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Interpolating Bézier spline curves with local control

A.P.Pobegailo

Abstract. The paper presents a technique for construction of interpolating spline
curves in linear spaces by means of blending parametric curves. A class of polynomi-
als which satisfy special boundary conditions is used for blending. Properties of the
polynomials are stated. An application of the technique to construction of interpolat-
ing Bézier spline curves with local control is considered. The presented interpolating
Bézier spline curves can be used in on-line geometric applications or for fast sketching
and prototyping of spline curves in geometric design.

Mathematics subject classification: 65D05, 65D07, 65D17.
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1 Introduction

Blending curves is an important technique for smoothing corners of curves in
computer-aided geometric design. Besides the technique can be applied to the design
of parametric spline curves which have local shape control. Firstly the construction
of spline curves by linear blending of parabolic arcs was proposed by Overhauser
[5] and considered by Rogers and Adams [8]. The construction of spline curves by
linear blending of circular arcs was considered by Zavjalov, Leus, Skorospelov [15],
Wenz [10] and Liska, Shashkov, Swartz [3]. The construction of spline curves by
trigonometric blending of circular arcs was considered by Szilvási-Nagy, Vendel [12],
Séquin, Kiha Lee, Jane Yen [11]. Using linear blending of conics for the construction
of spline curves was considered by Chuan Sun, Huanxi Zhao [1]. The paper presents
an approach to the construction of interpolating spline curves by means of blending
quadric Bezier curves using a class of polynomials which ensure a necessary conti-
nuity of the designed curves. The properties of the polynomials are stated. The
presented approach can be considered as a generalization of the linear blending.

2 Polynomials approximating a jump function

The purpose is to determine polynomials which can be used for smooth deforma-
tion of parametric curves in linear spaces. To solve the problem define polynomials
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which smoothly approximate the jump function

δ(u) =







0, 0 ≤ u < 1/2

1/2, u = 1/2

1, 1/2 < u ≤ 1

.

It can be seen that the jump function δ(u) is infinitely smooth at the boundaries but
has a discontinuity at the middle of the domain. In order to avoid the discontinuity
approximate the jump function δ(u) by means of Bernstein polynomials

bn,m(u) =
n!

m!(n − m)!
(1 − u)n−mum, u ∈ [0, 1].

For this purpose introduce the following knot sequences:

(0, 0, . . . , 0
︸ ︷︷ ︸

n

, 1, 1, . . . , 1
︸ ︷︷ ︸

n

), n ∈ N

and define the polynomials

wn(u) =

n−1∑

i=0

0 · b2n−1,i(u) +

2n−1∑

i=n

1 · b2n−1,i(u) =

2n−1∑

i=n

b2n−1,i(u)

for n ∈ N . It follows from this definition that the polynomials wn(u) have the
following boundary values:

wn(0) = 0, wn(1) = 1 (1)

and their derivatives satisfy the following boundary conditions:

w(m)
n (0) = w(m)

n (1) = 0 (2)

for m ∈ {1, 2, ..., n − 1} . The following polynomials:

w1(u) = u, w2(u) = 3(1 − u)u2 + u3, w3(u) = 10(1 − u)2u3 + 5(1 − u)u4 + u5

are usually used in geometric applications. The polynomials wn(u) have the following
properties.

Property 1. The polynomials wn(u) satisfy the equation

wn(u) + wn(1 − u) = 1.

Proof. This property follows from the property of Bernstein polynomials

n∑

m=0

bn,m(u) = 1, ∀n ∈ N.
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Property 2. The polynomials wn(u) are symmetric with respect to the point u = 1/2.

Proof. It follows from Property 1 that

wn(1/2 + v) + wn(1/2 − v) = 1, ∀v ∈ [−1/2, 1/2].

This means that polynomials wn(u) are symmetric with respect to the point u = 1/2.

Property 3.

lim
n→∞

∫ 1/2

0
wn(u)du = 0.

Proof. It is obvious that the polynomials wn(u) can be represented by linear combi-
nations of polynomials from the power polynomial basis un, un+1, . . . , u2n−1 with
coefficients linearly depending on n. Then the indefinite integral of the polynomial
wn(u) is a linear combination of the polynomials un+1, un+2, . . . , u2n whose coeffi-
cients also linearly depend on n. Therefore the limit of the definite integrals equals
zero.

It follows from Properties 2 and 3 that the polynomial wn(u) indefinitely close
approaches the jump function δ(u) while its degree is rising.

Property 4. The polynomial wn(u) is a minimum of the functional

Jn(f) =

∫ 1

0
|f (n)(u)|2du, ∀n ∈ N

where the function f(u), u ∈ [0, 1], satisfies the following boundary conditions:

f(0) = 0, f(1) = 1, f (m)(0) = f (m)(1) = 0 (3)

for m ∈ {1, 2, ..., n − 1} .

Proof. Assume that a function g(u) is a minimum of the functional Jn(f). Consider
the function

(g − wn)(u) = g(u) − wn(u).

Then

|(g − wn)(n)|2 = |g(n) − w(n)
n |2 = (g(n))2 − 2g(n)w(n)

n + (w(n)
n )2.

or equivalently

|(g − wn)(n)|2 = (g(n))2 − (w(n)
n )2 − 2(g(n) − w(n)

n )w(n)
n .

It follows from the last equation that

Jn(g − wn) = Jn(g) − Jn(wn) − 2

∫ 1

0
(g(n)(u) − w(n)

n (u))w(n)
n (u)du.
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The last integral can be computed by parts as follows:

∫ 1

0
(g(n)(u) − w(n)

n (u))w(n)
n (u)du =

∫ 1

0
w(n)

n (u)d(g(n−1)(u) − w(n−1)
n (u)) =

= w(n)
n (u)(g(n−1)(u) − w(n−1)

n (u))
∣
∣
∣

1

0
−

∫ 1

0
(g(n−1)(u) − w(n−1)

n (u))w(n+1)
n (u)du =

= −

∫ 1

0
(g(n−1)(u) − w(n−1)

n (u))w(n+1)
n (u)du

taking into account that

g(n−1)(0) = w(n−1)
n (0) = 0, g(n−1)(1) = w(n−1)

n (1) = 0.

Recurrently computing the obtained integrals by parts and taking into account that

the function w
(2n−1)
n (u) is a constant it is obtained that

∫ 1

0
(g(n−1)(u) − w(n−1)

n (u))w(n+1)
n (u)du =

= (−1)n
∫ 1

0
(g

′)(u) − w
′)
n (u))w(2n−1)

n (u)du =

= (−1)n(g(u) − wn(u))w(2n−1)
n (u)

∣
∣
∣

1

0
= 0

because
g(0) = wn(0) = 0, g(1) = wn(1) = 1.

Thus it is proven that
Jn(g − wn) = Jn(g) − Jn(wn).

The last equation can be rewritten as follows:

Jn(g) = Jn(wn) + Jn(g − wn).

It follows from the definition of the functional Jn(f) that

Jn(g − wn) ≥ 0.

Therefore
Jn(wn) ≤ Jn(g).

But the function g(u) is a minimum of the functional Jn(f) by assumption, therefore

g(u) = wn(u).

Thus it is proven that the polynomial wn(u) is a minimum of the functional Jn(f).
Now prove that this minimum is unique. Suppose the opposite. Let there exist

such a function g(u) which satisfies the condition

Jn(g) = Jn(wn).
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It follows from this equation that

Jn(g − wn) = 0,

which is equivalent to

g(n)(u) = w(n)
n (u), ∀u ∈ [0, 1].

It follows from the last equation that

g(u) = wn(u) +

n−1∑

i=0

aiu
i.

But the coefficients ai are equal to zero ∀i ∈ {0, 1, ..., n − 1} taking into account
boundary conditions which must be satisfied by the function g(u). Therefore

g(u) = wn(u).

Thus the property is proven.

The functional Jn(f) can be considered as energy of n−th derivative of the func-
tion which satisfies boundary conditions (3). Property 4 shows that the polynomial
wn(u) is a minimum of the functional Jn(f).

The polynomials wn(u) were firstly introduced by the author [7, 8] for the con-
struction of spline curves by blending of circular arcs and linear segments. Then
the polynomials were used by the author for the construction of spline curves on
smooth manifolds [9]. The polynomials were also used by Jakubiak, Leite and Ro-
drigues [3] for smooth spline generation on Riemannian manifolds and by Hartmann
[2] for parametric Gn blending of curves and surfaces. Wiltsche [14] proposed Bézier
representation of the considered polynomials.

3 Polynomial blending of parametric curves

Consider two parametric curves p1(u) and p2(u), u ∈ [0, 1], which have the same
boundary points, that is

p1(0) = p2(0), p1(1) = p2(1). (4)

The problem is to construct a parametric curve p(u), u ∈ [0, 1], which has the
boundaries

p(0) = p1(0), p(1) = p2(1) (5)

and derivatives of the parametric curve p(u) satisfy the following boundary condi-
tions:

p
(m)(0) = p

(m)
1 (0), p

(m)(1) = p
(m)
2 (1), ∀m ∈ {1, 2, ..., n}, (6)

where n ∈ N. In topology a parametric curve p(u) which satisfies conditions (5) is
called a deformation of the parametric curve p1(u) into the parametric curve p2(u).
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In this case the parametric curves p1(u) and p2(u) are called homotopic. In geomet-
ric design the parametric curve p(u) must satisfy additional boundary conditions
(6) and in this case p(u) is called a parametric curve blending the parametric curves
p1(u) and p2(u).

Using the polynomials wn(u) define a blending parametric curve p(u) as follows:

p(u) = (1 − wn(u))p1(u) + wn(u)p2(u), u ∈ [0, 1]. (7)

It follows form the definition of the polynomials wn(u) that the parametric curve
p(u) satisfies conditions (5) because

p(0) = (1 − wn(0))p1(0) + wn(0)p2(0) = p1(0) (8)

and
p(1) = (1 − wn(1))p1(1) + wn(1)p2(1) = p2(1). (9)

Derivatives of the parametric curve p(u) can be computed as follows:

p
(m)(u) =

m∑

i=0

m!

i!(m − i)!
((1 − wn(u))(i)p

(m−i)
1 (u) + w(i)

n (u)p
(m−i)
2 (u)), ∀m ∈ N.

Substitution of equations (2) into the last equation yields that

p
(m)(0) = (1 − wn(0))p

(m)
1 (0) + wn(0)p

(m)
2 (0) = p

(m)
1 (0), ∀m ∈ {1, 2, ..., n − 1}

and

p
(m)(1) = (1 − wn(1))p

(m)
1 (1) + wn(1)p

(m)
2 (1) = p

(m)
2 (1), ∀m ∈ {1, 2, ..., n − 1}.

Besides taking into account Equations (4) it is obtained that

p
(n)(0) = −w(n)

n (0)p1(0) + (1 − wn(0))p
(n)
1 (0)+

+w(n)
n (0)p2(0) + wn(0)p

(n)
2 (0) = p

(n)
1 (0)

and

p
(n)(1) = −w(n)

n (1)p1(1) + (1 − wn(1))p
(n)
1 (1)+

+w(n)
n (1)p2(1) + wn(1)p

(n)
2 (1) = p

(n)
2 (1).

Therefore the boundary conditions described by Equations (6) are also fulfilled.
The polynomials wn(u) can be considered as a generalization of the polynomial

w1(u), which is widely used in geometric applications for blending. Blending by
means of the polynomials w1(u) and (1 − w1(u)) is called linear. It can be seen
that the proposed approach for blending parametric curves ensures Cn parametric
continuity of a blending curve with the blended curves at its boundaries. Polynomial
blending which ensures Gn geometric continuity is considered in other articles by
Hartmann [2], Meek and Walton [5].
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4 Construction of spline curves by curve blending

The considered approach to blending of parametric curves can be used for the
construction of spline curves in a linear space. Suppose that it is necessary to
construct a spline curve p(u) ∈ Cn, n ∈ N, interpolating a sequence of knot points
pi, i ∈ {1, 2, ..., l}, which belong to a linear space. In this case segments pi(u),
0 < i < l, of the spline curve are constructed by blending two predefined parametric
curves pi,1(u) and pi,2(u) using Equation (7) as follows:

pi(u) = (1 − wn(u))pi,1(u) + wn(u)pi,2(u) (10)

where the parametric curves pi,1(u) and pi,2(u) must satisfy the following conditions:

pi,1(0) = pi,2(0) = pi, pi,1(1) = pi,2(1) = pi+1. (11)

Besides in order to ensure Cn continuity of the spline curve p(u) the parametric
curves pi−1,2(u) and pi,1(u) must be smoothly joined at the point pi that is

pi−1,2(1) = pi,1(0) = pi (12)

and
p

(m)
i−1,2(1) = p

(m)
i,1 (0), ∀m ∈ {1, 2, ..., n}. (13)

Therefore in order to apply the proposed technique to the construction of spline
curves the following problem must be solved: how to choose the parametric curves
pi−1,2(u) and pi,1(u) which satisfy Equations (12) and (13). A solution of this
problem depends on the application which uses the technique or more precisely
on the modeled physical process. For example, circular arcs have been using for
blending curves in the paper [7] because the application was intended for robot
trajectory planning. At that time most robots supported only techniques for the
interpolation of circular arcs and therefore it was not difficult to use deformation of
circular arcs for the construction of spline trajectories. Generally, since spline curves
constructed by the proposed technique have local shape control it is reasonable to
suppose that the proposed technique will be very suitable to solve problems for
on-line point interpolation.

5 Interpolating Bézier spline curves with local control

In geometric design a problem of choosing the model curve is motivated by two
reasons: shape and smoothness control of modeled curves. Nowadays it is accepted
that Bézier and B-spline curves are most suitable for this purpose. Taking into
account these considerations and since the polynomials wn(u) are represented by
means of Bernstein polynomials, Bézier curves are chosen for representation of the
parametric curves pi,1(u) and pi,2(u) used for blending.

In order to reduce degree of the designed Bézier spline curve it is reasonable
to use Bézier curves of the most low degree for blending. Therefore quadric Bézier
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curves are chosen for parametric curves pi,1(u) and pi,2(u). In order to ensure unique
choice of the parametric curves pi,1(u) and pi,2(u) it is supposed that the parametric
curves pi−1,2(u) and pi,1(u) are smoothly joined at the knot point pi. Analytical
representation of such quadric Bézier curves pi−1,1(u) and pi,2(u) can be obtained
from the following conditions:

pi−1,2(1) = pi,1(0), p
′

i−1,2(1) = p
′

i,1(0), p
′′

i−1,2(1) = p
′′

i,1(0). (14)

In order to simplify index notations consider two quadric Bézier curves

pj(u) = (1 − u)2pj,0 + 2(1 − u)upj,1 + u2
pj,2, j ∈ {1, 2},

which have the following boundary points:

p1(0) = p0, p1(1) = p2(0) = p1, p2(1) = p2 (15)

and are smoothly joined at the point p1, that is

p
′

1(1) = p
′

2(0), p
′′

1(1) = p
′′

2(0) (16)

Resolution of these equations yields the following values of unknown knot and control
points of the quadric Bézier curves p1(u) and p2(u):

p1,0 = p0, p1,2 = p2,0 = p1, p2,2 = p2, (17)

p1,1 = p1 −
p2 − p0

4
, p2,1 = p1 +

p2 − p0

4
. (18)

It follows from these constructions that the quadric Bézier curves p1(u) and p2(u) are
smoothly joined at the knot point p1 and therefore can be used for the construction
of spline curves with any degree of continuity. Actually the parametric curves p1(u)
and p2(u) are two segments of the same parabola. Besides the segments are joined
at such the point p1 that the distance from the point to the line connecting the
points p0 and p2 is maximal for all points belonging to the parabola.

Using Equations (17) and (18) Bézier curves pi,1(u) and pi,2(u) which are used
for the construction of a Bézier spline curve can be determined as follows:

pi,k(u) = (1 − u)2pi + 2(1 − u)upi,k + u2
pi+1, k ∈ {1, 2}, (19)

where

pi,1 = pi +
pi+1 − pi−1

4
, pi,2 = pi+1 −

pi+2 − pi

4
. (20)

That is the parametric curves pi,1(u) and pi,2(u) are blended in Equation (10) for
the construction of the spline curve segment pi(u).

Find another representation of the spline curve segment pi(u) which clarifies its
geometric construction. For this purpose substitute the obtained expressions for
parametric curves pi,1(u) and pi,2(u) into Equation (10). It is obtained that

pi(u) = (1 − u)2pi + 2(1 − u)u((1 − wn(u))pi,1 + wn(u)pi,2) + u2
pi+1
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where the control points pi,1 and pi,2 are defined by Equations (20). This repre-
sentation shows that the spline curve segment pi(u) can be considered as a quadric
Bézier curve with a smoothly modified control point.

A spline curve segment pi(u) can be also represented as a Bézier curve. To
obtain this representation modify Equation (10) using Equations (19) and taking
into account Property 1 of the polynomials wn(u) as follows:

pi(u) = (1 − wn(u))pi,1(u) + wn(u)pi,2(u) =

= wn(1 − u)pi,1(u) + wn(u)pi,2(u) =

=
n−1∑

k=0

b2n−1,k(u)pi,1(u) +
2n−1∑

k=n

b2n−1,k(u)pi,2(u) =

=
n−1∑

k=0

b2n−1,k(u)(b2,0(u)pi + b2,1(u)pi,1 + b2,2(u)pi+1)+

+
2n−1∑

k=n

b2n−1,k(u)(b2,0(u)pi + b2,1(u)pi,2 + b2,2(u)pi+1) =

=
2n−1∑

k=0

b2n−1,k(u)b2,0(u)pi +
n−1∑

k=0

b2n−1,k(u)b2,1(u)pi,1+

+

2n−1∑

k=n

b2n−1,k(u)b2,1(u)pi,2 +

2n−1∑

k=0

b2n−1,k(u)b2,2(u)pi+1 =

=

2n−1∑

k=0

b2n+1,k(u)c0,kpi +

n∑

k=1

b2n+1,k(u)c1,kpi,1+

+

2n∑

k=n+1

b2n+1,k(u)c1,kpi,2 +

2n+1∑

k=2

b2n+1,k(u)c2,kpi+1

where

c0,k =
(2n − k)(2n − k + 1)

2n(2n + 1)
, 0 ≤ k ≤ 2n − 1,

c1,k =
k(2n − k + 1)

n(2n + 1)
, 1 ≤ k ≤ 2n,

c2,k =
(k − 1)k

2n(2n + 1)
, 2 ≤ k ≤ 2n + 1.

It follows from the obtained equations that the segment pi(u) has the following
Bézier representation:

pi(u) = b2n+1,0(u)pi + b2n+1,1(u)(c0,1pi + c1,1pi,1)+

+

n∑

k=2

b2n+1,k(u)(c0,kpi + c1,kpi,1 + c2,kpi+1)+
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+
2n−1∑

k=n+1

b2n+1,k(u)(c0,kpi + c1,kpi,2 + c2,kpi+1)+

+b2n+1,2n(u)(c1,2npi,2 + c2,2npi+1) + b2n+1,2n+1(u)pi+1.

For example, segments of C1 and C2 continuous spline curves have the following
Bézier representations:

pi(u) = b3,0(u)pi + b3,1(u)
1

3
(pi + 2pi,2) + +b3,2(u)

1

3
(2pi,1 + pi+1) + b3,3(u)pi+1,

pi(u) = b5,0(u)pi + b5,1(u)
1

5
(3pi + 2pi,2) + b5,2(u)

1

10
(3pi + 6pi,2 + pi+1)+

+b5,3(u)
1

10
(pi + 6pi,1 + 3pi+1) + b5,4(u)

1

5
(2pi,1 + 3pi+1) + b5,5(u)pi+1,

respectively.

It can be seen that a segment pi(u) of a Cn continuous spline curve is a Bézier
curve of degree 2n+1. Let pi,k, k ∈ {1, 2, . . . , 2n}, denote control points of the spline
curve segment pi(u). It is known that Bézier curves have convex hull property, that
is a Bézier curve lies completely in the convex hull of its control points. It follows
from this property that deviation of a spline curve segment pi(u) from the line
segment PiPi+1 can be estimated as follows:

ε < max(dist(PiPi+1,pi,k)), ∀k ∈ {1, 2, . . . , 2n}.

6 Conclusions

The approach to the construction of Cn continuous interpolating spline curves
by means of blending quadric Bézier curves is introduced. Properties of the polyno-
mials which are used for blending are considered. The considered spline curves are
constructed locally, that ensures local shape control of the constructed spline curves.
Bézier representations of the introduced spline curves is presented. The considered
interpolating spline curves can be used in on-line geometric applications or for fast
sketching and prototyping of spline curves in geometric design. It also can be noted
that the proposed approach enables drawing of Bézier spline curves of C1 continuity
by means of any software packages which support drawing of cubic Bézier curves.
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