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Composition followed by differentiation between

weighted Bergman spaces and weighted Banach spaces

of holomorphic functions

Elke Wolf

Abstract. Let φ be an analytic self-map of the open unit disk D in the complex plane.
Such a map induces through composition a linear composition operator Cφ : f 7→ f ◦φ.
We are interested in the combination of Cφ weith the differentiation operator D, that
is in the operator DCφ : f 7→ φ′ · (f ◦φ) acting between weighted Bergman spaces and
weighted Banach spaces of holomorphic functions.
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1 Introduction

Let D denote the open unit disk in the complex plane. For an analytic self-map
φ of D the classical composition operator Cφ is given by

Cφ : H(D) → H(D), f 7→ f ◦ φ,

where H(D) denotes the set of all analytic functions on D. Combining this with
differentiation we obtain the operator

DCφ : H(D) → H(D), f 7→ φ′ · (f ′ ◦ φ).

Composition operators occur naturally in various problems and therefore have been
widely investigated. An overview of results in the classical setting of the Hardy
spaces as well as an introduction to composition operators is given in the excellent
monographs by Cowen and MacCluer [5] and Shapiro [8].

Next, let us explain the setting in which we are interested. Bounded and contin-
uous functions v : D →]0,∞[ are called weights. For such a weight v we define

H∞
v := {f ∈ H(D); ‖f‖v := sup

z∈D

v(z)|f(z)| < ∞}.

Since, endowed with the weighted sup-norm ‖.‖v , this is a Banach space, we say that
H∞

v is a weighted Banach space of holomorphic functions. These spaces arise nat-
urally in several problems related to e. g. complex analysis, spectral theory, Fourier
analysis, partial differential and convolution equations. Concrete examples may be
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found in [3]. Weighted Banach spaces of holomorphic functions have been studied
deeply in [2], but also in [4] and [1].

The weighted Bergman space is defined to be the collection of all analytic func-
tions f ∈ H(D) such that

Av,p := {f ∈ H(D); ‖f‖v,p :=

(
∫

D

|f(z)|pv(z) dA(z)

)
1
p

< ∞}, 1 ≤ p < ∞

where dA(z) denotes the normalized area measure. The investigation of Bergman
spaces has quite a long and rich history. An excellent introduction to Bergman
spaces is given in [6].

In this article we characterize boundedness and compactness of operators
DCφ : Av,p → H∞

w in terms of the involved self-map φ and the weights v

and w.

2 Basics

We study weighted spaces generated by the following class of weights. Let ν be
a holomorphic function on D that does not vanish and is strictly positive on [0, 1[.
Moreover, we assume that limr→1 ν(r) = 0. Then we define the weight v in the
following way

v(z) := ν(|z|2) for every z ∈ D. (1)

Examples include all the famous and popular weights, such as

1. the standard weights v(z) = (1 − |z|2)α, α ≥ 1,

2. the logarithmic weights v(z) = (1 − log(1 − |z|2))β , β > 0.

3. the exponential weights v(z) = e
− 1

(1−|z|2)α , α ≥ 1.

For a fixed point a ∈ D, we introduce a function

va(z) := ν(az) for every z ∈ D.

Since ν is holomorphic on D, so is the function va. Moreover, in particular, we will
often assume that there is a constant C > 0 such that

sup
a∈D

sup
z∈D

v(z)

|va(z)|
≤ C. (2)

In the sequel we analyze which role condition (2) plays in the zoo of conditions on
weights. Lusky [7] studied weights satisfying the following conditions (L1) and (L2)
(renamed after the author) which are defined as follows

(L1) inf
n∈N

v(1 − 2−n−1)

v(1 − 2−n)
> 0 and (L2) lim sup

n→∞

v(1 − 2−n−j)

v(1 − 2−n)
< 1 for some j ∈ N.
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Actually, weights which enjoy both conitions (L1) and (L2) are normal weights in
the sense of Shields and Williams (see [9]). Obviously condition (2) is connected
with contiion (L2) in the following way. If we change (2) as follows

sup
a∈D

sup
z∈D

v(z)

|va(z)|
< 1, (3)

then (L2) is equivalent with (3) if we assume that |ν(z)| ≥ ν(|z|) for every z ∈ D.
To show this, let us first assume that (L2) holds. Hence we can find j ∈ N such that

v(1 − 2−n−j)

v(1 − 2−n)
< 1 for every n ∈ N.

Next, we fix z ∈ D and a ∈ D. Then we can find n ∈ N such that

|z| ≥ 1 − 2−n−j and |az| < 1 − 2−n.

Now,
v(z)

|ν(az)|
≤

v(1 − 2−n−j)

v(1 − 2−n)
< 1 for every n ∈ N.

Conversely, we suppose that (3) is satisfied. We take j = 1, fix n ∈ N and select

an :=
(1 − 2−n)2

(1 − 2−n−1)
.

We obtain
v(1 − 2−n−1)

v(1 − 2−n)
≤

v(z)

|ν(az)|
≤ sup

a∈D

sup
z∈D

v(z)

|va(z)|
< 1.

Thus, under some additional assumptions (2) is a weaker verson of (L2). Calcu-
lations show that the standard weights as well as the logarithmic weights satisfy
condition (2), while the exponential weights do not fulfill condition (2).

Finally, we need some geometric data of the unit disk. A very important tool
when dealling with operators such as defined above is the so-called pseudohyberbolic
metric given by

ρ(z, a) := |σa(z)|,

where σa(z) = a−z
1−az

, z, a ∈ D, is the Möbius transformation which interchanges
a and 0.

3 Results

Lemma 1. Let v(z) = f(|z|) for every z ∈ D, where f ∈ H(D) is a function whose
Taylor series (at 0) has nonnegative coefficients. We assume additionally that v

satisfies condition (2). Then there is a constant C > 0 such that

|f(z)| ≤ C
1
p

‖f‖v,p

v(0)
1
p (1 − |z|2)

2
p v(z)

1
p

.
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Proof. Recall that a weight v as defined above may be written as

v(z) := max{|g(λz)|; |λ| = 1} for every z ∈ D.

We will write gλ(z) := g(λz) for every z ∈ D. Next, fix λ ∈ C with |λ| = 1.
Moreover, let α ∈ D be an arbitrary point. We consider the map

Tα,λ : Ap
v → Ap

v, Tα,λf(z) = f(σα(z))σ′
α(z)

2
p gλ(σα(z))

1
p .

Then a change of variables yields

‖Tα,λf‖p
v,p =

∫

D

v(z)|f(σα(z))|p|σ′
α(z)|2|gλ(σα(z))| dA(z)

≤

∫

D

|f(σα(z))|
v(z)

v(σα(z))
|σ′

α(z)| dA(z)

≤ C

∫

D

|f(σα(z))|v(σα(z))|σ′
α(z)|2 dA(z)

≤ C

∫

D

v(t)|f(t)|p dA(t) = C‖f‖p
v,p.

Now put hλ(z) := Tα,λ(z) for every z ∈ D. By the mean value property we obtain

v(0)|hλ(0)|p ≤

∫

D

v(z)|hλ(z)|p dA(z) = ‖hλ‖
p
v,p ≤ C‖f‖p

v,p.

Hence
v(0)|hλ(0)|p = v(0)|f(α)|p(1 − |α|2)2|gλ(α)| ≤ C‖f‖p

v,p.

Since λ was arbitrary we obtain that

v(0)|f(α)|p(1 − |α|2)2v(α) ≤ C‖f‖p
v,p

Thus,

|f(α)| ≤ C
1
p

‖f‖v,p

v(0)
1
p (1 − |α|2)

2
p v(α)

1
p

.

Since α was arbitrary, the claim follows.

Lemma 2. Let v(z) = f(|z|) for every z ∈ D, where f ∈ H(D) is a function whose
Taylor series (at 0) has nonnegative coefficients. We assume additionally that v

satisfies condition (2). Then for every f ∈ A
p
v there is Cv > 0 such that

|f(z) − f(w)| ≤ Cv‖f‖v,p max

{

1

(1 − |z|2)
2
p v(z)

1
p

,
1

(1 − |w|2)
2
p v(w)

1
p

}

ρ(z,w)

for every z,w ∈ D.

Proof. The proof is completely analogous to the proof given in [10]. Hence we omit
it here.
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Lemma 3. Let v(z) = f(|z|) for every z ∈ D, where f ∈ H(D) is a function whose
Taylor series (at 0) has nonnegative coefficients. We assume additionally that v

satisfies condition (2). Then for f ∈ H∞
v and z ∈ D:

|f ′(z)| ≤
M

v(0)
1
p (1 − |z|2)

1+ 2
p v(z)

1
p

‖f‖v,p.

Proof. By Lemma 2 we have that

|f(z) − f(w)| ≤
M

v(0)
1
p

max

{

1

(1 − |z|2)
2
p v(z)

1
p

,
1

(1 − |w|2)
2
p v(w)

1
p

}

ρ(z,w)‖f‖v,p.

Now

∣

∣

∣

∣

f(z + h) − f(z)

|h|

∣

∣

∣

∣

≤

≤
M

v(0)
1
p |h|

max

{

1

(1 − |z + h|2)
2
p v(z + h)

1
p

,
1

(1 − |z|2)
2
p v(z)

1
p

}

ρ(z + h, z)‖f‖v,p

=
M

v(0)
1
p |h|

max

{

1

(1 − |z + h|2)
2
p v(z + h)

1
p

,
1

(1 − |z|2)
2
p v(z)

1
p

}

∣

∣

∣

∣

z + h − z

1 − z + hz

∣

∣

∣

∣

‖f‖v,p

=
M

v(0)
1
p

max

{

1

(1 − |z + h|2)
2
p v(z + h)

1
p

,
1

(1 − |z|2)
2
p v(z)

1
p

}

∣

∣

∣

∣

1

1 − z + hz

∣

∣

∣

∣

‖f‖v,p.

Finally, let h tend to zero and obtain

|f ′(z)| ≤
M

v(0)
1
p (1 − |z|2)1+

2
p v(z)

1
p

‖f‖v,p.

Proposition 1. Let v(z) = f(|z|) for every z ∈ D, where f ∈ H(D) is a function
whose Taylor series (at 0) has nonnegative coefficients. We assume additionally that
v satisfies condition (2). Then DCφ : Av,p → H∞

w is bounded if and only if

sup
z∈D

w(z)|φ′(z)|

(1 − |φ(z)|2)1+
2
p v(φ(z))

1
p

< ∞. (4)

Proof. First, we assume that (4) is satisfied. Applying Lemma 1 we obtain

‖DCφf‖w = sup
z∈D

w(z)|φ′(z)||f ′(φ(z))| ≤ C sup
z∈D

w(z)|φ′(z)|

(1 − |φ(z)|2)1+
2
p v(φ(z))

1
p

.

Hence DCφ : Av,p → H∞
w must be bounded.

Conversely, let a ∈ D be arbitrary. Then there exists f
p
a in the unit ball of H∞

v

such that |fa(a)|p = 1
ṽ(a) . Now put

ga(z) := fa(z)σa(z) for every z ∈ D.
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Then ‖ga‖
p
v,p =

∫

D
|ga(z)|pv(z) dA(z) ≤ supz∈D v(z)|fa(z)|p

∫

D
|σ(z)|p dA(z) ≤ K.

Moreover,

g′a(z) = f ′
a(z)σa(z) + fa(z)σ′

a(z) for every z ∈ D.

Next, we assume that there is a sequence (zn)n ⊂ D such that |φ(zn)| → 1 and

w(zn)|φ′(zn)|

(1 − |φ(zn)|2)1+
2
p v(φ(zn))

1
p

≥ n for every n ∈ N.

Thus consider now gn(z) := gφ(zn)(z) for every n ∈ N as defined above. Obviously
(gn)n is contained in the closed unit ball of Av,p and

c ≥ w(zn)|φ′(zn)||g′n(φ(zn))| =
w(zn)|φ′(zn)|

v(φ(zn))
1
p (1 − |φ(zn)|2)1+

2
p

≥ n

for every n ∈ N which is a contradiction.

Proposition 2. Let v(z) = f(|z|), z ∈ D, where f ∈ H(D) is a function whose Tay-
lor sereis (at 0) has nonnegative coefficients. Moreover, we assume that v satisfies
(2). Then the operator DCφ : Av,p → H∞

w is compact if and only if

lim sup
|φ(z)|→1

w(z)|φ′(z)|

(1 − |φ(z)|2)
1+ 2

p v(φ(z))
1
p

.

Proof. Let (fn)n be a bounded sequence in Av,p that converges to zero uniformly on
the compact subsets of D. Let M := supn ‖fn‖v,p < ∞. Given ε > 0 there is r > 0
such that if |φ(z)| > 0, then

w(z)|φ′(z)|

(1 − |φ(z)|2)1+
2
p v(φ(z))

1
p

≤
ε

2Cv

.

On the other hand, since fn → 0 uniformly on {u; |u| ≤ r}, there is an n0 ∈ N such
that if |φ(z)| ≤ r and n ≥ n0, then w(z)|f ′

n(φ(z))||φ′(z)| < ε
2 . Now, an application

of Lemma 3 yields

sup
z∈D

w(z)|f ′
n(φ(z))||φ′(z))| ≤ sup

|φ(z)|≤r

w(z)|f ′
n(φ(z))||φ′(z)| +

+ sup
|φ(z)|>r

w(z)|f ′
n(φ(z))||φ′(z)| ≤

ε

2
+ sup

|φ(z)|>r

Cvw(z)|φ′(z)|

(1 − |φ(z)|2)
2
p
+1

v(φ(z))
1
p

< ε.

Thus, the claim follows.

Conversely, we suppose that DCφ : Av,p → H∞
w is compact and that there are

δ > 0 and (zn)n ⊂ D with |φ(zn)| → 1 such that

w(zn)|φ′(zn)|

(1 − |φ(zn)|2)1+
2
p v(φ(zn))

1
p

≥ δ.
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Since |φ(zn)| → 1 there exist natural numbers α(n) with limn→∞ α(n) = ∞ such
that |φ(zn)|α(n) ≥ 1

2 for every n ∈ N.
Next, for every n ∈ N we consider the function

gn(z) := fn(z)σ
1+ 2

p

φ(zn)z
α(n),

where f
p
n ∈ H∞

v such that ‖fp
n‖v ≤ 1 and |fn(φ(zn))|p = 1

ṽ(φ(zn)) . Then we obtain

‖DCφfn‖w ≥ w(zn)|φ′(zn)||f ′
n(φ(zn))|

≥
w(zn)|φ′(zn)||φ(zn)|α(n)

ṽ(φ(zn))
1
p (1 − |φ(zn)|2)1+

2
p

≥
1

2

w(zn)|φ′(zn)|

ṽ(φ(zn))
1
p (1 − |φ(zn)|2)1+

2
p

≥
1

2
δ.

This is a contradiction.
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