On a class of weighted composition operators on Fock space

Namita Das

Abstract

Let T_{ϕ} be the Toeplitz operator defined on the Fock space $L_{a}^{2}(\mathbb{C})$ with symbol $\phi \in L^{\infty}(\mathbb{C})$. Let for $\lambda \in \mathbb{C}, k_{\lambda}(z)=e^{\frac{\bar{\lambda} z}{2}-\frac{|\lambda|^{2}}{4}}$, the normalized reproducing kernel at λ for the Fock space $L_{a}^{2}(\mathbb{C})$ and $t_{\alpha}(z)=z-\alpha, z, \alpha \in \mathbb{C}$. Define the weighted composition operator W_{α} on $L_{a}^{2}(\mathbb{C})$ as $\left(W_{\alpha} f\right)(z)=k_{\alpha}(z)\left(f \circ t_{\alpha}\right)(z)$. In this paper we have shown that if M and H are two bounded linear operators from $L_{a}^{2}(\mathbb{C})$ into itself such that $M T_{\psi} H=T_{\psi \circ t_{\alpha}}$ for all $\psi \in L^{\infty}(\mathbb{C})$, then M and H must be constant multiples of the weighted composition operator W_{α} and its adjoint respectively.

Mathematics subject classification: 47B35, 32M15.
Keywords and phrases: Fock space; Toeplitz operators; weighted composition operators.

1 Introduction

For $x, y \in \mathbb{C}^{N}$ (for some integer $N \geq 1$), we write $\bar{x} y=\sum_{n=1}^{N} \bar{x}_{n} y_{n}$ and $|x|=$ $(\bar{x} x)^{\frac{1}{2}}$. Thus, $|x-y|$ is the usual Euclidean distance between x and y. The symbol $d z$ denotes the Lebesgue measure in \mathbb{C}^{N} for all $N \geq 1$. The Gaussian measure on \mathbb{C}^{N} is, by definition, $d \mu(z)=(2 \pi)^{-N} e^{-\frac{|z|^{2}}{2}} d z$. Denote $L^{p}\left(\mathbb{C}^{N}, d \mu\right)$ the usual Lebesgue spaces on \mathbb{C}^{N} with respect to the measure $\mu ; L^{\infty}\left(\mathbb{C}^{N}, d \mu\right)$ shall be occasionally abbreviated to $L^{\infty}\left(\mathbb{C}^{N}\right)=L^{\infty}\left(\mathbb{C}^{N}, d z\right)$, since they happen to coincide [5]. Set, for $1 \leq p \leq \infty$,

$$
L_{a}^{p}\left(\mathbb{C}^{N}\right)=\left\{f \in L^{p}\left(\mathbb{C}^{N}, d \mu\right): f \text { is an entire function on } \mathbb{C}^{N}\right\}
$$

The space $L_{a}^{p}\left(\mathbb{C}^{N}\right)$ is a closed subspace of $L^{p}\left(\mathbb{C}^{N}, d \mu\right), L_{a}^{\infty}\left(\mathbb{C}^{N}\right)=H^{\infty}\left(\mathbb{C}^{N}\right)$. For $p=2, L_{a}^{2}\left(\mathbb{C}^{N}\right)$ is a Hilbert space, called the Fock or Siegal-Bargmann space.

For a multiindex $n=\left(n_{1}, n_{2}, \cdots, n_{N}\right) \in \mathbb{N}^{N}$, the following abbreviations will be employed:

$$
\begin{gathered}
a_{n}=a_{n_{1}, n_{2}, \cdots, n_{N}} \\
z^{n}=z_{1}^{n_{1}} z_{2}^{n_{2}} \cdots z_{N}^{n_{N}}\left(\text { for } z \in \mathbb{C}^{N}\right) \\
n!=n_{1}!n_{2}!\cdots n_{N}! \\
2^{n}=2^{n_{1}+n_{2}+\cdots+n_{N}}
\end{gathered}
$$

[^0]If f is an entire function, $f(z)=\sum_{n \in \mathbb{N}^{N}} f_{n} z^{n}$, then

$$
\int_{\mathbb{C}^{N}}|f(z)|^{2} d \mu(z)=\sum_{n \in \mathbb{N}^{N}} n!2^{n}\left|f_{n}\right|^{2}
$$

Consequently, $f \in L_{a}^{2}\left(\mathbb{C}^{N}\right)$ if and only if the last expression is finite. The inner product of f and $g(z)=\sum_{n \in \mathbb{N}^{N}} g_{n} z^{n}, f, g \in L_{a}^{2}\left(\mathbb{C}^{N}\right)$, is given by

$$
\langle f, g\rangle=\sum_{n \in \mathbb{N}^{N}} n!2^{n} f_{n} \bar{g}_{n}
$$

The set $\left\{\left(n!2^{n}\right)^{-\frac{1}{2}} z^{n}\right\}_{n \in \mathbb{N}^{N}}$ is an orthonormal basis of $L_{a}^{2}\left(\mathbb{C}^{N}\right)$. The polynomials are dense in $L_{a}^{2}\left(\mathbb{C}^{N}\right)$. The space $L_{a}^{2}\left(\mathbb{C}^{N}\right)$ is a reproducing kernel space; the reproducing kernel at $\lambda \in \mathbb{C}^{N}$ is given by $g_{\lambda}(z)=e^{\frac{\bar{\lambda} z}{2}}$, and $\left\|g_{\lambda}\right\|_{2}=e^{\frac{|\lambda|^{2}}{4}}$. For $\phi \in L^{\infty}\left(\mathbb{C}^{N}, d \mu\right)=$ $L^{\infty}\left(\mathbb{C}^{N}\right)$, the Toeplitz operator T_{ϕ} is defined from $L_{a}^{2}\left(\mathbb{C}^{N}\right)$ into itself as $T_{\phi} f=P(\phi f)$ where P is the orthogonal projection from $L^{2}\left(\mathbb{C}^{N}, d \mu\right)$ onto $L_{a}^{2}\left(\mathbb{C}^{N}\right)$. Further, for $\phi \in L^{\infty}\left(\mathbb{C}^{N}\right)$, define the Hankel operator H_{ϕ} from $L_{a}^{2}\left(\mathbb{C}^{N}\right)$ into $\left(L_{a}^{2}\left(\mathbb{C}^{N}\right)\right)^{\perp}$ by $H_{\phi} f=$ $(I-P)(\phi f)$. Here $\left(L_{a}^{2}\left(\mathbb{C}^{N}\right)\right)^{\perp}$ denotes the orthogonal complement of $L_{a}^{2}\left(\mathbb{C}^{N}\right)$. Define for $\lambda \in \mathbb{C}^{N}, k_{\lambda}(z)=\frac{g_{\lambda}(z)}{\left\|g_{\lambda}\right\|}=e^{\frac{\bar{\lambda} z}{2}-\frac{|\lambda|^{2}}{4}}$, the normalized reproducing kernel at λ for the Fock space $L_{a}^{2}\left(\mathbb{C}^{N}\right)$. In this paper we shall only concentrate our attention on the Fock space $L_{a}^{2}(\mathbb{C})$. Notice that it has an orthonormal basis $\left\{e_{n}\right\}_{n=0}^{\infty}$ where

$$
e_{n}(z)=\left(n!2^{n}\right)^{-\frac{1}{2}} z^{n}
$$

For $\alpha \in \mathbb{C}$, define W_{α} from $L_{a}^{2}(\mathbb{C})$ into itself by $\left(W_{\alpha} f\right)(z)=k_{\alpha}(z) f(z-\alpha)$. Note for $f \in L_{a}^{2}(\mathbb{C}), W_{\alpha}^{*} f=\left(f \circ t_{-\alpha}\right) k_{-\alpha}=W_{-\alpha} f$ and therefore the operator W_{α} is a unitary operator on $L_{a}^{2}(\mathbb{C})$ for each $\alpha \in \mathbb{C}$ and the operator can be defined on $L^{2}(\mathbb{C})$.

2 The forward shift operator and Toeplitz algebra on Fock space

Let Z be the forward shift operator with respect to the basis $\left\{e_{n}\right\}_{n=0}^{\infty}$, and let $\Phi(z)=\frac{z}{|z|}=e^{i \arg z}$. Let $\mathcal{L}\left(L_{a}^{2}(\mathbb{C})\right)$ be the space of all bounded linear operators from $L_{a}^{2}(\mathbb{C})$ into itself and $\mathcal{L C}\left(L_{a}^{2}(\mathbb{C})\right)$ be the space of all compact operators in $\mathcal{L}\left(L_{a}^{2}(\mathbb{C})\right)$. For $M, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{C})\right)$, let $[M, T]=M T-T M$. Let

$$
\mathcal{A}\left(T_{\Phi}\right)=\left\{T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{C})\right):\left[T, T_{\Phi}\right] \in \mathcal{L C}\left(L_{a}^{2}(\mathbb{C})\right)\right\}
$$

and

$$
\mathcal{A}(Z)=\left\{T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{C})\right):[T, Z] \in \mathcal{L C}\left(L_{a}^{2}(\mathbb{C})\right)\right\}
$$

Lemma 2.1. The following hold.
(i) The operator T_{Φ} is a compact perturbation of Z and $\mathcal{A}\left(T_{\Phi}\right)=\mathcal{A}(Z)$.
(ii) The Toeplitz operator $T_{\Psi} \in \mathcal{A}\left(T_{\Phi}\right)$ for every $\Psi \in L^{\infty}(\mathbb{C})$.

Proof. (i) Notice that

$$
\begin{aligned}
\left\langle T_{\Phi} z^{n}, z^{m}\right\rangle & =\int_{\mathbb{C}} \frac{z}{|z|} z^{n} \bar{z}^{m} d \mu(z) \\
& =\frac{1}{2 \pi} \int_{0}^{\infty} \int_{0}^{2 \pi} r^{n+m} e^{i(n-m+1) t} e^{-\frac{r^{2}}{2}} r d t d r .
\end{aligned}
$$

This is zero unless $m=n+1$, and in that case it equals

$$
\int_{0}^{\infty} r^{2 n+1} e^{-\frac{r^{2}}{2}} r d r=\int_{0}^{\infty} 2^{n+\frac{1}{2}} t^{n+\frac{1}{2}} e^{-t} d t=2^{n+\frac{1}{2}} \Gamma\left(n+\frac{3}{2}\right)
$$

where Γ is Euler's gamma function. Thus

$$
\left\langle T_{\Phi} e_{n}, e_{m}\right\rangle=\left\{\begin{array}{cl}
0 & \text { if } \quad m \neq n+1 \\
\left(n!2^{n}\right)^{-\frac{1}{2}}\left(m!2^{m}\right)^{-\frac{1}{2}} 2^{n+\frac{1}{2}} \Gamma\left(n+\frac{3}{2}\right) & \text { if } \quad m=n+1
\end{array}\right.
$$

Consequently, $T_{\Phi} e_{n}=c_{n} e_{n+1}$, where $c_{n}=\frac{\Gamma\left(n+\frac{3}{2}\right)}{\Gamma(n+1)^{\frac{1}{2}} \Gamma(n+2)^{\frac{1}{2}}}$. Let $\operatorname{diag}\left(1-c_{n}\right)$ be the diagonal matrix whose nth diagonal entry is $1-c_{n}$. Now it follows that $Z-T_{\Phi}=$ $Z \cdot \operatorname{diag}\left(1-c_{n}\right)$, and in order to verify our claim it suffices to show that $c_{n} \rightarrow 1$ as $n \rightarrow+\infty$. According to Stirling's formula [1],

$$
\Gamma(x+1) \sim \sqrt{2 \pi} x^{x+\frac{1}{2}} e^{-x}
$$

where " \sim " means that the ratio of the right-hand to the left-hand side approaches 1 as $x \rightarrow+\infty$. Substituting this into the expression for c_{n} produces

$$
c_{n} \sim \frac{\left(n+\frac{1}{2}\right)^{n+1} e^{-n-\frac{1}{2}} \sqrt{2 \pi}}{n^{\frac{n}{2}+\frac{1}{4}} e^{-\frac{n}{2}}(2 \pi)^{\frac{1}{4}}(n+1)^{\frac{n}{2}+\frac{3}{4}} e^{-\frac{n}{2}-\frac{1}{2}}(2 \pi)^{\frac{1}{4}}} .
$$

The terms containing π cancel, as well as those containing e, and what remains is the product of

$$
\left(\frac{n+\frac{1}{2}}{n}\right)^{\frac{n}{2}},\left(\frac{n+\frac{1}{2}}{n+1}\right)^{\frac{n+1}{2}} \text { and } \frac{\left(n+\frac{1}{2}\right)^{\frac{1}{2}}}{n^{\frac{1}{4}}(n+1)^{\frac{1}{4}}}
$$

which tend to $e^{\frac{1}{4}}, e^{-\frac{1}{4}}$ and 1 , respectively. So, $c_{n} \rightarrow 1$ and the assertion (i) follows.
Now we shall prove (ii). The formulas

$$
\begin{gather*}
T_{\psi \theta}-T_{\psi} T_{\theta}=H_{\bar{\psi}}^{*} H_{\theta}, \tag{1}\\
T_{\psi} T_{\theta}-T_{\theta} T_{\psi}=H_{\bar{\theta}}^{*} H_{\psi}-H_{\bar{\psi}}^{*} H_{\theta} \tag{2}
\end{gather*}
$$

hold for arbitrary $\psi, \theta \in L^{\infty}(\mathbb{C})$. Owing to (2),

$$
T_{\psi} T_{\Phi}-T_{\Phi} T_{\psi}=H_{\Phi}^{*} H_{\psi}-H_{\psi}^{*} H_{\Phi}
$$

will be compact for arbitrary $\psi \in L^{\infty}(\mathbb{C})$ if $H_{\Phi}, H_{\bar{\Phi}}$ are compact. The latter is equivalent to $H_{\Phi}^{*} H_{\Phi}, H_{\Phi}^{*} H_{\bar{\Phi}}$ are compact, respectively, and from (1) it follows that this is equivalent to $I-T_{\Phi}^{*} T_{\Phi}$ and $I-T_{\Phi} T_{\Phi}^{*}$ are compact, respectively. Owing to (i), the last two operators are compact perturbations of $I-Z^{*} Z=0$ and $I-Z Z^{*}=$ $\left\langle., e_{0}\right\rangle e_{0}$, respectively and the result follows.

Let \mathbb{T} denote the unit circle in the complex plane \mathbb{C}. Let $L^{\infty}(\mathbb{T})$ be the space of all essentially bounded measurable functions on \mathbb{T} with the essential supremum norm. Let H^{2} be the Hardy space on the unit circle \mathbb{T}. For $\phi \in L^{\infty}(\mathbb{T})$, the Toeplitz operator B_{ϕ} with symbol ϕ is the operator on H^{2} sending $f \in H^{2}$ to $P_{+}(\phi f)$, where P_{+}is the orthogonal projection of $L^{2}(\mathbb{T})$ onto H^{2}. It is easy to check that $B_{z}^{*} B_{\phi} B_{z}=B_{\phi}$ for any $\phi \in L^{\infty}(\mathbb{T})$. According to a classical result [3], the converse holds: if an operator $T \in \mathcal{L}\left(H^{2}\right)$ satisfies $B_{z}^{*} T B_{z}=T$, then $T=B_{\phi}$ for some $\phi \in L^{\infty}(\mathbb{T})$. This result serves as a starting point for the theory of symbols of operators. It is also shown in [3], that the only compact Toeplitz operator is the zero Toeplitz operator. If $\phi \in H^{\infty}(\mathbb{T})$ then $B_{\phi} \in \mathcal{L}\left(H^{2}\right)$ is called an analytic Toeplitz operator and $B_{\phi}^{*}=B_{\bar{\phi}}$ is called a coanalytic Toeplitz operator. Let

$$
\begin{aligned}
\mathcal{A}\left(B_{z}\right) & =\left\{T \in \mathcal{L}\left(H^{2}\right): T-B_{z}^{*} T B_{z} \in \mathcal{L C}\left(H^{2}\right)\right\} \\
& =\left\{T \in \mathcal{L}\left(H^{2}\right):\left[T, B_{z}\right] \in \mathcal{L C}\left(H^{2}\right)\right\},
\end{aligned}
$$

the essential commutant of the forward shift operator B_{z} on H^{2}. It is known [2] that $\mathcal{A}\left(B_{z}\right)$ is a C^{*}-subalgebra of $\mathcal{L}\left(H^{2}\right)$ and $B_{\phi} \in \mathcal{A}\left(B_{z}\right)$ for all $\phi \in L^{\infty}(\mathbb{T})$.

Lemma 2.2. There exists a unitary operator $U: H^{2} \rightarrow L_{a}^{2}(\mathbb{C})$ such that the transformation $T \mapsto U^{*} T U$ is a C^{*}-isomorphism of $\mathcal{A}(Z)$ onto $\mathcal{A}\left(B_{z}\right)$.
Proof. Define $U: H^{2} \rightarrow L_{a}^{2}(\mathbb{C})$ by mapping the standard basis of H^{2} onto the basis $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ of $L_{a}^{2}(\mathbb{C})$,

$$
U: z^{n} \in H^{2} \mapsto \frac{z^{n}}{\sqrt{n!2^{n}}} \in L_{a}^{2}(\mathbb{C})
$$

This operator is unitary and the transformation $T \rightarrow U^{*} T U$ maps Z to B_{z}; hence,

$$
\begin{aligned}
T \in \mathcal{A}(Z) & \Leftrightarrow[T, Z] \in \mathcal{L C}\left(L_{a}^{2}(\mathbb{C})\right) \\
& \Leftrightarrow U^{*} T Z U-U^{*} Z T U \in \mathcal{L C}\left(H^{2}\right) \\
& \Leftrightarrow\left(U^{*} T U\right)\left(U^{*} Z U\right)-\left(U^{*} Z U\right)\left(U^{*} T U\right) \in \mathcal{L C}\left(H^{2}\right) \\
& \Leftrightarrow\left(U^{*} T U\right) B_{z}-B_{z}\left(U^{*} T U\right) \in \mathcal{L C}\left(H^{2}\right) \\
& \Leftrightarrow U^{*} T U \in \mathcal{A}\left(B_{z}\right) .
\end{aligned}
$$

The proof is complete.

3 Main result

We now prove the main result of the work.
Theorem 3.1. Let $\alpha \in \mathbb{C}$ and define the translation operator on \mathbb{C} as $t_{\alpha}(z)=z-\alpha$. Suppose M and H are two linear bounded operators from $L_{a}^{2}(\mathbb{C})$ into itself such that
$M T_{\psi} H=T_{\psi \circ t_{\alpha}}$ for all $\psi \in L^{\infty}(\mathbb{C}, d z)$. Then $M=c W_{\alpha}$ and $H=\frac{1}{c} W_{\alpha}^{*}$ and $M H=I$, the identity operator on $L_{a}^{2}(\mathbb{C})$.

Proof. Notice that the Fock space $L_{a}^{2}(\mathbb{C})$ is an invariant subspace for W_{α} and $W_{\alpha}^{*}=$ $W_{-\alpha}$ and therefore $P W_{\alpha}=W_{\alpha} P$. For $f \in L_{a}^{2}(\mathbb{C})$ and $\alpha \in \mathbb{C}$, we have

$$
\begin{aligned}
T_{\psi} W_{\alpha} f & =T_{\psi}\left[\left(f \circ t_{\alpha}\right) k_{\alpha}\right] \\
& =P\left(\psi\left(f \circ t_{\alpha}\right) k_{\alpha}\right) \\
& =P\left(\left(\psi \circ t_{-\alpha} \circ t_{\alpha}\right)\left(f \circ t_{\alpha}\right) k_{\alpha}\right) \\
& =P\left[\left(\left(\left(\psi \circ t_{-\alpha}\right) f\right) \circ t_{\alpha}\right) k_{\alpha}\right] \\
& =P W_{\alpha}\left[\left(\psi \circ t_{-\alpha}\right) f\right] \\
& =W_{\alpha} P\left[\left(\psi \circ t_{-\alpha}\right) f\right] \\
& =W_{\alpha} T_{\psi \circ t_{-\alpha}} f
\end{aligned}
$$

Thus we get $W_{\alpha}^{*} T_{\psi} W_{\alpha} f=T_{\psi \circ t_{-\alpha}} f$, for $\alpha \in \mathbb{C}$. Now let $R_{\alpha}=W_{\alpha}^{*} M$ and $S_{\alpha}=H W_{\alpha}$. Since $M T_{\psi} H=T_{\psi \circ t_{\alpha}}$ it follows that $R_{\alpha} T_{\psi} S_{\alpha}=W_{\alpha}^{*} M T_{\psi} H W_{\alpha}=W_{\alpha}^{*} T_{\psi \circ t_{\alpha}} W_{\alpha}=T_{\psi}$ for all $\psi \in L^{\infty}(\mathbb{C})$. It is known [4] that the norm closure of the set of all Toeplitz operators in $\mathcal{L}\left(L_{a}^{2}(\mathbb{C})\right.$) contains $\mathcal{L C}\left(L_{a}^{2}(\mathbb{C})\right)$. In fact, if $\mathcal{T}_{1}=\left\{T_{\phi}: \phi \in \mathcal{D}(\mathbb{C})\right\}$ then $\operatorname{clos} \mathcal{T}_{1}=\mathcal{L C}\left(L_{a}^{2}(\mathbb{C})\right)$ where $\mathcal{D}(\mathbb{C})$ is the set of all infinitely differentiable functions on \mathbb{C} whose supports are compact subsets of \mathbb{C}. Thus

$$
\begin{aligned}
R_{\alpha} T_{\psi} S_{\alpha} T_{\Phi} & =T_{\psi} T_{\Phi}=T_{\psi \Phi}+G \quad\left(\text { for some } G \in \mathcal{L C}\left(L_{a}^{2}(\mathbb{C})\right)\right) \\
& =R_{\alpha} T_{\psi \Phi} S_{\alpha}+G \\
& =R_{\alpha}\left(T_{\psi} T_{\Phi}-G\right) S_{\alpha}+G \\
& =R_{\alpha}\left(T_{\psi} T_{\Phi}-\lim _{n \rightarrow \infty} T_{\phi_{n}}\right) S_{\alpha}+G \quad\left(\text { where } G=\lim _{n \rightarrow \infty} T_{\phi_{n}}\right) \\
& =R_{\alpha} T_{\psi} T_{\Phi} S_{\alpha}-\lim _{n \rightarrow \infty} R_{\alpha} T_{\phi_{n}} S_{\alpha}+G \\
& =R_{\alpha} T_{\psi} T_{\Phi} S_{\alpha}-\lim _{n \rightarrow \infty} T_{\phi_{n}}+G \\
& =R_{\alpha} T_{\psi} T_{\Phi} S_{\alpha}-G+G \\
& =R_{\alpha} T_{\psi} T_{\Phi} S_{\alpha} .
\end{aligned}
$$

It follows therefore that $R_{\alpha} T_{\psi}\left(S_{\alpha} T_{\Phi}-T_{\Phi} S_{\alpha}\right)=0$. We shall now show that $S_{\alpha} T_{\Phi}-$ $T_{\Phi} S_{\alpha}=0$. Suppose on the contrary that there is some $x \neq 0$ in $\operatorname{Ran}\left(S_{\alpha} T_{\Phi}-T_{\Phi} S_{\alpha}\right)$. Then, by the last relation, $R_{\alpha} T_{\psi} x=0$ for all $\psi \in L^{\infty}(\mathbb{C})$, so the kernel of R_{α} contains the set $\left\{T_{\psi} x: \psi \in L^{\infty}(\mathbb{C})\right\}$. Consider some $y \in L_{a}^{2}(\mathbb{C})$ orthogonal to this set. Then $0=\left\langle y, T_{\psi} x\right\rangle=\langle y, P(\psi x)\rangle=\int_{\mathbb{C}} y(z) \overline{\psi(z) x(z)} d \mu(z)$ for all $\psi \in L^{\infty}(\mathbb{C}) ;$ because $\bar{x} y \in L^{1}(\mathbb{C}, d \mu)$, we conclude that $\bar{x} y=0$, and this is only possible if at least one of the analytic functions x, y is identically zero. But $x \neq 0$ by assumption, so y must be zero, which means that our set is dense in $L_{a}^{2}(\mathbb{C})$. Because this set is contained in ker R_{α}, we have $R_{\alpha}=0$, so $T_{\psi}=R_{\alpha} T_{\psi} S_{\alpha}=0$ for all ψ - a contradiction. This proves that $S_{\alpha} T_{\Phi}-T_{\Phi} S_{\alpha}=0$. Hence $S_{\alpha} T_{\Phi}^{n}=T_{\Phi}^{n} S_{\alpha}$ for all $n \in \mathbb{N}$. Therefore $S_{\alpha}(Z+\widetilde{K})^{n}=(Z+\widetilde{K})^{n} S_{\alpha}$ as $T_{\Phi}=Z+\widetilde{K}$ for some $\widetilde{K} \in \mathcal{L C}\left(L_{a}^{2}(\mathbb{C})\right)$. Hence, it follows that $S_{\alpha} Z^{n}-Z^{n} S_{\alpha}=K_{n}$ for some $K_{n} \in \mathcal{L C}\left(L_{a}^{2}(\mathbb{C})\right)$. Thus

$$
\left(U^{*} S_{\alpha} U\right)\left(U^{*} Z^{n} U\right)-\left(U^{*} Z^{n} U\right)\left(U^{*} S_{\alpha} U\right)=C_{n}
$$

for some $C_{n} \in \mathcal{L C}\left(H^{2}\right)$ for all $n \in \mathbb{N}$. Hence $U^{*} S_{\alpha} U$ lies in the essential commutant of all analytic Toeplitz operators in $\mathcal{L}\left(H^{2}\right)$. Thus $U^{*} S_{\alpha} U=B_{\phi}+K$ for some $\phi \in H^{\infty}(\mathbb{T})$ and $K \in \mathcal{L C}\left(H^{2}\right)$.

Similarly one can show that $U^{*} R_{\alpha} U=B_{\bar{\theta}}+K^{\prime}$, for some $\theta \in H^{\infty}(\mathbb{T})$ and $K^{\prime} \in$ $\mathcal{L C}\left(H^{2}\right)$. This is because $R_{\alpha} T_{\psi} S_{\alpha}=T_{\psi}$ for all $\psi \in L^{\infty}(\mathbb{C})$ implies $S_{\alpha}^{*} T_{\psi} R_{\alpha}^{*}=T_{\psi}$ for all $\psi \in L^{\infty}(\mathbb{C})$. Now $\left(U^{*} R_{\alpha} U\right)\left(U^{*} S_{\alpha} U\right)=B_{\bar{\theta} \phi}+C$, for some $C \in \mathcal{L C}\left(H^{2}\right)$. Hence $I=\left(U^{*} R_{\alpha} S_{\alpha} U\right)=B_{\bar{\theta} \phi}+C$ and therefore $B_{1-\bar{\theta} \phi}=C$. This implies $1-\bar{\theta} \phi=0$ as the only compact Toeplitz operator in $\mathcal{L}\left(H^{2}\right)$ is the zero Toeplitz operator. Thus $C=0$ and $\bar{\theta}=\frac{1}{\phi}$. This implies $\theta \in H^{\infty}(\mathbb{T})$ and $\bar{\theta} \in H^{\infty}(\mathbb{T})$. Thus $\bar{\theta}=d$ and $\phi=\frac{1}{d}$ for some constant d. Hence it follows that $U^{*} R_{\alpha} U=B_{d}+K^{\prime}=d I+K^{\prime}$ and $U^{*} S_{\alpha} U=B_{\frac{1}{d}}+K=\frac{1}{d} I+K$. Thus $I=\left(d I+K^{\prime}\right)\left(\frac{1}{d} I+K\right)$ and therefore

$$
\begin{equation*}
d K+\frac{K^{\prime}}{d}+K^{\prime} K=0 \tag{3}
\end{equation*}
$$

On the other hand, $U^{*} S_{\alpha} U=\frac{1}{d} I+K$ implies $S_{\alpha}=\frac{1}{d}+U K U^{*}=\frac{1}{d}+E$ where $E=U K U^{*} \in \mathcal{L C}\left(L_{a}^{2}(\mathbb{C})\right)$. Hence

$$
\begin{equation*}
Z^{* n} S_{\alpha} Z^{n} \rightarrow \frac{1}{d} \tag{4}
\end{equation*}
$$

as $Z^{* n} E Z^{n} \rightarrow 0$ (see [2] for the proof) strongly. Further, since $S_{\alpha} Z^{n}-Z^{n} S_{\alpha}=K_{n}$ for some $K_{n} \in \mathcal{L C}\left(L_{a}^{2}(\mathbb{C})\right)$, hence

$$
\begin{equation*}
Z^{* n} S_{\alpha} Z^{n}-S_{\alpha}=J_{n} \tag{5}
\end{equation*}
$$

for some $J_{n}=Z^{* n} K_{n} \in \mathcal{L C}\left(L_{a}^{2}(\mathbb{C})\right)$. Since $\left\{J_{n}\right\}$ converges strongly to 0 , we obtain from (4) and (5) that $S_{\alpha}=\frac{1}{d}$. Hence $E=0$ and therefore $K=0$. It follows hence from (3) that $K^{\prime}=0$. Thus $U^{*} S_{\alpha} U=\frac{1}{d}$ and $U^{*} R_{\alpha} U=d$. Hence $S_{\alpha}=\frac{1}{d}$ and $R_{\alpha}=d$. Thus $M=W_{\alpha} R_{\alpha}=d W_{\alpha}$ and $H=S_{\alpha} W_{\alpha}^{*}=\frac{1}{d} W_{\alpha}^{*}$ and the theorem follows.

References

[1] Ahlfors L. V. Complex Analysis. McGraw-Hill, 1979.
[2] Barria J., Halmos P. R. Asymptotic Toeplitz operators. Trans. Amer. Math. Soc., 1982, 273, 621-630.
[3] Brown A., Halmos P. R. Algebraic properties of Toeplitz operators. J. Reine Angew. Math., 1964, 213, 89-102.
[4] Englis M. Density of algebras generated by Toeplitz operators on Bergman spaces. Arkiv for Matematik, 1992, 30, 227-243.
[5] Rudin W. Real and complex Analysis. 3rd Edition, McGraw-Hill, New York, 1987.
P. G. Department of Mathematics

Utkal University, Vani Vihar
Bhubaneswar, Orissa, India 751004
E-mail: namitadas440@yahoo.co.in

[^0]: © Namita Das, 2014

