

σ = λimδ
sm

jk
, for any m, k = 1, 2, . . . , p, m 6= k. (21)

Proof. According to (7) and (20) the composition Xn1 ×Xn2 × · · · ×Xnp ∈WN will

be quasi-chebyshevian if and only if
sm

T
im

σ v
sm

α v
jk

σ = λim v
jk

α. The last equalities are

equivalent to (21).

From (9), (10) and Theorem 5 follows the validity of the following statement:
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Corollary 3. If the composition Xn1 ×Xn2 ×· · ·×Xnp ∈WN is quasi-chebyshevian
then:

i) In the parameters of the coordinate net the coefficients of the derivative equa-

tions (7) satisfy the equalities 1
f
jk

sm

T
im

jk
= λimδ

sm

jk
, for any m, k = 1, 2, . . . , p, m 6= k.

ii) In the parameters of the coordinate net the coefficients of the connection
satisfy the equalities Γsm

jk im
= ψimδ

sm

jk
for any m,k = 1, 2, . . . , p, m 6= k, where

the vector ψim =
λim

fim
has the weight {0}.

Following [2] the vector ψim will be called a vector of the quasi-parallel trans-
lation. If for any m,k = 1, 2, . . . , p ψim = 0, then according to Theorem 2 the
composition Xn1 ×Xn2 × · · · ×Xnp ∈WN will be chebyshevian.

Theorem 6. The composition Xn1 ×Xn2 × · · · ×Xnp ∈ WN is geodesic or cheby-
shevian, or quasi-chebyshevian if and only if the projecting affinors (14) satisfy for
any m,k = 1, 2, . . . , p, m 6= k the equalities

m
a σ

α

m
a ν

δ

◦

∇σ
m
a

β
ν = 0,

k
a σ

α

m
a ν

δ

◦

∇σ
m
a

β
ν = 0,

k
a σ

α

m
a ν

δ

◦

∇σ
m
a

β
ν − ψσ

m
a σ

δ

k
a

β
α = 0,

(22)

respectively.

Proof. Let the net (v
1
, v
2
, . . . , v

N
) be chosen as a coordinate one. In the parameters of

this coordinate net we have
m
a

β
α = δim

sm
,

k
a

β
α = δik

sk
. For the components of the tensors

m
a σ

α

m
a ν

δ

◦

∇σ
m
a

β
ν ,

k
a σ

α

m
a ν

δ

◦

∇σ
m
a

β
ν ,

k
a σ

α

m
a ν

δ

◦

∇σ
m
a

β
ν −ψσ

m
a σ

δ

k
a

β
α, which are diffrent

from zero, we find

m
a σ

im

m
a ν

jm

◦

∇σ
m
a sm

ν = Γsm

imjm
,

k
a σ

im

m
a ν

jk

◦

∇σ
m
a sm

ν = Γsm

imjk
,

k
a σ

ik

m
a ν

jm

◦

∇σ
m
a sm

ν − ψσ
m
a σ

jm

k
a sm

lk
= ψjmδ

sm

ik
.

(23)

From Corollaries 1, 2, 3 and (23) follows (22).
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