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On a class of weighted composition operators

on Fock space

Namita Das

Abstract. Let Tφ be the Toeplitz operator defined on the Fock space L2
a(C) with

symbol φ ∈ L∞(C). Let for λ ∈ C, kλ(z) = e
λ̄z

2
−

|λ|2

4 , the normalized reproducing
kernel at λ for the Fock space L2

a(C) and tα(z) = z−α, z, α ∈ C. Define the weighted
composition operator Wα on L2

a(C) as (Wαf)(z) = kα(z)(f ◦ tα)(z). In this paper
we have shown that if M and H are two bounded linear operators from L2

a(C) into
itself such that MTψH = Tψ◦tα for all ψ ∈ L∞(C), then M and H must be constant
multiples of the weighted composition operator Wα and its adjoint respectively.

Mathematics subject classification: 47B35, 32M15.
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1 Introduction

For x, y ∈ C
N (for some integer N ≥ 1), we write x̄y =

∑N
n=1 x̄nyn and |x| =

(x̄x)
1
2 . Thus, |x−y| is the usual Euclidean distance between x and y. The symbol dz

denotes the Lebesgue measure in C
N for all N ≥ 1. The Gaussian measure on C

N

is, by definition, dµ(z) = (2π)−N e−
|z|2

2 dz. Denote Lp(CN , dµ) the usual Lebesgue
spaces on C

N with respect to the measure µ; L∞(CN , dµ) shall be occasionally
abbreviated to L∞(CN ) = L∞(CN , dz), since they happen to coincide [5]. Set, for
1 ≤ p ≤ ∞,

Lpa(C
N ) = {f ∈ Lp(CN , dµ) : f is an entire function on C

N}.

The space Lpa(CN ) is a closed subspace of Lp(CN , dµ), L∞
a (CN ) = H∞(CN ). For

p = 2, L2
a(C

N ) is a Hilbert space, called the Fock or Siegal-Bargmann space.

For a multiindex n = (n1, n2, · · · , nN ) ∈ N
N , the following abbreviations will be

employed:

an = an1,n2,··· ,nN ,

zn = zn1
1 zn2

2 · · · znNN ( for z ∈ C
N ),

n! = n1!n2! · · · nN !,

2n = 2n1+n2+···+nN .
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If f is an entire function, f(z) =
∑

n∈NN
fnz

n, then

∫

CN

|f(z)|2dµ(z) =
∑

n∈NN

n!2n|fn|2.

Consequently, f ∈ L2
a(C

N ) if and only if the last expression is finite. The inner
product of f and g(z) =

∑
n∈NN

gnz
n, f, g ∈ L2

a(C
N ), is given by

〈f, g〉 =
∑

n∈NN

n!2nfnḡn.

The set {(n!2n)−
1
2 zn}n∈NN is an orthonormal basis of L2

a(C
N ). The polynomials are

dense in L2
a(C

N ). The space L2
a(C

N ) is a reproducing kernel space; the reproducing

kernel at λ ∈ C
N is given by gλ(z) = e

λ̄z
2 , and ‖gλ‖2 = e

|λ|2

4 . For φ ∈ L∞(CN , dµ) =
L∞(CN ), the Toeplitz operator Tφ is defined from L2

a(C
N ) into itself as Tφf = P (φf)

where P is the orthogonal projection from L2(CN , dµ) onto L2
a(C

N ). Further, for
φ ∈ L∞(CN ), define the Hankel operatorHφ from L2

a(C
N ) into (L2

a(C
N ))⊥ byHφf =

(I−P )(φf). Here (L2
a(C

N ))⊥ denotes the orthogonal complement of L2
a(C

N ). Define

for λ ∈ C
N , kλ(z) = gλ(z)

‖gλ‖
= e

λ̄z
2
−

|λ|2

4 , the normalized reproducing kernel at λ for

the Fock space L2
a(C

N ). In this paper we shall only concentrate our attention on the
Fock space L2

a(C). Notice that it has an orthonormal basis {en}∞n=0 where

en(z) = (n!2n)−
1
2 zn.

For α ∈ C, define Wα from L2
a(C) into itself by (Wαf)(z) = kα(z)f(z −α). Note for

f ∈ L2
a(C),W ∗

αf = (f ◦ t−α)k−α = W−αf and therefore the operator Wα is a unitary
operator on L2

a(C) for each α ∈ C and the operator can be defined on L2(C).

2 The forward shift operator and Toeplitz algebra on Fock space

Let Z be the forward shift operator with respect to the basis {en}∞n=0, and let
Φ(z) = z

|z| = ei arg z. Let L(L2
a(C)) be the space of all bounded linear operators from

L2
a(C) into itself and LC(L2

a(C)) be the space of all compact operators in L(L2
a(C)).

For M,T ∈ L(L2
a(C)), let [M,T ] = MT − TM. Let

A(TΦ) = {T ∈ L(L2
a(C)) : [T, TΦ] ∈ LC(L2

a(C))}

and
A(Z) = {T ∈ L(L2

a(C)) : [T,Z] ∈ LC(L2
a(C))}.

Lemma 2.1. The following hold.

(i) The operator TΦ is a compact perturbation of Z and A(TΦ) = A(Z).

(ii) The Toeplitz operator TΨ ∈ A(TΦ) for every Ψ ∈ L∞(C).
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Proof. (i) Notice that

〈TΦz
n, zm〉 =

∫

C

z

|z|z
nz̄mdµ(z)

=
1

2π

∫ ∞

0

∫ 2π

0
rn+mei(n−m+1)te−

r2

2 rdtdr.

This is zero unless m = n+ 1, and in that case it equals

∫ ∞

0
r2n+1e−

r2

2 rdr =

∫ ∞

0
2n+ 1

2 tn+ 1
2 e−tdt = 2n+ 1

2 Γ

(
n+

3

2

)
,

where Γ is Euler’s gamma function. Thus

〈TΦen, em〉 =

{
0 if m 6= n+ 1;

(n!2n)−
1
2 (m!2m)−

1
2 2n+ 1

2 Γ(n+ 3
2) if m = n+ 1.

Consequently, TΦen = cnen+1, where cn =
Γ(n+ 3

2
)

Γ(n+1)
1
2 Γ(n+2)

1
2
. Let diag(1 − cn) be the

diagonal matrix whose nth diagonal entry is 1 − cn. Now it follows that Z − TΦ =
Z · diag(1 − cn), and in order to verify our claim it suffices to show that cn → 1 as
n→ +∞. According to Stirling’s formula [1],

Γ(x+ 1) ∼
√

2πxx+
1
2 e−x,

where “∼” means that the ratio of the right-hand to the left-hand side approaches
1 as x→ +∞. Substituting this into the expression for cn produces

cn ∼
(
n+ 1

2

)n+1
e−n−

1
2

√
2π

n
n
2
+ 1

4 e−
n
2 (2π)

1
4 (n+ 1)

n
2
+ 3

4 e−
n
2
− 1

2 (2π)
1
4

.

The terms containing π cancel, as well as those containing e, and what remains is
the product of (

n+ 1
2

n

)n
2

,

(
n+ 1

2

n+ 1

)n+1
2

and

(
n+ 1

2

) 1
2

n
1
4 (n+ 1)

1
4

,

which tend to e
1
4 , e−

1
4 and 1, respectively. So, cn → 1 and the assertion (i) follows.

Now we shall prove (ii). The formulas

Tψθ − TψTθ = H∗
ψ
Hθ, (1)

TψTθ − TθTψ = H∗
θ
Hψ −H∗

ψ
Hθ, (2)

hold for arbitrary ψ, θ ∈ L∞(C). Owing to (2),

TψTΦ − TΦTψ = H∗
Φ
Hψ −H∗

ψ
HΦ
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will be compact for arbitrary ψ ∈ L∞(C) if HΦ,HΦ are compact. The latter is
equivalent to H∗

ΦHΦ,H
∗
Φ
HΦ are compact, respectively, and from (1) it follows that

this is equivalent to I−T ∗
ΦTΦ and I−TΦT

∗
Φ are compact, respectively. Owing to (i),

the last two operators are compact perturbations of I − Z∗Z = 0 and I − ZZ∗ =
〈., e0〉e0, respectively and the result follows. 2

Let T denote the unit circle in the complex plane C. Let L∞(T) be the space of all
essentially bounded measurable functions on T with the essential supremum norm.
LetH2 be the Hardy space on the unit circle T. For φ ∈ L∞(T), the Toeplitz operator
Bφ with symbol φ is the operator on H2 sending f ∈ H2 to P+(φf), where P+ is
the orthogonal projection of L2(T) onto H2. It is easy to check that B∗

zBφBz = Bφ
for any φ ∈ L∞(T). According to a classical result [3], the converse holds: if an
operator T ∈ L(H2) satisfies B∗

zTBz = T, then T = Bφ for some φ ∈ L∞(T). This
result serves as a starting point for the theory of symbols of operators. It is also
shown in [3], that the only compact Toeplitz operator is the zero Toeplitz operator.
If φ ∈ H∞(T) then Bφ ∈ L(H2) is called an analytic Toeplitz operator and B∗

φ = Bφ̄
is called a coanalytic Toeplitz operator. Let

A(Bz) = {T ∈ L(H2) : T −B∗
zTBz ∈ LC(H2)}

= {T ∈ L(H2) : [T,Bz] ∈ LC(H2)},

the essential commutant of the forward shift operator Bz on H2. It is known [2] that
A(Bz) is a C∗−subalgebra of L(H2) and Bφ ∈ A(Bz) for all φ ∈ L∞(T).

Lemma 2.2. There exists a unitary operator U : H2 → L2
a(C) such that the

transformation T 7→ U∗TU is a C∗-isomorphism of A(Z) onto A(Bz).

Proof. Define U : H2 → L2
a(C) by mapping the standard basis of H2 onto the basis

{en}n∈N of L2
a(C),

U : zn ∈ H2 7→ zn√
n!2n

∈ L2
a(C).

This operator is unitary and the transformation T → U∗TU maps Z to Bz; hence,

T ∈ A(Z) ⇔ [T,Z] ∈ LC(L2
a(C))

⇔ U∗TZU − U∗ZTU ∈ LC(H2)
⇔ (U∗TU)(U∗ZU) − (U∗ZU)(U∗TU) ∈ LC(H2)
⇔ (U∗TU)Bz −Bz(U

∗TU) ∈ LC(H2)
⇔ U∗TU ∈ A(Bz).

The proof is complete. 2

3 Main result

We now prove the main result of the work.

Theorem 3.1. Let α ∈ C and define the translation operator on C as tα(z) = z−α.
Suppose M and H are two linear bounded operators from L2

a(C) into itself such that
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MTψH = Tψ◦tα for all ψ ∈ L∞(C, dz). Then M = cWα and H = 1
c
W ∗
α and MH = I,

the identity operator on L2
a(C).

Proof. Notice that the Fock space L2
a(C) is an invariant subspace for Wα and W ∗

α =
W−α and therefore PWα = WαP. For f ∈ L2

a(C) and α ∈ C, we have

TψWαf = Tψ [(f ◦ tα) kα]
= P (ψ (f ◦ tα) kα)
= P ((ψ ◦ t−α ◦ tα) (f ◦ tα)kα)
= P [(((ψ ◦ t−α)f) ◦ tα)kα]
= PWα [(ψ ◦ t−α)f ]
= WαP [(ψ ◦ t−α)f ]
= WαTψ◦t−αf.

Thus we get W ∗
αTψWαf = Tψ◦t−αf, for α ∈ C. Now let Rα = W ∗

αM and Sα = HWα.

Since MTψH = Tψ◦tα it follows that RαTψSα = W ∗
αMTψHWα = W ∗

αTψ◦tαWα = Tψ
for all ψ ∈ L∞(C). It is known [4] that the norm closure of the set of all Toeplitz
operators in L(L2

a(C)) contains LC(L2
a(C)). In fact, if T1 = {Tφ : φ ∈ D(C)} then

closT1 = LC(L2
a(C)) where D(C) is the set of all infinitely differentiable functions on

C whose supports are compact subsets of C. Thus

RαTψSαTΦ = TψTΦ = TψΦ +G (for some G ∈ LC(L2
a(C)))

= RαTψΦSα +G

= Rα(TψTΦ −G)Sα +G

= Rα(TψTΦ − lim
n→∞

Tφn)Sα +G (where G = lim
n→∞

Tφn)

= RαTψTΦSα − lim
n→∞

RαTφnSα +G

= RαTψTΦSα − lim
n→∞

Tφn +G

= RαTψTΦSα −G+G

= RαTψTΦSα.

It follows therefore that RαTψ(SαTΦ − TΦSα) = 0. We shall now show that SαTΦ −
TΦSα = 0. Suppose on the contrary that there is some x 6= 0 in Ran(SαTΦ − TΦSα).
Then, by the last relation, RαTψx = 0 for all ψ ∈ L∞(C), so the kernel of Rα
contains the set {Tψx : ψ ∈ L∞(C)}. Consider some y ∈ L2

a(C) orthogonal to this

set. Then 0 = 〈y, Tψx〉 = 〈y, P (ψx)〉 =
∫

C
y(z)ψ(z)x(z)dµ(z) for all ψ ∈ L∞(C);

because x̄y ∈ L1(C, dµ), we conclude that x̄y = 0, and this is only possible if at
least one of the analytic functions x, y is identically zero. But x 6= 0 by assumption,
so y must be zero, which means that our set is dense in L2

a(C). Because this set is
contained in kerRα, we have Rα = 0, so Tψ = RαTψSα = 0 for all ψ – a contradiction.
This proves that SαTΦ − TΦSα = 0. Hence SαT

n
Φ = T nΦSα for all n ∈ N. Therefore

Sα(Z + K̃)n = (Z + K̃)nSα as TΦ = Z + K̃ for some K̃ ∈ LC(L2
a(C)). Hence, it

follows that SαZ
n − ZnSα = Kn for some Kn ∈ LC(L2

a(C)). Thus

(U∗SαU)(U∗ZnU) − (U∗ZnU)(U∗SαU) = Cn
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for some Cn ∈ LC(H2) for all n ∈ N. Hence U∗SαU lies in the essential commutant of
all analytic Toeplitz operators in L(H2). Thus U∗SαU = Bφ+K for some φ ∈ H∞(T)
and K ∈ LC(H2).

Similarly one can show that U∗RαU = Bθ̄ +K ′, for some θ ∈ H∞(T) and K ′ ∈
LC(H2). This is because RαTψSα = Tψ for all ψ ∈ L∞(C) implies S∗

αTψR
∗
α = Tψ for

all ψ ∈ L∞(C). Now (U∗RαU)(U∗SαU) = Bθ̄φ + C, for some C ∈ LC(H2). Hence
I = (U∗RαSαU) = Bθ̄φ + C and therefore B1−θ̄φ = C. This implies 1 − θ̄φ = 0 as

the only compact Toeplitz operator in L(H2) is the zero Toeplitz operator. Thus
C = 0 and θ̄ = 1

φ
. This implies θ ∈ H∞(T) and θ̄ ∈ H∞(T). Thus θ̄ = d and

φ = 1
d

for some constant d. Hence it follows that U∗RαU = Bd +K ′ = dI +K ′ and
U∗SαU = B 1

d
+K = 1

d
I +K. Thus I = (dI +K ′)(1

d
I +K) and therefore

dK +
K ′

d
+K ′K = 0. (3)

On the other hand, U∗SαU = 1
d
I + K implies Sα = 1

d
+ UKU∗ = 1

d
+ E where

E = UKU∗ ∈ LC(L2
a(C)). Hence

Z∗nSαZ
n → 1

d
(4)

as Z∗nEZn → 0 (see [2] for the proof) strongly. Further, since SαZ
n − ZnSα = Kn

for some Kn ∈ LC(L2
a(C)), hence

Z∗nSαZ
n − Sα = Jn (5)

for some Jn = Z∗nKn ∈ LC(L2
a(C)). Since {Jn} converges strongly to 0, we obtain

from (4) and (5) that Sα = 1
d
. Hence E = 0 and therefore K = 0. It follows hence

from (3) that K ′ = 0. Thus U∗SαU = 1
d

and U∗RαU = d. Hence Sα = 1
d

and Rα = d.

Thus M = WαRα = dWα and H = SαW
∗
α = 1

d
W ∗
α and the theorem follows. 2
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