On a class of weighted composition operators on Fock space

Namita Das

Abstract. Let T_{ϕ} be the Toeplitz operator defined on the Fock space $L^2_a(\mathbb{C})$ with symbol $\phi \in L^{\infty}(\mathbb{C})$. Let for $\lambda \in \mathbb{C}$, $k_{\lambda}(z) = e^{\frac{\lambda z}{2} - \frac{|\lambda|^2}{4}}$, the normalized reproducing kernel at λ for the Fock space $L^2_a(\mathbb{C})$ and $t_{\alpha}(z) = z - \alpha, z, \alpha \in \mathbb{C}$. Define the weighted composition operator W_{α} on $L^2_a(\mathbb{C})$ as $(W_{\alpha}f)(z) = k_{\alpha}(z)(f \circ t_{\alpha})(z)$. In this paper we have shown that if M and H are two bounded linear operators from $L^2_a(\mathbb{C})$ into itself such that $MT_{\psi}H = T_{\psi \circ t_{\alpha}}$ for all $\psi \in L^{\infty}(\mathbb{C})$, then M and H must be constant multiples of the weighted composition operator W_{α} and its adjoint respectively.

Mathematics subject classification: 47B35, 32M15.

Keywords and phrases: Fock space; Toeplitz operators; weighted composition operators.

1 Introduction

For $x, y \in \mathbb{C}^N$ (for some integer $N \geq 1$), we write $\bar{x}y = \sum_{n=1}^N \bar{x}_n y_n$ and $|x| = (\bar{x}x)^{\frac{1}{2}}$. Thus, |x-y| is the usual Euclidean distance between x and y. The symbol dz denotes the Lebesgue measure in \mathbb{C}^N for all $N \geq 1$. The Gaussian measure on \mathbb{C}^N is, by definition, $d\mu(z) = (2\pi)^{-N} e^{-\frac{|z|^2}{2}} dz$. Denote $L^p(\mathbb{C}^N, d\mu)$ the usual Lebesgue spaces on \mathbb{C}^N with respect to the measure μ ; $L^{\infty}(\mathbb{C}^N, d\mu)$ shall be occasionally abbreviated to $L^{\infty}(\mathbb{C}^N) = L^{\infty}(\mathbb{C}^N, dz)$, since they happen to coincide [5]. Set, for $1 \leq p \leq \infty$,

$$L^p_a(\mathbb{C}^N) = \{ f \in L^p(\mathbb{C}^N, d\mu) : f \text{ is an entire function on } \mathbb{C}^N \}.$$

The space $L^p_a(\mathbb{C}^N)$ is a closed subspace of $L^p(\mathbb{C}^N, d\mu)$, $L^\infty_a(\mathbb{C}^N) = H^\infty(\mathbb{C}^N)$. For p = 2, $L^2_a(\mathbb{C}^N)$ is a Hilbert space, called the Fock or Siegal-Bargmann space.

For a multiindex $n = (n_1, n_2, \dots, n_N) \in \mathbb{N}^N$, the following abbreviations will be employed:

$$a_n = a_{n_1, n_2, \cdots, n_N},$$

$$z^n = z_1^{n_1} z_2^{n_2} \cdots z_N^{n_N} (\text{ for } z \in \mathbb{C}^N),$$

$$n! = n_1! n_2! \cdots n_N!,$$

$$2^n = 2^{n_1 + n_2 + \cdots + n_N}.$$

[©] Namita Das, 2014

If f is an entire function, $f(z) = \sum_{n \in \mathbb{N}^N} f_n z^n$, then

$$\int_{\mathbb{C}^N} |f(z)|^2 d\mu(z) = \sum_{n \in \mathbb{N}^N} n! 2^n |f_n|^2.$$

Consequently, $f \in L^2_a(\mathbb{C}^N)$ if and only if the last expression is finite. The inner product of f and $g(z) = \sum_{n \in \mathbb{N}^N} g_n z^n$, $f, g \in L^2_a(\mathbb{C}^N)$, is given by

$$\langle f,g\rangle = \sum_{n\in\mathbb{N}^N} n! 2^n f_n \bar{g}_n$$

The set $\{(n!2^n)^{-\frac{1}{2}}z^n\}_{n\in\mathbb{N}^N}$ is an orthonormal basis of $L^2_a(\mathbb{C}^N)$. The polynomials are dense in $L^2_a(\mathbb{C}^N)$. The space $L^2_a(\mathbb{C}^N)$ is a reproducing kernel space; the reproducing kernel at $\lambda \in \mathbb{C}^N$ is given by $g_\lambda(z) = e^{\frac{\lambda z}{2}}$, and $\|g_\lambda\|_2 = e^{\frac{|\lambda|^2}{4}}$. For $\phi \in L^\infty(\mathbb{C}^N, d\mu) = L^\infty(\mathbb{C}^N)$, the Toeplitz operator T_ϕ is defined from $L^2_a(\mathbb{C}^N)$ into itself as $T_\phi f = P(\phi f)$ where P is the orthogonal projection from $L^2(\mathbb{C}^N, d\mu)$ onto $L^2_a(\mathbb{C}^N)$. Further, for $\phi \in L^\infty(\mathbb{C}^N)$, define the Hankel operator H_ϕ from $L^2_a(\mathbb{C}^N)$ into $(L^2_a(\mathbb{C}^N))^{\perp}$ by $H_\phi f = (I-P)(\phi f)$. Here $(L^2_a(\mathbb{C}^N))^{\perp}$ denotes the orthogonal complement of $L^2_a(\mathbb{C}^N)$. Define for $\lambda \in \mathbb{C}^N$, $k_\lambda(z) = \frac{g_\lambda(z)}{\|g_\lambda\|} = e^{\frac{\lambda z}{2} - \frac{|\lambda|^2}{4}}$, the normalized reproducing kernel at λ for the Fock space $L^2_a(\mathbb{C}^N)$. In this paper we shall only concentrate our attention on the Fock space $L^2_a(\mathbb{C})$. Notice that it has an orthonormal basis $\{e_n\}_{n=0}^{\infty}$ where

$$e_n(z) = (n!2^n)^{-\frac{1}{2}} z^n.$$

For $\alpha \in \mathbb{C}$, define W_{α} from $L^2_a(\mathbb{C})$ into itself by $(W_{\alpha}f)(z) = k_{\alpha}(z)f(z-\alpha)$. Note for $f \in L^2_a(\mathbb{C}), W^*_{\alpha}f = (f \circ t_{-\alpha})k_{-\alpha} = W_{-\alpha}f$ and therefore the operator W_{α} is a unitary operator on $L^2_a(\mathbb{C})$ for each $\alpha \in \mathbb{C}$ and the operator can be defined on $L^2(\mathbb{C})$.

2 The forward shift operator and Toeplitz algebra on Fock space

Let Z be the forward shift operator with respect to the basis $\{e_n\}_{n=0}^{\infty}$, and let $\Phi(z) = \frac{z}{|z|} = e^{i \arg z}$. Let $\mathcal{L}(L_a^2(\mathbb{C}))$ be the space of all bounded linear operators from $L_a^2(\mathbb{C})$ into itself and $\mathcal{LC}(L_a^2(\mathbb{C}))$ be the space of all compact operators in $\mathcal{L}(L_a^2(\mathbb{C}))$. For $M, T \in \mathcal{L}(L_a^2(\mathbb{C}))$, let [M, T] = MT - TM. Let

$$\mathcal{A}(T_{\Phi}) = \{ T \in \mathcal{L}(L^2_a(\mathbb{C})) : [T, T_{\Phi}] \in \mathcal{LC}(L^2_a(\mathbb{C})) \}$$

and

$$\mathcal{A}(Z) = \{T \in \mathcal{L}(L^2_a(\mathbb{C})) : [T, Z] \in \mathcal{LC}(L^2_a(\mathbb{C}))\}.$$

Lemma 2.1. The following hold.

- (i) The operator T_{Φ} is a compact perturbation of Z and $\mathcal{A}(T_{\Phi}) = \mathcal{A}(Z)$.
- (ii) The Toeplitz operator $T_{\Psi} \in \mathcal{A}(T_{\Phi})$ for every $\Psi \in L^{\infty}(\mathbb{C})$.

Proof. (i) Notice that

$$\langle T_{\Phi} z^n, z^m \rangle = \int_{\mathbb{C}} \frac{z}{|z|} z^n \bar{z}^m d\mu(z)$$

$$= \frac{1}{2\pi} \int_0^\infty \int_0^{2\pi} r^{n+m} e^{i(n-m+1)t} e^{-\frac{r^2}{2}r} dt dr.$$

This is zero unless m = n + 1, and in that case it equals

$$\int_0^\infty r^{2n+1} e^{-\frac{r^2}{2}} r dr = \int_0^\infty 2^{n+\frac{1}{2}} t^{n+\frac{1}{2}} e^{-t} dt = 2^{n+\frac{1}{2}} \Gamma\left(n+\frac{3}{2}\right),$$

where Γ is Euler's gamma function. Thus

$$\langle T_{\Phi}e_n, e_m \rangle = \begin{cases} 0 & \text{if } m \neq n+1;\\ (n!2^n)^{-\frac{1}{2}}(m!2^m)^{-\frac{1}{2}}2^{n+\frac{1}{2}}\Gamma(n+\frac{3}{2}) & \text{if } m=n+1. \end{cases}$$

Consequently, $T_{\Phi}e_n = c_n e_{n+1}$, where $c_n = \frac{\Gamma(n+\frac{3}{2})}{\Gamma(n+1)^{\frac{1}{2}}\Gamma(n+2)^{\frac{1}{2}}}$. Let diag $(1-c_n)$ be the diagonal matrix whose nth diagonal entry is $1-c_n$. Now it follows that $Z - T_{\Phi} = Z \cdot \text{diag}(1-c_n)$, and in order to verify our claim it suffices to show that $c_n \to 1$ as $n \to +\infty$. According to Stirling's formula [1],

$$\Gamma(x+1) \sim \sqrt{2\pi} x^{x+\frac{1}{2}} e^{-x},$$

where "~" means that the ratio of the right-hand to the left-hand side approaches 1 as $x \to +\infty$. Substituting this into the expression for c_n produces

$$c_n \sim \frac{\left(n + \frac{1}{2}\right)^{n+1} e^{-n - \frac{1}{2}} \sqrt{2\pi}}{n^{\frac{n}{2} + \frac{1}{4}} e^{-\frac{n}{2}} (2\pi)^{\frac{1}{4}} (n+1)^{\frac{n}{2} + \frac{3}{4}} e^{-\frac{n}{2} - \frac{1}{2}} (2\pi)^{\frac{1}{4}}}.$$

The terms containing π cancel, as well as those containing e, and what remains is the product of

$$\left(\frac{n+\frac{1}{2}}{n}\right)^{\frac{n}{2}}, \left(\frac{n+\frac{1}{2}}{n+1}\right)^{\frac{n+1}{2}} \text{ and } \frac{\left(n+\frac{1}{2}\right)^{\frac{1}{2}}}{n^{\frac{1}{4}}(n+1)^{\frac{1}{4}}},$$

which tend to $e^{\frac{1}{4}}, e^{-\frac{1}{4}}$ and 1, respectively. So, $c_n \to 1$ and the assertion (i) follows. Now we shall prove (ii). The formulas

$$T_{\psi\theta} - T_{\psi}T_{\theta} = H^*_{\overline{\psi}}H_{\theta},\tag{1}$$

$$T_{\psi}T_{\theta} - T_{\theta}T_{\psi} = H_{\overline{\theta}}^*H_{\psi} - H_{\overline{\psi}}^*H_{\theta}, \qquad (2)$$

hold for arbitrary $\psi, \theta \in L^{\infty}(\mathbb{C})$. Owing to (2),

$$T_{\psi}T_{\Phi} - T_{\Phi}T_{\psi} = H^*_{\overline{\Phi}}H_{\psi} - H^*_{\overline{\psi}}H_{\Phi}$$

NAMITA DAS

will be compact for arbitrary $\psi \in L^{\infty}(\mathbb{C})$ if $H_{\Phi}, H_{\overline{\Phi}}$ are compact. The latter is equivalent to $H_{\Phi}^*H_{\Phi}, H_{\overline{\Phi}}^*H_{\overline{\Phi}}$ are compact, respectively, and from (1) it follows that this is equivalent to $I - T_{\Phi}^*T_{\Phi}$ and $I - T_{\Phi}T_{\Phi}^*$ are compact, respectively. Owing to (i), the last two operators are compact perturbations of $I - Z^*Z = 0$ and $I - ZZ^* = \langle ., e_0 \rangle e_0$, respectively and the result follows. \Box

Let \mathbb{T} denote the unit circle in the complex plane \mathbb{C} . Let $L^{\infty}(\mathbb{T})$ be the space of all essentially bounded measurable functions on \mathbb{T} with the essential supremum norm. Let H^2 be the Hardy space on the unit circle \mathbb{T} . For $\phi \in L^{\infty}(\mathbb{T})$, the Toeplitz operator B_{ϕ} with symbol ϕ is the operator on H^2 sending $f \in H^2$ to $P_+(\phi f)$, where P_+ is the orthogonal projection of $L^2(\mathbb{T})$ onto H^2 . It is easy to check that $B_z^* B_{\phi} B_z = B_{\phi}$ for any $\phi \in L^{\infty}(\mathbb{T})$. According to a classical result [3], the converse holds: if an operator $T \in \mathcal{L}(H^2)$ satisfies $B_z^* T B_z = T$, then $T = B_{\phi}$ for some $\phi \in L^{\infty}(\mathbb{T})$. This result serves as a starting point for the theory of symbols of operators. It is also shown in [3], that the only compact Toeplitz operator is the zero Toeplitz operator. If $\phi \in H^{\infty}(\mathbb{T})$ then $B_{\phi} \in \mathcal{L}(H^2)$ is called an analytic Toeplitz operator and $B_{\phi}^* = B_{\overline{\phi}}$ is called a coanalytic Toeplitz operator. Let

$$\mathcal{A}(B_z) = \{ T \in \mathcal{L}(H^2) : T - B_z^* T B_z \in \mathcal{LC}(H^2) \}$$

= $\{ T \in \mathcal{L}(H^2) : [T, B_z] \in \mathcal{LC}(H^2) \},$

the essential commutant of the forward shift operator B_z on H^2 . It is known [2] that $\mathcal{A}(B_z)$ is a C^* -subalgebra of $\mathcal{L}(H^2)$ and $B_{\phi} \in \mathcal{A}(B_z)$ for all $\phi \in L^{\infty}(\mathbb{T})$.

Lemma 2.2. There exists a unitary operator $U : H^2 \to L^2_a(\mathbb{C})$ such that the transformation $T \mapsto U^*TU$ is a C^* -isomorphism of $\mathcal{A}(Z)$ onto $\mathcal{A}(B_z)$.

Proof. Define $U: H^2 \to L^2_a(\mathbb{C})$ by mapping the standard basis of H^2 onto the basis $\{e_n\}_{n \in \mathbb{N}}$ of $L^2_a(\mathbb{C})$,

$$U: z^n \in H^2 \mapsto \frac{z^n}{\sqrt{n!2^n}} \in L^2_a(\mathbb{C}).$$

This operator is unitary and the transformation $T \to U^*TU$ maps Z to B_z ; hence,

$$T \in \mathcal{A}(Z) \Leftrightarrow [T, Z] \in \mathcal{LC}(L^2_a(\mathbb{C}))$$

$$\Leftrightarrow U^*TZU - U^*ZTU \in \mathcal{LC}(H^2)$$

$$\Leftrightarrow (U^*TU)(U^*ZU) - (U^*ZU)(U^*TU) \in \mathcal{LC}(H^2)$$

$$\Leftrightarrow (U^*TU)B_z - B_z(U^*TU) \in \mathcal{LC}(H^2)$$

$$\Leftrightarrow U^*TU \in \mathcal{A}(B_z).$$

The proof is complete.

3 Main result

We now prove the main result of the work.

Theorem 3.1. Let $\alpha \in \mathbb{C}$ and define the translation operator on \mathbb{C} as $t_{\alpha}(z) = z - \alpha$. Suppose M and H are two linear bounded operators from $L^2_a(\mathbb{C})$ into itself such that $MT_{\psi}H = T_{\psi\circ t_{\alpha}}$ for all $\psi \in L^{\infty}(\mathbb{C}, dz)$. Then $M = cW_{\alpha}$ and $H = \frac{1}{c}W_{\alpha}^*$ and MH = I, the identity operator on $L^2_a(\mathbb{C})$.

Proof. Notice that the Fock space $L^2_a(\mathbb{C})$ is an invariant subspace for W_α and $W^*_\alpha = W_{-\alpha}$ and therefore $PW_\alpha = W_\alpha P$. For $f \in L^2_a(\mathbb{C})$ and $\alpha \in \mathbb{C}$, we have

$$\begin{aligned} T_{\psi}W_{\alpha}f &= T_{\psi}\left[\left(f\circ t_{\alpha}\right)k_{\alpha}\right] \\ &= P\left(\psi\left(f\circ t_{\alpha}\right)k_{\alpha}\right) \\ &= P\left(\left(\psi\circ t_{-\alpha}\circ t_{\alpha}\right)\left(f\circ t_{\alpha}\right)k_{\alpha}\right) \\ &= P\left[\left(\left(\left(\psi\circ t_{-\alpha}\right)f\right)\circ t_{\alpha}\right)k_{\alpha}\right] \\ &= PW_{\alpha}\left[\left(\psi\circ t_{-\alpha}\right)f\right] \\ &= W_{\alpha}P\left[\left(\psi\circ t_{-\alpha}\right)f\right] \\ &= W_{\alpha}T_{\psi\circ t_{-\alpha}}f. \end{aligned}$$

Thus we get $W^*_{\alpha}T_{\psi}W_{\alpha}f = T_{\psi\circ t_{-\alpha}}f$, for $\alpha \in \mathbb{C}$. Now let $R_{\alpha} = W^*_{\alpha}M$ and $S_{\alpha} = HW_{\alpha}$. Since $MT_{\psi}H = T_{\psi\circ t_{\alpha}}$ it follows that $R_{\alpha}T_{\psi}S_{\alpha} = W^*_{\alpha}MT_{\psi}HW_{\alpha} = W^*_{\alpha}T_{\psi\circ t_{\alpha}}W_{\alpha} = T_{\psi}$ for all $\psi \in L^{\infty}(\mathbb{C})$. It is known [4] that the norm closure of the set of all Toeplitz operators in $\mathcal{L}(L^2_a(\mathbb{C}))$ contains $\mathcal{LC}(L^2_a(\mathbb{C}))$. In fact, if $\mathcal{T}_1 = \{T_{\phi} : \phi \in \mathcal{D}(\mathbb{C})\}$ then $\operatorname{clos}\mathcal{T}_1 = \mathcal{LC}(L^2_a(\mathbb{C}))$ where $\mathcal{D}(\mathbb{C})$ is the set of all infinitely differentiable functions on \mathbb{C} whose supports are compact subsets of \mathbb{C} . Thus

$$\begin{aligned} R_{\alpha}T_{\psi}S_{\alpha}T_{\Phi} &= T_{\psi}T_{\Phi} = T_{\psi\Phi} + G \quad (\text{for some } G \in \mathcal{LC}(L^{2}_{a}(\mathbb{C}))) \\ &= R_{\alpha}T_{\psi\Phi}S_{\alpha} + G \\ &= R_{\alpha}(T_{\psi}T_{\Phi} - G)S_{\alpha} + G \\ &= R_{\alpha}(T_{\psi}T_{\Phi} - \lim_{n \to \infty} T_{\phi_{n}})S_{\alpha} + G \quad (\text{where } G = \lim_{n \to \infty} T_{\phi_{n}}) \\ &= R_{\alpha}T_{\psi}T_{\Phi}S_{\alpha} - \lim_{n \to \infty} R_{\alpha}T_{\phi_{n}}S_{\alpha} + G \\ &= R_{\alpha}T_{\psi}T_{\Phi}S_{\alpha} - \lim_{n \to \infty} T_{\phi_{n}} + G \\ &= R_{\alpha}T_{\psi}T_{\Phi}S_{\alpha} - G + G \\ &= R_{\alpha}T_{\psi}T_{\Phi}S_{\alpha}. \end{aligned}$$

It follows therefore that $R_{\alpha}T_{\psi}(S_{\alpha}T_{\Phi} - T_{\Phi}S_{\alpha}) = 0$. We shall now show that $S_{\alpha}T_{\Phi} - T_{\Phi}S_{\alpha} = 0$. Suppose on the contrary that there is some $x \neq 0$ in $\operatorname{Ran}(S_{\alpha}T_{\Phi} - T_{\Phi}S_{\alpha})$. Then, by the last relation, $R_{\alpha}T_{\psi}x = 0$ for all $\psi \in L^{\infty}(\mathbb{C})$, so the kernel of R_{α} contains the set $\{T_{\psi}x : \psi \in L^{\infty}(\mathbb{C})\}$. Consider some $y \in L^{2}_{a}(\mathbb{C})$ orthogonal to this set. Then $0 = \langle y, T_{\psi}x \rangle = \langle y, P(\psi x) \rangle = \int_{\mathbb{C}} y(z)\overline{\psi(z)}x(z)d\mu(z)$ for all $\psi \in L^{\infty}(\mathbb{C})$; because $\bar{x}y \in L^{1}(\mathbb{C}, d\mu)$, we conclude that $\bar{x}y = 0$, and this is only possible if at least one of the analytic functions x, y is identically zero. But $x \neq 0$ by assumption, so y must be zero, which means that our set is dense in $L^{2}_{a}(\mathbb{C})$. Because this set is contained in ker R_{α} , we have $R_{\alpha} = 0$, so $T_{\psi} = R_{\alpha}T_{\psi}S_{\alpha} = 0$ for all ψ – a contradiction. This proves that $S_{\alpha}T_{\Phi} - T_{\Phi}S_{\alpha} = 0$. Hence $S_{\alpha}T_{\Phi}^{n} = T_{\Phi}^{n}S_{\alpha}$ for all $n \in \mathbb{N}$. Therefore $S_{\alpha}(Z + \tilde{K})^{n} = (Z + \tilde{K})^{n}S_{\alpha}$ as $T_{\Phi} = Z + \tilde{K}$ for some $\tilde{K} \in \mathcal{LC}(L^{2}_{a}(\mathbb{C}))$. Hence, it follows that $S_{\alpha}Z^{n} - Z^{n}S_{\alpha} = K_{n}$ for some $K_{n} \in \mathcal{LC}(L^{2}_{a}(\mathbb{C}))$. Thus

$$(U^* S_{\alpha} U)(U^* Z^n U) - (U^* Z^n U)(U^* S_{\alpha} U) = C_n$$

NAMITA DAS

for some $C_n \in \mathcal{LC}(H^2)$ for all $n \in \mathbb{N}$. Hence $U^*S_{\alpha}U$ lies in the essential commutant of all analytic Toeplitz operators in $\mathcal{L}(H^2)$. Thus $U^*S_{\alpha}U = B_{\phi} + K$ for some $\phi \in H^{\infty}(\mathbb{T})$ and $K \in \mathcal{LC}(H^2)$.

Similarly one can show that $U^*R_{\alpha}U = B_{\bar{\theta}} + K'$, for some $\theta \in H^{\infty}(\mathbb{T})$ and $K' \in \mathcal{LC}(H^2)$. This is because $R_{\alpha}T_{\psi}S_{\alpha} = T_{\psi}$ for all $\psi \in L^{\infty}(\mathbb{C})$ implies $S^*_{\alpha}T_{\psi}R^*_{\alpha} = T_{\psi}$ for all $\psi \in L^{\infty}(\mathbb{C})$. Now $(U^*R_{\alpha}U)(U^*S_{\alpha}U) = B_{\bar{\theta}\phi} + C$, for some $C \in \mathcal{LC}(H^2)$. Hence $I = (U^*R_{\alpha}S_{\alpha}U) = B_{\bar{\theta}\phi} + C$ and therefore $B_{1-\bar{\theta}\phi} = C$. This implies $1 - \bar{\theta}\phi = 0$ as the only compact Toeplitz operator in $\mathcal{L}(H^2)$ is the zero Toeplitz operator. Thus C = 0 and $\bar{\theta} = \frac{1}{\phi}$. This implies $\theta \in H^{\infty}(\mathbb{T})$ and $\bar{\theta} \in H^{\infty}(\mathbb{T})$. Thus $\bar{\theta} = d$ and $\phi = \frac{1}{d}$ for some constant d. Hence it follows that $U^*R_{\alpha}U = B_d + K' = dI + K'$ and $U^*S_{\alpha}U = B_{\frac{1}{d}} + K = \frac{1}{d}I + K$. Thus $I = (dI + K')(\frac{1}{d}I + K)$ and therefore

$$dK + \frac{K'}{d} + K'K = 0. \tag{3}$$

On the other hand, $U^*S_{\alpha}U = \frac{1}{d}I + K$ implies $S_{\alpha} = \frac{1}{d} + UKU^* = \frac{1}{d} + E$ where $E = UKU^* \in \mathcal{LC}(L^2_a(\mathbb{C}))$. Hence

$$Z^{*n}S_{\alpha}Z^n \to \frac{1}{d} \tag{4}$$

as $Z^{*n}EZ^n \to 0$ (see [2] for the proof) strongly. Further, since $S_{\alpha}Z^n - Z^nS_{\alpha} = K_n$ for some $K_n \in \mathcal{LC}(L^2_a(\mathbb{C}))$, hence

$$Z^{*n}S_{\alpha}Z^n - S_{\alpha} = J_n \tag{5}$$

for some $J_n = Z^{*n}K_n \in \mathcal{LC}(L^2_a(\mathbb{C}))$. Since $\{J_n\}$ converges strongly to 0, we obtain from (4) and (5) that $S_\alpha = \frac{1}{d}$. Hence E = 0 and therefore K = 0. It follows hence from (3) that K' = 0. Thus $U^*S_\alpha U = \frac{1}{d}$ and $U^*R_\alpha U = d$. Hence $S_\alpha = \frac{1}{d}$ and $R_\alpha = d$. Thus $M = W_\alpha R_\alpha = dW_\alpha$ and $H = S_\alpha W^*_\alpha = \frac{1}{d} W^*_\alpha$ and the theorem follows. \Box

References

- [1] AHLFORS L. V. Complex Analysis. McGraw-Hill, 1979.
- [2] BARRIA J., HALMOS P. R. Asymptotic Toeplitz operators. Trans. Amer. Math. Soc., 1982, 273, 621–630.
- [3] BROWN A., HALMOS P. R. Algebraic properties of Toeplitz operators. J. Reine Angew. Math., 1964, 213, 89–102.
- [4] ENGLIS M. Density of algebras generated by Toeplitz operators on Bergman spaces. Arkiv for Matematik, 1992, 30, 227–243.
- [5] RUDIN W. Real and complex Analysis. 3rd Edition, McGraw-Hill, New York, 1987.

NAMITA DAS P. G. Department of Mathematics Utkal University, Vani Vihar Bhubaneswar, Orissa, India 751004 E-mail: namitadas440@yahoo.co.in Received November 1, 2011