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On 2-primal Ore extensions over Noetherian Weak

σ-rigid rings
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Abstract. Let R be a ring, σ an endomorphism of R and δ a σ-derivation of R. In
this article, we discuss skew polynomial rings over 2-primal weak σ-rigid rings. We
show that if R is a 2-primal Noetherian weak σ-rigid ring, then R[x; σ, δ] is a 2-primal
Noetherian weak σ-rigid ring.
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1 Introduction

A ring R always means an associative ring with identity 1 6= 0. The fields of
complex numbers and rational numbers are denoted by C and Q respectively. The
set of prime ideals of R is denoted by Spec(R). The set of minimal prime ideals of
R is denoted by Min.Spec(R). The prime radical and the set of nilpotent elements
of R are denoted by P (R) and N(R), respectively.

Let R be a ring, σ an endomorphism of R and δ a σ-derivation of R, i. e.
δ : R → R is an additive mapping satisfying δ(ab) = δ(a)σ(b) + aδ(b). Recall
that the skew polynomial ring R[x;σ, δ] is the set of polynomials

{
∑n

i=0 xiai: ai ∈ R, n ∈ N}

with usual addition of polynomials and multiplication subject to the relation
ax = xσ(a) + δ(a) for all a ∈ R. We denote R[x;σ, δ] by O(R). If I is an ideal
of R such that I is σ-stable (i. e. σ(I) = I) and is also δ-invariant (i. e. δ(I) ⊆ I),
then clearly I[x;σ, δ] is an ideal of O(R), and we denote it as usual by O(I). We
note that O(I) = I(O(R)). This article concerns the study of skew polynomial rings
(Ore extensions) in terms of 2-primal rings.

2-Primal Rings

Recall that a ring R is 2-primal if and only if N(R) = P (R), i. e. if the prime
radical is a completely semiprime. An ideal I of a ring R is called completely
semiprime if a2 ∈ I implies a ∈ I. We note that a reduced ring (a ring with no
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non zero nilpotent elements) is 2-primal and so is a commutative ring. Also let

R =

(

F F
0 F

)

, where F is a field. Then R is 2-primal.

2-Primal rings have been studied in recent years and are being treated by au-
thors for different structures. In [10], Greg Marks discusses the 2-primal property
of R[x;σ, δ], where R is a local ring, σ an automorphism of R and δ a σ-derivation
of R. In Greg Marks [10], it has been shown that for a local ring R with a nilpotent
maximal ideal, the Ore extension R[x;σ, δ] will or will not be 2-primal depending on
the δ-stability of the maximal ideal of R. In the case where R[x;σ, δ] is 2-primal, it
will satisfy an even stronger condition; in the case where R[x;σ, δ] is not 2-primal, it
will fail to satisfy an even weaker condition. Minimal prime ideals of 2-primal rings
have been discussed by Kim and Kwak in [7].

σ(∗)-rings

Let R be a ring and σ an endomorphism of R. Then σ is said to be a rigid
endomorphism if aσ(a) = 0 implies that a = 0, for a ∈ R, and R is said to be a
σ-rigid ring (Krempa [8]).

For example let R = C, and σ : C → C be the map defined by σ(a+ ib) = a− ib,
a, b ∈ R. Then it can be seen that σ is a rigid endomorphism of R.

In Theorem 3.3 of [8], Krempa has proved the following:

Let R be a ring, σ an endomorphism of R and δ a σ-derivation of R. If σ is
a monomorphism, then the skew polynomial ring R[x;σ, δ] is reduced if and only
if R is reduced and σ is rigid. Under these conditions any minimal prime ideal
(annihilator) of R[x;σ; δ] is of the form P [x;σ; δ] where P is a minimal prime ideal
(annihilator) in R.

Definition 1 (see [9], Kwak). Let R be a ring and σ an endomorphism of R. Then
R is said to be a σ(∗)-ring if aσ(a) ∈ P (R) implies a ∈ P (R) for a ∈ R.

Example 1. Let R =

(

F F
0 F

)

, where F is a field. Then P (R) =

(

0 F
0 0

)

.

Let σ : R → R be defined by σ

((

a b
0 c

))

=

(

a 0
0 c

)

. Then it can be seen that

σ is an endomorphism of R and R is a σ(∗)-ring.

Remark 1. A σ(∗)-ring need not be a σ-rigid. For let 0 6= a ∈ F in above example
(Example 1). Then

(

0 a
0 0

)

σ

(

0 a
0 0

)

=

(

0 0
0 0

)

, but

(

0 a
0 0

)

6=

(

0 0
0 0

)

.

Kwak in [9] establishes a relation between a 2-primal ring and a σ(∗)-ring. The
property is also extended to the skew polynomial ring R[x;σ]. It has been proved in
Theorem 5 of [9] that if R is a 2-primal ring and σ is an automorphism of R, then
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R is a σ(∗)-ring if and only if σ(P ) = P for all P ∈ Min.Spec(R). In Theorem 12
of [9] it has been proved that if R is a σ(∗)-ring with σ(P (R)) = P (R), then R[x;σ]
is 2-primal if and only if P (R)[x;σ] = P (R[x;σ]).

2 Preliminaries

We have the following:

Proposition 1. Let R be a Noetherian ring and σ an automorphism of R. If R is

a σ(∗)-ring, then R is 2-primal.

Proof. Let a ∈ R be such that a2 ∈ P (R). Then aσ(a)σ(aσ(a)) = aσ(a)σ(a)σ2(a) =
aσ(a2)σ2(a) ∈ σ(P (R)). Now R is Noetherian, so σ(P (R)) = P (R). Therefore
aσ(a)σ(aσ(a)) ∈ P (R) which implies that aσ(a) ∈ P (R) and so a ∈ P (R). Hence R
is 2-primal.

The following example shows that a 2-primal ring need not be a σ(∗)-ring:
Let R = F [x] be the polynomial ring over a field F . Then R is an integral

domain and so is 2-primal with P (R) = 0. Let σ : R → R be an endomor-
phism defined by σ(f(x)) = f(0) for f(x) ∈ F [x]. Let f(x) = xa, a ∈ F . Then
f(x)σ(f(x)) = 0 ∈ P (R), but f(x) /∈ P (R).

Weak σ-rigid rings:

Definition 2 (see Ouyang [12]). Let R be a ring and σ an endomorphism of R.
Then R is said to be a weak σ-rigid ring if aσ(a) ∈ N(R) if and only if a ∈ N(R)
for a ∈ R.

Example 2 (see Example 2.1 of Ouyang [12]). Let σ be an endomorphism of a ring
R such that R is a σ-rigid ring. Let

A =

{





a b c
0 a d
0 0 a





∣

∣

∣

∣

a, b, c, d ∈ R

}

be a subring of T3(R), the ring of upper triangular matrices over R. Now σ can be
extended to an endomorphism σ of A by σ((aij)) = (σ(aij)). Then it can be seen
that A is a weak σ-rigid ring.

Ouyang has proved in [12] that if σ is an endomorphism of a ring R, then R is
σ-rigid if and only if R is weak σ-rigid and reduced.

Let R be a Noetherian ring and σ an automorphism of R. We now give a
characterization for R to be a weak σ-rigid ring.

Theorem 1. Let R be a commutative Noetherian ring. Let σ be an automorphism

of R. Then R is a weak σ-rigid ring if and only if N(R) is a completely semiprime

ideal of R.
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Proof. R is commutative implies that N(R) is an ideal of R. We show that
σ(N(R)) = N(R). We have σ(N(R)) ⊆ N(R) as σ(N(R)) is a nilpotent ideal
of R. Now for any n ∈ N(R), there exists a ∈ R such that n = σ(a). So

I = σ−1(N(R)) = {a ∈ R such that σ(a) = n ∈ N(R)}

is an ideal of R. Now I is nilpotent, so I ⊆ N(R), which implies that N(R) ⊆
σ(N(R)). Hence σ(N(R)) = N(R).

Now let R be a weak σ-rigid ring. Let a ∈ R be such that a2 ∈ N(R). Then

aσ(a)σ(aσ(a)) = aσ(a)σ(a)σ2(a) ∈ σ(N(R)) = N(R).

Therefore, aσ(a) ∈ N(R) and hence a ∈ N(R). So N(R) is completely semiprime.

Conversely let N(R) be completely semiprime. Let a ∈ R be such that aσ(a) ∈
N(R). Now aσ(a)σ−1(aσ(a)) ∈ N(R) implies that a2 ∈ N(R), and so a ∈ N(R).
Hence R is a weak σ-rigid ring.

Completely prime ideals

Let R be a ring. Recall that an ideal P 6= R is completely prime if R/P is a
domain or equivalently if ab ∈ P implies a ∈ P or b ∈ P for a, b ∈ R (McCoy [11]).
In commutative rings completely prime and prime have the same meaning. We also
note that every completely prime ideal of a ring R is a prime ideal, but the converse
need not be true.

We note that in a 2-primal ring R, for example a reduced ring, all minimal prime
ideals are completely prime.

Regarding the relation between the completely prime ideals of a ring R and those
of O(R), the following result has been proved in Bhat [1]:

Theorem 2.4 of [1]. Let R be a ring, σ an automorphism of R and δ a σ-derivation
of R. Then:

1. For any completely prime ideal P of R with δ(P ) ⊆ P and σ(P ) = P , O(P )
is a completely prime ideal of O(R).

2. For any completely prime ideal U of O(R), U ∩ R is a completely prime ideal
of R.

The following result gives a characterization of a Notherian σ(∗)-ring R, where
σ is an automorphism of R.

Theorem 2 (see [2]). Let R be a Noetherian ring and σ an automorphism of R.

Then R is a σ(∗)-ring if and only if for each minimal prime U of R, σ(U) = U and

U is a completely prime ideal of R.
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Proof. To make the paper self contained, we give a sketch of the proof.

Let R be a Noetherian ring such that for each minimal prime U of R, σ(U) = U
and U is a completely prime ideal of R. Let a ∈ R be such that aσ(a) ∈ P (R) =
∩n

i=1Ui, where Ui are the minimal primes of R. For each i, a ∈ Ui or σ(a) ∈ Ui

and Ui is completely prime. Now σ(a) ∈ Ui = σ(Ui) implies that a ∈ Ui. Therefore
a ∈ P (R). Hence R is a σ(∗)-ring.

Conversely, suppose that R is a σ(∗)-ring and let U = U1 be a minimal prime
ideal of R. Let U2, U3, ..., Un be the other minimal primes of R. Suppose that
σ(U) 6= U . Then σ(U) is also a minimal prime ideal of R. Renumber so that
σ(U) = Un. Let a ∈ ∩n−1

i=1 Ui. Then σ(a) ∈ Un, and so aσ(a) ∈ ∩n
i=1Ui = P (R).

Therefore a ∈ P (R), and thus ∩n−1
i=1 Ui ⊆ Un, which implies that Ui ⊆ Un for some

i 6= n, which is impossible. Hence σ(U) = U .

Now suppose that U = U1 is not completely prime. Then there exist a, b ∈ R\U
with ab ∈ U . Let c be any element of b(U2∩U3∩...∩Un)a. Then c2 ∈ ∩n

i=1Ui = P (R).
Now c ∈ P (R) by Proposition 1 and, thus b(U2 ∩ U3 ∩ ... ∩ Un)a ⊆ U . Therefore
bR(U2 ∩ U3 ∩ ... ∩ Un)Ra ⊆ U and, as U is prime, a ∈ U , Ui ⊆ U for some i 6= 1 or
b ∈ U . None of these can occur, so U is completely prime.

From now onwards, we deal with σ-derivation δ and its higher orders, therefore,
the ring R is also taken as an algebra over Q.

Proposition 2. Let R be a Noetherian σ(∗)-ring which is also an algebra over Q and

δ a σ-derivation of R such that δ(σ(a)) = σ(δ(a)), for all a ∈ R. Then δ(U) ⊆ U
for all U ∈ MinSpec(R).

Proof. Let U ∈ MinSpec(R). Then σ(U) = U by Theorem 2. Consider the set

T = {a ∈ U | δk(a) ∈ U for all integers k ≥ 1}.

First of all, we will show that T is an ideal of R. Let a, b ∈ T . Then δk(a) ∈ U
and δk(b) ∈ U for all integers k ≥ 1. Now δk(a − b) = δk(a) − δk(b) ∈ U for all
k ≥ 1. Therefore a − b ∈ T . Now let a ∈ T and r ∈ R. We see that δk(ar) ∈ U
and δk(ra) ∈ U for some k ≥ 1 as both are sums of terms involving δj(a) for some
j ≥ 1. So T is a δ-invariant ideal of R.

We will now show that T ∈ Spec(R). Suppose the contrary. Let a /∈ T , b /∈ T
be such that aRb ⊆ T . Let t, s be least positive integers such that δt(a) /∈ U and
δs(b) /∈ U . Now there exists c ∈ R such that

δt(a)cσt(δs(b)) /∈ U (1)

as otherwise δt(a) ∈ U or δs(b) ∈ U . Let d = σ−t(c). Now aRb ⊆ T implies that
acb ⊆ T . Therefore δt+s(adb) ∈ U . This implies on simplification that

δt(a)σt(d)σt(δs(b)) + u ∈ U (2)

where u is a sum of terms involving δl(a) or δm(b), where l < t and m < s.
Therefore by assumption u ∈ U which implies that δt(a)σt(d)σt(δs(b)) ∈ U , i. e.
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δt(a)cσt(δs(b)) ∈ U . This is a contradiction to 1. Therefore T ∈ Spec(R). Now
T ⊆ U , so T = U as U ∈ Min.Spec(R). Hence δ(U) ⊆ U .

Remark 2. In above proposition the condition that δ(σ(a)) = σ(δ(a)), for all a ∈ R
is necessary. For example if s = t = 1, then a ∈ U , b ∈ U and therefore, σi(a) ∈ U ,
σi(b) ∈ U for all integers i ≥ 1 as σ(U) = U . Now δ2(adb) ∈ U implies that

δ(a)σ(d)δ(σ(b)) + δ(a)σ(d)σ(δ(b)) + u ∈ U .

where u is a sum of terms involving a or b, or σi(b). Therefore by assumption u ∈ U .
This implies that

δ(a)σ(d)δ(σ(b)) + δ(a)σ(d)σ(δ(b)) ∈ U .

If δ(σ(a)) 6= σ(δ(a)), for all a ∈ R, then we get nothing out of it and if δ(σ(a)) =
σ(δ(a)), for all a ∈ R, we get δ(a)σ(d)σ(δ(b)) ∈ U which gives a contradiction.

We now give a relation between a σ(∗)-ring and a weak σ-rigid ring:

Proposition 3. Let R be a Noetherian ring and σ an automorphism of R. Then

1. R is a σ(∗)-ring implies that R is a weak σ-rigid ring.

2. R is a 2-primal weak σ-rigid ring implies that R is a σ(∗)-ring.

Proof. 1. Let σ be an automorphism of R such that R is a σ(∗)-ring. Now Propo-
sition 1 implies that R is 2-primal, i.e. N(R) = P (R). Thus aσ(a) ∈ N(R) = P (R)
implies that a ∈ P (R) = N(R). Hence R is a weak σ-rigid ring.

2. Let R be 2-primal weak σ-rigid ring. Then N(R) = P (R) and aσ(a) ∈ N(R)
implies that a ∈ N(R). Therefore, aσ(a) ∈ P (R) implies that a ∈ P (R). Hence R
is a σ(∗)-ring.

Corollary 1. Let R be a Noetherian ring. Let σ be an automorphism of R. Then

R is a 2-primal weak σ-rigid ring if and only if for each minimal prime U of R,

σ(U) = U and U is a completely prime ideal of R.

Proof. Combine Theorem 2 and Proposition 3.

3 Skew polynomial rings over 2-primal weak σ-rigid rings

Proposition 4. Let R be a Noetherian ring which is also an algebra over Q and σ an

automorphism of R such that R is a σ(∗)-ring. Let δ be a σ-derivation of R such that

δ(σ(a)) = σ(δ(a)) for all a ∈ R. If U ∈ Min.Spec(R), then U(O(R)) = U [x;σ, δ] is

a completely prime ideal of O(R) = R[x;σ, δ].

Proof. Let U ∈ Min.Spec(R). Then σ(U) = U by Theorem 2 and δ(U) ⊆ U by
Proposition 2. Now R is 2-primal by Proposition 1 and furthermore U is completely
prime by Theorem 2. Now consider canonical maps σ and δ between R/U associ-
ated to σ and δ. It is well known that O(R)/U(O(R)) ≃ (R/U)[x;σ, δ] and hence
U(O(R)) is a completely prime ideal of O(R).
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Theorem 3. Let R be a Noetherian ring which is also an algebra over Q and σ
an automorphism of R such that R is a σ(∗)-ring. Let δ be a σ-derivation of R
such that δ(σ(a)) = σ(δ(a)) for all a ∈ R. If P1 ∈ Min.Spec(R), then O(P1) ∈
Min.Spec(O(R)).

Proof. Let P1 ∈ Min.Spec(R). Now by Theorem 2 σ(P1) = P1, and by Proposition 2
δ(P1) ⊆ P1. Now Proposition 3.3 of [5] implies that O(P1) ∈ Spec(O(R)). Suppose
O(P1) /∈ Min.Spec(O(R)) and P2 ⊂ O(P1) be a minimal prime ideal of O(R). Then

P2 = O(P2 ∩ R) ⊂ O(P1) ∈ Min.Spec(O(R)).

Therefore P2 ∩ R ⊂ P1 which is a contradiction, as P2 ∩ R ∈ Spec(R). Hence
O(P1) ∈ Min.Spec(O(R)).

Theorem 4 (see [3]). Let R be a Noetherian ring which is also an algebra over Q

and σ an automorphism of R such that R is a σ(∗)-ring. Let δ be a σ-derivation of

R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R. Then R[x;σ, δ] is 2-primal if and only

if P (R)[x;σ, δ] = P (R[x;σ, δ]).

Proof. Let R[x;σ, δ] be 2-primal. Now Theorem 3 implies that P (R[x;σ, δ]) ⊆
P (R)[x;σ, δ]. Let

f(x) =
∑n

j=0 xjaj ∈ P (R)[x;σ, δ].

Now R is a 2-primal subring of R[x;σ, δ] by Proposition 1, which implies that aj is
nilpotent and thus

aj ∈ N(R[x;σ, δ]) = P (R[x;σ, δ]).

So we have xjaj ∈ P (R[x;σ, δ]) for each j, 0 ≤ j ≤ n, which implies that
f(x) ∈ P (R[x;σ, δ]). Hence P (R)[x;σ, δ] = P (R[x;σ, δ]).

Conversely suppose that P (R)[x;σ, δ] = P (R[x;σ, δ]). We will show that
R[x;σ, δ] is 2-primal. Let

g(x) =
∑n

i=0 xibi ∈ R[x;σ, δ], bn 6= 0

be such that

(g(x))2 ∈ P (R[x;σ, δ]) = P (R)[x;σ, δ].

We will show that g(x) ∈ P (R[x;σ, δ]). Now the leading coefficient σ2n−1(bn)bn ∈
P (R) ⊆ P , for all P ∈ Min.Spec(R). Also σ(P ) = P and P is completely prime by
Theorem 3. Therefore we have bn ∈ P , for all P ∈ Min.Spec(R), i. e. bn ∈ P (R).
Since δ(P ) ⊆ P for all P ∈ Min.Spec(R) by Proposition 2, we get

(
∑n−1

i=0 xibi)
2 ∈ P (R[x;σ, δ]) = P (R)[x;σ, δ]

and as above we get bn−1 ∈ P (R). With the same process in a finite number of
steps we get bi ∈ P (R) for all i, 0 ≤ i ≤ n. Thus we have g(x) ∈ P (R)[x;σ, δ],
i.e. g(x) ∈ P (R[x;σ, δ]). Therefore, P (R[x;σ, δ]) is completely semiprime. Hence
R[x;σ, δ] is 2-primal.
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Proposition 5. Let R be a 2-primal Noetherian ring which is also an algebra over

Q and σ an automorphism of R such that R be a σ(∗)-ring. Let δ a σ-derivation of

R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R. Then O(N(R)) = N(O(R)).

Proof. The proof is on the same lines as in Proposition 5 of [2]. We take R to be
2-primal in place of commutative.

It is easy to see that O(N(R)) ⊆ N(O(R)). We will show that N(O(R)) ⊆
O(N(R)). Let

f =
∑m

i=0 xiai ∈ N(O(R)).

Then (f)(O(R)) ⊆ N(O(R)), and (f)(R) ⊆ N(O(R)). Let ((f)(R))k = 0, k > 0.
Then equating the leading term to zero, we get

(xmamR)k = 0.

After simplification and equating the leading term to zero, we get

xkmσ(k−1)m(amR).σ(k−2)m(amR).σ(k−3)m(amR)...amR = 0.

Therefore,

σ(k−1)m(amR).σ(k−2)m(amR).σ(k−3)m(amR)...amR = 0 ⊆ P ,

for all P ∈ Min.Spec(R). This implies that σ(k−j)m(amR) ⊆ P , for some j, 1 ≤
j ≤ k. Therefore, amR ⊆ σ−(k−j)m(P ). But σ−(k−j)m(P ) = P by Theorem 2, so
we have amR ⊆ P , for all P ∈ Min.Spec(R). Therefore, am ∈ P (R), and R being
2-primal implies that am ∈ N(R). Now xmam ∈ O(N(R)) ⊆ N(O(R)) implies that
∑m−1

i=0 xiai ∈ N(O(R)), and with the same process, in a finite number of steps, it
can be seen that ai ∈ P (R) = N(R), 0 ≤ i ≤ m − 1. Therefore, f ∈ O(N(R)).
Hence N(O(R)) ⊆ O(N(R)) and the result follows.

Let σ be an endomorphism of a ring R and δ a σ-derivation of R such that
σ(δ(a)) = δ(σ(a)) for all a ∈ R. Then σ can be extended to an endomorphism
(say σ) of R[x;σ, δ] by σ(

∑m
i=0 xiai) =

∑m
i=0 xiσ(ai). Also δ can be extended to a

σ-derivation (say δ) of R[x;σ, δ] by δ(
∑m

i=0 xiai) =
∑m

i=0 xiδ(ai).

We note that if σ(δ(a)) 6= δ(σ(a)) for all a ∈ R, then the above does not hold.
For example let f(x) = xa and g(x) = xb, a, b ∈ R. Then

δ(f(x)g(x)) = x2{δ(σ(a))σ(b) + σ(a)δ(b)} + x{δ2(a)σ(b) + δ(a)σ(b)},

but

δ(f(x))σ(g(x))+f(x)δ(g(x)) = x2{σ(δ(a))σ(b)+σ(a)δ(b)}+x{δ2 (a)σ(b)+δ(a)σ(b)}.

Theorem 5. Let R be a 2-primal Noetherian ring, which is also an algebra over

Q. Let σ be an automorphism of R such that R is a weak σ-rigid ring and δ a

σ-derivation of R such that δ(σ(a)) = σ(δ(a)) for all a ∈ R. Then O(R) = R[x;σ, δ]
is a 2-primal Noetherian weak σ-rigid ring.
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Proof. O(R) is Noetherian by the Hilbert Basis Theorem (see for example, The-
orem 1.12 of Goodearl and Warfield [6]). Now R being 2-primal weak σ-rigid
ring implies that R is a σ(∗)-ring by Proposition 3. Now by Theorem 1.3 of [4]
P ∈ Min.Spec(O(R)) implies that P ∩ R ∈ Min.Spec(R). Now use Theorem 3 to
get that P (R)[x;σ, δ] = P (R[x;σ, δ]). Therefore, Theorem 4 implies that O(R) is
2-primal. Also Theorem 7 of [2] implies that O(R) is a weak σ-rigid ring. Hence
O(R) is a 2-primal Noetherian weak σ-rigid ring.
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